Report of

RVIB Nathanial B. Palmer Cruise 0202

to the

Western Antarctic Peninsula

9 April to 21 May, 2002



Report prepared by Peter Wiebe, John Klinck, Carin Ashjian, Erik Chapman, Wendy Kozlowski, Dezhang Chu, Rob Masserini, Deb Glasgow, Julian Ashford, Ana Sirovic, Phil Alatalo, Kristin Cobb, and Suzanne O’Hara, with assistance from other colleagues in the scientific party and the Raytheon Support Services. This cruise was sponsored by the Office of Polar Programs at the National Science Foundation.



United States Southern Ocean

Global Ocean Ecosystems Dynamics Program

Report Number 6




Available from

U.S. Southern Ocean GLOBEC Planning Office

Center for Coastal Physical Oceanography

Crittenton Hall

Old Dominion University

Norfolk, VA 23529








nsflogo.gif

usglobec-logo2_85percent.gif













Acknowledgments


This cruise, the third in the series of four Southern Ocean GLOBEC broad-scale cruises, was in all measures a great success. The cruise objectives were accomplished as well or better than anticipated and there was time to add additional scientific activities to explore in greater depth some of the cruise findings. The Raytheon Marine Technical support group, led by Alice Doyle, provided excellent assistance in port and at sea. Their very positive attitude and superb technical expertise made the cruise run very smoothly. Captain Joe Borkowski and the officers and crew of the N.B. Palmer were also very supportive. The congenial atmosphere on board the N. B. Palmer made working and living there a great experience.










NBP0202 Cruise Participants on the RVIB N.B. Palmer

(see facing page)


Kneeling (L-R): Alice Doyle, Jenny White, Phil Alatalo, John Klinck, Ann Sirovic, Amy Kukulya, Deb Glasgow, Helena Martellero, Wendy Kozlowski.


Row 1 (starting right of middle): Gaelin Rosenwaks, Yulia Serebrennikova, Kristy Aller, Andy Girard.


Row 2: Peter Wiebe, Carin Ashjian, Pete Martin, Karen Riener, Phil Taisey, Mark Dennett, Chris MacKay, Kristin Cobb, Erik Chapman, Steve Tarrent, Matthew Becker, Andres Hector Sepulveda, Romeo Laiviera, Sheldon Blackman, Tim Boyer, Rob Masserini, Julian Ashford, Dezhang Chu.


Row 3 (Upper right): Suzanne O’Hara, Kevin Bliss, Stian Alessandrini.



dcp_3049_vertical.jpgNBP0202 Cruise Participants















































TABLE OF CONTENTS


PURPOSE OF THE CRUISE

CRUISE NARRATIVE

INDIVIDUALS PROJECT REPORTS

1.0 Report for Hydrography, Circulation, and Meteorology Component

1.1 Introduction

1.2 Details of Data Collection

1.2.1 CTD and water samples

1.2.1.1 Salinity Calibration

1.2.1.2 Oxygen Calibration

1.2.2 Expendable Probes

1.2.3 Microstructure Profiler

1.2.4 ADCP Measurements

1.2.5 Meteorology Measurements

1.3 Preliminary Results

1.3.1 Water Mass Distributions

1.3.2 Spatial Distributions and Circulation

1.3.3 Microstructure Results

1.3.4 Surface Fluxes

1.4 Acknowledgments

1.5 References

2.0 Nutrients

2.1 Introduction

2.2 Methods

2.3 Data

2.4 Preliminary Results for Nutrient Concentrations

2.5 References

3.0 Primary Production Component

3.1 Introduction

3.2 Methods

3.2.1 Sampling Locations

3.2.3 Depths

3.2.3 Ice Sampling

3.2.4 Equipment

3.2.5 Data Collected

4.0 Zooplankton Studies

4.1 Zooplankton Sampling with the 1m2 MOCNESS Net System

4.1.1 Introduction

4.1.2 Methods and Approach

4.1.3 Preliminary Findings

4.1.4 Acknowledgments

4.2 BIOMAPER-II Survey

4.2.1 Acoustics Data Collection, Processing, and Results

4.2.1.1 Introduction

4.2.1.2 Methods

4.2.1.3 Results

4.2.3 Video Plankton Recorder

4.2.3.1 Overview

4.2.3.2 Methods

4.2.3.3 The VPR system

4.2.3.3.1

4.2.3.3.2

4.2.3.3.3 Video Recording and Processing

4.2.3.3.4 Plankton Abundance and Environmental Data

4.2.3.3.5 Sampling

4.2.3.4 Results

4.2.3.4.1 Planktonic Taxa Observed with the VPR

4.2.3.5 Discussion

4.2.3.5.1 Plankton Distributions

4.2.4 Water column hydrographic and environmental characteristics

4.2.4.1 Overview

4.2.4.2 Distributional Patterns of Environmental Data

4.2.5 Acknowledgments

4.3 ROV observations of juvenile krill distribution, abundance, and behavior

4.3.1 Objective

4.3.2 Methods

4.3.3 Results

4.4 Microplankton Studies

4.4.1 Introduction

4.4.2 Methods

4.4.3 Preliminary Results

5.0 Material Properties Of Zooplankton

5.1 Introduction

5.2 Methods and Instruments

5.2.1 Sound speed contrast measurements

5.2.2 Density contrast measurements

5.3 Data Collection and Preliminary Results

5.3.1 Data collection

5.3.2 Preliminary Results

5.3.3 Calibration

5.3.4. References

6.0 Seabird and Crabeater Seal Distribution in the Marguerite Bay Area

6.1 Introduction

6.2 Methods

6.3 Daytime Surveys

6.3.1 Methods

6.3.2 Data Collected

6.3.3 Preliminary Results

6.3.3.1 Ice Condition

6.3.3.2 Birds

6.3.3.3 Adelie Penguin (Pygoscelis adeliae)

6.3.3.4 Crabeater Seals (Lobodon carcinophagus)

6.3.4 Diet Sampling

6.3.4.1.Methods

6.3.4.2 Data Collected

6.3.4.3 Preliminary Results

6.3.5 Surface Net Tows

6.3.5.1 Introduction

6.3.5.2 Methods

6.3.5.3 Data Collected/Preliminary Results

6.3.6 General Discussion

8.0 Marine Mammals Passive Acoustics

8.2 Methods

8.3 Data Collected

8.4 Preliminary Results

9.0 Fish Otolith Collections

10.0 Science Writer Report

11.0 Seabeam bathymetry of region and Mooring surveys

CRUISE PARTICIPANTS

Appendix 1. Event Log.

Appendix 2. Summary of CTD casts

Appendix 3. Summary of water samples

Appendix 4. Summary of salinity measurements

Appendix 5. Summary of oxygen titrations

Appendix 6. Summary of expendable probes

Appendix 7. Video and Lugol's Samples Taken on NBP0202

Appendix 8. Summary of sightings

Appendix 9. Results from analysis of fourteen diet samples of Adelie Penguins

Appendix 10. 1-m Ring Net Tow Information.

Appendix 11. BIOMAPER-II Tape Log.

Appendix 12. Cetacean Sightings NBP0202 9 April to 21 May 2002




PURPOSE OF THE CRUISE


The U.S. Southern Ocean GLOBEC Program is in its second field year. The focus of this study is on the biology and physics of a region of the continental shelf to the west of the Western Antarctic Peninsula extending from the northern tip of Adelaide Island to the southern portion of Alexander Island and including Marguerite Bay. The primary goals are:

 

1) To elucidate shelf circulation processes and their effect on sea ice formation and Antarctic krill (Euphausia superba) distribution.

 

2) To examine the factors that govern krill survivorship and availability to higher trophic levels, including seals, penguins, and whales.


The second year field program began with a mooring cruise in February and March aboard the R/V L.M. Gould during which a series of moorings deployed a year ago across the continental shelf of the Adelaide Island and across the mouth of Marguerite Bay were recovered (LMG02-1A Cruise Report). The Marguerite Bay moorings were reset in slightly different positions. In addition the series of bottom mounted moorings instrumented to record marine mammal calls and sounds were recovered and reset. This report describes and details the first broad-scale cruise to take place this year (the third in a series of four). Our effort is mainly devoted to developing a shelf-wide context for the process work being conducted during this same time period aboard the R/V L.M. Gould and for the modelers who will be using both the broad-scale and the process data in their model computations. Our specific objectives with regard to the broad-scale survey were:


1) To conduct a broad-scale survey of the SO GLOBEC Study Site to determine the abundance and distribution of the target species, Euphausia superba and its associated flora and fauna.

2) To conduct a hydrographic survey of the region.

3) To collect physical microstructure data from the water column.

4) To collect chlorophyll data, nutrient data, and to make primary production measurements to characterize the primary production of the region.

5) To collect zooplankton samples with a MOCNESS at selected locations throughout the broad-scale sampling area.

6) To survey the under ice distribution and abundance of krill larvae using an ROV equipped with a VPR, ADCP, and CTD.

7) To survey the sea birds throughout the broad-scale sampling area and determine their feeding patterns.

8) To survey the marine mammals throughout the broad-scale sampling area both by visual sightings and by passive listening techniques.

9) To map the bank-wide velocity field using an Acoustic Doppler Current Profiler (ADCP).

10) To collect acoustic, video, and environmental data along the tracklines between stations using a suite of sensors mounted in a towed body (BIOMAPER-II).

11) To collect meteorological data.

12) To deploy satellite tracked drogues at four locations on the station grid.


In addition, an ancillary program was conducted to study the sound speed contrast and the density contrast of zooplankton in the region, with principal focus on Antarctic krill.


The cruise track was determined by the positions of 92 station locations distributed along 13 transect lines running across the continental shelf and perpendicular to the Western Peninsula coastline (Figures 1, 2). The work was a combination of station and underway activities (See the Event Log, Appendix 1). The along-track data were collected from the BIo-Optical Multifrequency Acoustical and Physical Environmental Recorder (BIOMAPER-II), the ADCP, the meteorological sensors, through hull sea surface sensors, XBTs, XCTDs, and Sonabuoys. At the stations, a cast with a CTD/Rosette equipped with oxygen, transmissometer, and fluorometer sensors was made to the bottom. In water depths less than about 500 m, a Fast Repetition Response Fluorometer (FRRF) was added to the Rosette and at some deep water locations, a special cast to 100 m was made with it on before doing the deep cast. In addition, a sensor system to measure microstructure, CMiPS, was installed on the CTD and it was used on most CTD casts that were shallower than about 2000 m. At selected stations, a 1-m2 Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS) was towed obliquely between the surface and near the bottom or 1000 m if the bottom were deeper for collection of zooplankton (335 um mesh). A 1-m Reeve net was used to make collections of live animals for use in shipboard acoustic experimental studies and a 1-m ring net was used for surface zooplankton collections for use in sea bird feeding studies. Meteorological, sea surface hydrographic properties, and SeaBeam bathymetry data were collected along the survey tracklines.


Note: all times given in the text are local times, which were +4 UTC time.


CRUISE NARRATIVE


This narrative is an excerpt of reports usually sent in daily from the N.B. Palmer to the Southern Ocean GLOBEC Web Site located at: www.ccpo.odu.edu/Research/globec/main_cruises02/nbp0202/menu.html. These reports provide additional detail about the activities that took place on the cruise.


April 9-11: The RVIB N.B. Palmer left the port of Punta Arenas, Chile at 1100 hours on Tuesday, 9 April 2002 after an intensive week of cruise preparation, which went very smoothly thanks to the excellent preparations and assistance provided by the Raytheon Technical Support Group. There was a moderate wind and partly cloudy skies.


Shortly after leaving port, we stopped at a nearby dock to pick up the “Cajon Cruncher”, a small boat carried by the N.B. Palmer, which had undergone some repairs in Punta Arenas. After lunch, we had our first safety meeting with Chief Mate Richard Wishner presiding. This included dawning the survival suits and the exercise of getting the entire science party into a large life boat and strapped in. The safety meeting was followed by a science meeting led by MPC Alice Doyle and Chief Scientist Peter Wiebe. Then, there was an on deck safety briefing and later a SeaBeam data ping editing class for those who had not previously done ping editing. Later in the afternoon, while steaming through the straits of Magellan, we slowed for a test deployment of BIOMAPER-II. This enabled those who handled the launch and recovery of the towed body during the cruise to become familiar with the procedures in running the winch, slack tensioner, and overboarding sheave and docking mechanism together with the operation of the stern A-frame under good weather and sea conditions. It also provided an in-water test of all of the sensors systems while the system was being towed and fine tuning of the weight distribution in towed body to get it to tow horizontally. Around 1800 at the pilot drop-off point on the eastern end of the Straits of Magellan, three individuals (Sam Johnson of HTI, and Scott Gallager and Terry Hammar both from


fig1_track_full_sm.gifFigure 1. RVIB Nathanial B. Palmer (NBP0202) cruise track (solid black line) and cruise tracks from the previous two Southern Ocean GLOBEC broad-scale surveys. Figure prepared by S. O’Hara.











































fig2_track_sm.gifFigure 2. The Southern Ocean GLOBEC broad-scale survey grid and trackline, showing locations of stations and along-track observations. Locations of specific activities are in the individual reports and in the event log (Appendix 1). Previous broad-scale cruise tracklines are indicated as dashed lines. Figure prepared by S. O’Hara.















































WHOI) who were assisting in the port setup of the hardware and software associated with BIOMAPER-II and the ROV, left the ship along with the pilot.


The course to the survey area (first station was at -65.6633S; -70.6580W) took us east from Punta Arenas through the straits of Magellan, then south along the eastern side of South America (Argentina), through the straits of Maire, then nearly straight south to the start of the grid. The distance from Punta Arenas to the work site was approximately 900 nm.


During 10 April, we steamed along the eastern side of the southern tip of South America reaching the straits of Maire in the late afternoon. Winds were in the 30 kt range during the morning, but the seas were moderate because we were in the lee of the land. As we approached Estrecho del la Maire, we could see high snow covered mountains in the distance. They were quickly obscured by a fast moving snow squall. The winds, out of the southwest, were fierce in the straits with speeds up in the high 40 to low 50 kt range and we were no longer in a lee. Fortunately, the current was running with the wind so that the seas were not as big as they might have been. Bucking the wind and current, however, resulted in the ship’s speed being slowed to about 5 kts as we made our way through the straits. During the night of 10th and the morning of the 11th of April, the winds remained in the high 40 to low 50's. There were gusts up to and over 60 knots. Needless to say, it was not a comfortable night for anyone. The winds abated some in the late morning, but remained in mid-thirty knot range for the rest of the day and evening. As a result, the ship continued to make around 5 or 6 knots as we inched our way towards the 200 mile limit where our first work was to start.


April 12-13: The transit south from Punta Arenas, Chile to our survey grid on western Antarctic Peninsula continued for a fourth and fifth day. The early morning hours of the 12th of April found the Palmer in rough seas and winds hovering about 30 kts and still out of the west southwest (250). About 0100, we crossed the 200 mile limit and began making science observations taking XBT’s at 10 nm intervals, and recording SeaBeam bathymetry and along track sea surface and meteorological data under cloudy skies. There was a noticeable drop in both the sea (1.7 C) and air temperature (1.2 C) about the time we left the Argentine economic zone which marked our crossing of the polar front. By mid-day the winds were dropping and the seas moderating. Late in the afternoon, the winds died down to the 17 to 21 kt range out of the west northwest (300). The barometer was still above a 1000 (1001.0 mlb) and the air temperature (1.6 C) was colder than the seawater (2.06 C). The clouds remained along with a light drizzle. Low visibility made it hard for the bird and marine mammal observers to conduct their surveys.


A science meeting was held at 1300 on the 12th and the different scientific parties on board reviewed their scientific objectives and outlined what they planned to do at the various stations. There was consensus that a test station some distance from the first station in the grid was needed and that was programmed into the schedule.


Just after sunrise (~0800) on the morning of the 13th , the test station began about 100 nm north of Grid Station 1. The sea surface was almost glassy and only a low swell was running. Fog hung over the sea surface, but it was not so thick that the ship needed to slow from its 11 knot pace in reaching the test station. But the skies were a hazy light blue above and the winds light. The air temperature (-1.9 C) and sea temperature (-0.03C) continued to decline. The CTD was quickly deployed. The profile to 500 meters went well and except for a couple of bottles that did not close properly, the cast was successful. This was followed by a BIOMAPER-II deployment to 180 m, an Acoustic Properties of Plankton measurement system deployment, and a MOCNESS tow. A second deployment of BIOMAPER-II late in the afternoon was needed to fine tune the towing configuration.


With the completion of the test station, we again set sail for Station 1. Sea conditions changed significantly during the day. By noon it was overcast, but the sun still shone through a bit. Late in the afternoon, it was sleeting lightly and the wind had picked up. By 2200 on the 13th, the winds were back up around the 30 kt mark out of the west (274) and the barometer, which had been falling, was at 983.7 mlb. Air temperature was just above freezing (0.8 C) and the water temperature was just below (-0.04 C).


April 14: The N.B. Palmer reached the first Station in the Southern Ocean GLOBEC survey grid in the early morning hours of 14 April. Thick low clouds and a raw cold air (0.5 C) driven by a 25 kt wind provided a setting not nearly as pleasant as what we experienced at the test station on 13 April, but typical of what was expected for this time of year. Air temperature was just above freezing (0.5 C) and the water temperature was a little colder (-0.12 C). The barometer held steady at 987.1 mlb. In the first light of the day, one could see a magnificent iceberg just a short distance off the starboard bow. This was much earlier in the cruise for such sightings compared to last year’s fall cruise.


Work began immediately with the deployment of the CTD. After a pair of casts, one shallow and one deep, BIOMAPER-II was deployed. But a ground fault in the acoustic system caused the towyo between Stations 1 and 2 to be aborted shortly after the towed body was launched. The ship steamed on to station 2 at the customary 4 to 6 knots needed for the sea bird and mammal surveys while the fault was tracked down and eliminated. At Station 2, another CTD cast to the bottom was made followed by another test of the APOP system to see if a noise problem observed during the first deployment at the test station was still present; it was. The launch of BIOMAPER-II came at the end of station 2 and this time it operated as planned. Towyo’s between the surface and 250 meters were made during the 40 km transit to Station 3. While BIOMAPER-II remained in the water “parked” about 25 m below the surface, the station work began. At station 3, the microstructure sensor package was mounted on the CTD frame for the first time and was successfully operated. Also at this station, a 1-meter diameter ring net was obliquely towed in the upper 50 m to collect a plankton sample for comparison with bird survey data. Towyoing with BIOMAPER-II down to 250 m resumed during the transit to station 4, which was reached just after midnight.


April 15: The start of the survey work at the northern end of the SO GLOBEC grid continued to go well. Working conditions on 15 April remained reasonably good for most groups in the scientific party, although aspects of the weather hampered the observational work of the bird and mammal surveyors. Work was completed at the remaining stations on line 1 (stations 4 to 6) and also at station 7, the inner most station on line 2. This included CTD’s equipped with both the FRRF and the Microstructure systems at each of the four stations, a MOCNESS tow at Station 4, a 1-m Reeve net live animal tow at stations 4 and 7, and a 1-m ring net surface zooplankton tow at station 7. Four sonobuoys were deployed along the trackline to listen for marine mammal vocalizations and BIOMAPER-II was towyoed along the tracklines between the four stations.


The weather on 15 April remained dark and dreary with thick clouds and a light fog and snow limiting visibility to between a few hundred meters to a mile or two. Snow flurries were common throughout the day and the decks were wet and icy. The wind was out of the northeast (040) at 15 to 20 kts and with the ship’s course headed towards Adelaide Island, we were traveling in the trough. But the ride was quite good. Water temperature (-1.473 C) inshore was about a degree colder than offshore and the water was fresher (33.154 psu) by about half a part per thousand. The air temperature during the day was just below freezing (-0.6 C). Barometric pressure was ~979 mlb.


April 16: During the 16th of April, the broad-scale survey activities were focused on work at stations 8 to 11 on survey line 2 that extended 81 nm from inshore off the northern end of Adelaide Island to just beyond the continental shelf break. Early in the day, the winds were up some from those experienced yesterday and were running in the low to mid-20 kt range out of the northeast (053). The barometer dropped to 971.9 mlb, but the air temperature held steady (-0.3 C) and was about the same as the water temperature (-0.518 C). Off and on during the day, it snowed moderately and with the wind, the flakes were being driven horizontally across the deck. The snow again caused problems for the bird and mammal surveyors. In the afternoon, the winds dropped down to around 15 kts, and in the evening there was little wind and seas became calm.


At each of the stations, a CTD cast was made with both the microstructure profiler and the FRRF, except that the FRRF was removed for the cast at station 11 due to its depth limitations. In addition, two satellite tracked drogues were deployed at stations 8 and 9 to provide Lagrangian measurements of the surface currents in this northern area of the grid. Two sonobuoys were also deployed along the trackline. At station 11, quantitative zooplankton collections were made with the MOCNESS and a live animal collection was made with the 1-m Reeve net. BIOMAPER-II was towyoed between stations and was only taken out of the water at Station 11 to make it possible to deploy the MOCNESS. To the extent possible, seabirds and mammal observations were made while transiting between stations.


The event of note was the discovery of an intrusion of offshore water at station 9. This prompted a brief deviation from the survey trackline to measure the horizontal extent of the intrusion perpendicular to the trackline. After completing the station work, BIOMAPER-II was towyoed along a transect perpendicular to the survey line, which was 5 km long on either side of the station location. Additional physical observations were made at each end of this short transect and some were also added to the survey line as we transited between stations 9 and 10.


April 17: On April 17th, work began in the early morning hours at deep ocean station 12 out at the end of survey line 2, where the water depth was 2941 meters. In the early morning light, the horizon was visible for the first time in days, although the skies were still heavily clouded. Winds were in the 25 kt range out of the east northeast (070) and the air temperature was around -2.2 C. The barometer, at 978 mlb, was not changed much from the last couple of days. Working conditions were relatively good. During the course of the day, the Palmer moved from the offshore location to mid-shelf station 14 on line 3 with a stop at the shelf break to work at station 13. By evening, winds were up in the high 20's to low 30's, but fortunately, the seas were on the port quarter, so the ride was not bad. The skies remained cloudy and sometimes the cloud deck lowered almost to the sea surface. There was little in the way of precipitation. The work-of-the-day included 4 CTD’s, an APOP cast at station 12, and a 1-m ring net tow at station14. BIOMAPER-II was towyoed between stations 12, 13, and 14 and along track sea bird and mammal observations were made during daylight. Three Sonobuoys were also deployed along the trackline.


Although the day started out routinely enough, there was an event that was not routine. About the time that the APOP cast was being completed (0940), preparations to deploy BIOMAPER-II were underway. When the doors to the van used to store BIOMAPER-II on deck were opened, an acrid black smoke came rolling out and it was evident that there had been a fire at the back of the van where the electrical panels were located. Quick action on the part of the MT Stian Alesandrini got the report of a fire to the bridge, which triggered off the ship’s fire alarm. All the scientists and technical support people rapidly grabbed survival suits and life vests, and went to the third level lounge, which was our muster station in case of emergencies. There was a period of waiting while the crew and electronic technicians did an inspection to try and determine what caused the fire, which was out at the time of discovery. The consensus was that the fire started with the failure of a Makita battery charger, which was at the back of the van close to one of the electrical panels. The fire produced a thick black soot, which covered all surfaces, and the heat ruined some of the electrical wiring, but the damage was relatively little. BIOMAPER-II was not damaged, so once the assessment was completed, work commenced towards getting the towed body into the water. Cleanup of the deck van and the re-wiring of the damaged circuits began shortly after. The Ship’s engine room crew, led by Johnny Pierce, and the Raytheon technical support people did a great job in helping to get the van back into working condition. Members of the BIOMAPER-II group also worked very hard and put in long hours to right the situation.


April 18: Work down on the Western Antarctic Continental shelf in the fall and winter often seems like an endless collection of cloudy dreary days with little sunlight, but every once in a while a day occurs that is really quite special. April 18 was one of those days. The first view of Adelaide Island happened in the early morning as the sun was rising. Finally the clouds lifted enough so that the full majesty of the snow covered peaks and the Fuchs ice Piedmont could be seen. We were steaming on survey line three towards the island and as we approached station 16, the mountains loomed larger and become more spectacular. The scene was a contrast in shades of gray in the clouds high above and the dark blue/black of the ocean surface, and the brilliant white of the snow covering almost all of the land surface of the island. Later in the afternoon, while at station 17, the sun shone on the craggy mountains highlighting the snow against the dark clouds high above and the sea surface had a glassy slowly undulating texture in the very light winds that prevailed.


The work was completed during 18 April at stations 15, 16, and 17, and included 3 CTD’s, 2 MOCNESS tows, and a 1-m Reeve net tow. Along track work, however, only consisted of bird and mammal surveying because it was discovered, when BIOMAPER-II was brought on board at the start of station 15, that there was a broken strand of the outer armor on the towing cable. This necessitated the cutting of the cable behind the break and re-termination of the end of the cable. This process took about 12 hours and no acoustics or video data were collected between stations 15 to 17 and part of the way to station 18.


As noted above, the weather on 18 April was close to ideal. During the early morning hours, the wind was out of the northeast at 15 to 20 kts, the air temperature was 0.3 C, and the barometric pressure was 982.1 mlb, up a bit from the last few days. By mid-afternoon, the wind speed was close to zero, the sea surface was glassy, and a good portion of the sky was cloud free.


April 19: On April 19th, the N.B. Palmer was working on survey line 4 mostly in the mid-continental shelf region just north of Marguerite Bay where water depths were around 500 m. Weather on 19 April was again very good. Winds during the day were out of the north (000) about 15 kts and the seas had only a moderate swell. The air temperature remained steady at about -0.4 C and the barometer was up a bit at 991.4 mlb . Sea surface temperature was -0.463 C. There were high clouds hiding the sun and there was no blue sky. But there was a glint of sunlight at the horizon to the north. The visibility was very good. At mid-morning, the ship passed close by a very large and beautiful iceberg, which was accompanied by patches of brash ice. Icebergs were seen off in the distance for a good portion of the day.


Work was completed at stations 18, 19, 20, and 21. The CTD was deployed at all of the stations with the microstructure sensor package and the FRRF, with the exception of station 19, which was too deep to deploy the FRRF. A 1-m ring net tow for surface zooplankton was done at Station 19 and a MOCNESS tow was done at station 21. An APOP cast was also done at this station with adolescent krill individuals, which had been kept alive since they were caught at station 7. Underway measurements included the sea bird and mammal surveys and BIOMAPER-II towyos between all of four stations. Two sonobuoys were also deployed along the trackline.


 April 20: On April 20th, the N. B. Palmer was at the offshore end of survey lines 4 and 5 in water depths of 3500 meters. These stations are about as far apart as any on the survey grid and they require a lot of steaming time to move from one to another and a lot of time to do a CTD profile from the surface to the sea floor or a MOCNESS tow to 1000 m. Thus, we worked only at stations 22 and 23 on this day.


The good weather continued, much to our amazement and pleasure. There was a beautiful sunrise with clear skies overhead. The only clouds were out on the horizon. In the early morning light, there were a number of icebergs off in the distance, one of which looked like a ship on the horizon with a bow, tall mast, and aft cabin. Bergy bits of ice were floating closer by. Once again, there was very little wind, around 10 kts out of the north northeast, and the seas were just choppy with a low underlying swell. The barometer remained fairly high at 998.7 mlb and the air temperature was holding steady at -0.6 C. In early afternoon, the skies had lost their lovely blue and were again overcast. Wind remained low, but the barometric pressure had started to drop. Surface salinity (33.733 psu) out in this Antarctic Circumpolar Current location was higher than on the shelf and sea surface temperature was -0.571 C. By mid-afternoon, a fog approached the ship from the north ultimately reducing the visibility to less than a mile. The winds picked up in the evening and the barometer kept dropping, a portend for an approaching storm.


During 20 April, 3 CTDs (2 deep and one shallow), a 1-m ring net tow at station 22, and a deep MOCNESS tow at station 23 were successfully completed. Two sonobuoys were deployed along the transect lines. BIOMAPER-II towyos were made along the tracklines between each of the stations and while visibility remained good, seabird and mammal observations were also made.


April 21: The fair skies of 20 April gave way to a fast moving, but turbulent storm that significantly reduced the scientific program on 21 April. A falling barometer and increasing winds were accompanied by snow and fog. By 0400, winds were in the 40 to 50 kt range and seas had built accordingly. The stern deck was awash and access to it was curtailed. These conditions continued through the morning and although the winds subsided remarkably quickly in the afternoon to the 10 to 15 kt range, the storm and its after effects caused all of the programmed station work to be dropped except for the CTDs.


Work on the survey grid was completed at stations 24, 25, 26 27 along the outer to mid-shelf region of survey line 5, which extends into the northern part of Marguerite Bay. The abbreviated work schedule included only four CTD’s at the stations, because of the high winds and seas. BIOMAPER-II remained in the water during the worst of the storm, primarily because it was too rough to recover it. At Station 27, the BIOMAPER-II towing wire was damaged again, this time while on station with the fish parked at 40 m depth. The towed body was retrieved at this station so that re-termination could commence. Late in the afternoon, once the snow fall ceased and the fog thinned, some along track observations were made by the seabird surveyors, but conditions were not suitable for marine mammal observations.


April 22: The long anticipated steam into Marguerite Bay along the inner portion of survey line 5 was what we had been hoping for. It was another spectacular dawn and sunrise with the mountains of Adelaide Island just a few miles away. Broken clouds and patches of blue sky allowed the early morning sunlight to highlight the icebergs close at hand and the mountains. The winds had died overnight and were very light. A very large swell was still running, a reminder of yesterdays storm, and occasionally the water would slosh onto the aft deck, but the sea surface was almost glassy. The excellent weather conditions persisted throughout the day and during the afternoon there were particularly marvelous views of the southern end of Adelaide Island with a bright sun overhead and clouds hanging behind the mountains. The thick Fuchs ice Piedmont was just amazing to see up close. The evening weather remained subdued with the wind out of the east northeast (070) about 15 kts. The barometer was at 982.2 mlb, and the air temperature was -1.9 C. Sea surface temperature was -1.19 C and salinity was 33.197, much fresher than out on the continental shelf or in the Antarctic Circumpolar Current. There were substantially more icebergs around the ship and many small ice chunks and bergy bits, but no substantial areas of sea ice.


Work was completed during 22 April at stations 28, 29, 30, 31,33, and part of 34. These stations, except station 34, occurred in the very shallow water regime just below the southern tip of Adelaide Island in water depths that varied from around 100 m to over 300 m along the trackline. There were 6 CTD casts all with the microstructure and FRRF sensors, 1 MOCNESS tow, 2 Reeve net live animal tows, and a 1-m ring net tow for surface zooplankton. The last of the satellite tracked drogue deployments took place at station 33 on the southwestern end of Laubeuf Fjord, a deep 800 m depression in the northern end of Marguerite Bay. Seabird and marine mammal observations were made during daylight transit periods. BIOMAPER-II towyoing occurred between stations 29 to 30 and 31 and 33. It was out of the water for the other transits for re-termination of the towing cable and maintenance/repair of the Video Plankton Recorder. Two sonobuoys were deployed, one each between station 30 and 31, and 31 and 33. Although there was a station 32 in the survey grid plan, because of the shoal waters in the selected area, the N.B. Palmer was not able to get to that location and the station was dropped from the schedule.


April 23: April 23rd was another very beautiful day in Northern reaches of Marguerite Bay. The sun rose around 0830 with clear skies overhead and glassy seas (no wind). There was bright sun and essentially no clouds all day, except over the mountains of Adelaide Island where there were some clouds as a backdrop to the peaks. The rugged mountains surrounding Marguerite Bay, blanketed with snow, were dazzling with the brightness of the sun reflecting off the white surfaces. The winds remained low all day (generally less than 15 kts out of the east) and the seas calm. Icebergs were frequently encountered along the trackline. Part way between stations 35 and 36, we encountered patches of newly formed pancake, ice fragments, and bergy bits slowly oscillating in a moderate swell. The amount of sea ice that we encountered increased throughout the day as we worked our way towards the central region of the Bay. Towards dusk, a band of high clouds moved in from the north accompanied by a falling barometer, which dipped down to 973.6 mlb around midnight. Air temperatures ranged from -2.2 to 1.3 C during the day and sea surface temperatures were all below freezing. Surface salinities (less than 33 psu) were the freshest yet seen on the cruise.


About 0830 on 23 April, the N.B. Palmer rendezvoused with the L.M. Gould mid-way between stations 35 and 36 in Laubeuf Fjord. The Gould deployed a zodiac to come over to the Palmer under ideal conditions and there was a two way transfer of equipment and science supplies. Live animals collected by Kendra Daly and Jose Torres on the Gould were brought over to the Palmer for use in experimental work by Dezhang Chu. Within an hour, the transit to Station 36 was resumed.


During this day, work started on 22 April at station 34 was completed, as were the scheduled activities at stations 35, 36, and 37. Four CTD’s were made, one each at station 35 and 36, and two at station 37 (shallow with FRRF and deep without FRRF). A relatively deep MOCNESS tow was made at station 34, an APOP cast was made at station 36, and an ice collection was made at station 37. To do the latter, the ship’s starboard crane was used together with a personnel carrier to position the collectors just above the sea ice surface enabling them to do the collecting. Seabird and mammal surveys were conducted along the transits between stations and BIOMAPER-II was towyoed between stations 35 and 36, and 37 and 38. It was out of the water for transit between 36 and 37 for additional maintenance. Two sonobuoys were deployed along the survey trackline to record marine mammal calls.


April 24: On April 24th, the broad-scale survey was conducted along the inner and central area of Marguerite Bay. The weather remained very good for working, although in the hours before first light, a light snow fell. By dawn, there were high overcast skies with clouds that just cut off the tops of the mountains surrounding the Bay. During most of the day, visibility was very good with skies remaining cloudy to partly cloudy with occasional patches of blue sky. It started to snow again in the evening leaving a white coating on the non-heated decks.


Winds were generally light to moderate - around 10 to 12 kts out of the east in the morning and 15 to 18 kts out of the north in the afternoon. The barometric pressure was 983.7 mlb in mid-afternoon, up from 974.5 mlb around 0200. The air temperature ranged from -2.1 C to 0.9 C, and in the afternoon, the sea surface temperature was near the freezing mark at -1.693 C and the salinity was 33.977 psu. On the trackline between stations, the ship steamed through a mixture of brash ice, large pancakes, and larger slabs of much thicker year-old ice. Much of the new ice had a golden greenish brown color indicating lots of algae and microzooplankton were present in it in contrast to the year old slabs that were a purer white. During the steam from station 40 to 41, the pack ice ended and station 41, at the entrance to Marguerite Bay, was in open water.


During this day, work was completed at stations 38, 39, 40 and started at station 41. Three CTD’s were made, a MOCNESS tow was made at station 40, an APOP cast was made at station 41, and an ice collection was made at station 40. Seabird and mammal surveys were conducted along the transits between stations during daylight, and BIOMAPER-II was towyoed between stations 38, 39, 40 and 41. Two Sonobuoys were deployed along the survey trackline to record marine mammal calls.


April 25: There are thirteen survey lines on the Southern Ocean GLOBEC broad-scale survey grid. Lines 4 to 7 are the longest, running from the deep offshore waters of the Antarctic circumpolar current to the inner portions of Marguerite Bay. Each line is about 160 nm (300 km) and it takes about 3 days to complete a line’s station and along track work. On April 25th, we were mid-way along survey line 6 headed off shore.


The fine working weather experienced over the past few days became a memory as weather turned to a much less benign state. In the early hours of 25 April, the winds picked up substantially and by early morning were blowing 30 to 35 kts. The barometer dipped down into the mid- 970 mlb region, before climbing again to around 980 by mid-morning. Although, the skies in late morning were partly cloudy, with areas of blue sky, by afternoon the clouds thickened and the barometer began to drop again. Winds most of the day were in the 20 to 25 kt range . During the late afternoon, the barometer began an accelerated drop from about 976 and reached 966 mlb around 2300. As the low pressure area moved in, winds again picked up into the 30 kt range, the seas became quite rough, and remained so throughout the night. A driving snow accompanied the high winds. Air temperature varied little throughout the day remaining between -1.0 to -1.7 C.


During the 25th of April, work was finished at station 41 and completed at 42, 43, and 44. Four CTD’s were made, a MOCNESS tow was made at station 43, a 1-m Reeve Net live tow, and a 1-m ring net surface zooplankton tow were taken at Station 44. Seabird and mammal surveys were conducted along the transits between stations during daylight, and BIOMAPER-II was towyoed between stations 43 and 44 missing the transits between stations 41, 42, and 43, while chasing an elusive sonar ground fault. Two Sonobuoys were deployed along the survey trackline to record marine mammal calls.


April 26: On April 26th, the N.B. Palmer was again out in the deep water off the Western Antarctic Peninsula’s continental shelf working at the ends of survey lines 6 and 7. As the survey work moved steadily south and as austral winter solstice approached, the light of the day noticeably diminished. On this day, the sun rose around 0900 and set about 1600.


The steam from the outer shelf station 44 to 45 and then 46 in the deep offshore waters of the Antarctic Circumpolar Current was done with increasing wind and seas. By the time, we arrived at station 45 in the late evening, the winds were in the 35 to 40 kt range, there was snow blowing across the decks, and seas were too rough to either bring BIOMAPER-II on board or to deploy the CTD. Instead, an Expendable CTD (XCTD) was deployed while continuing to steam on to station 46. Upon reaching station 46 in the early morning, the winds were diminishing, but the seas remained too rough to work, so the ship was put onto a northerly course into the wind and seas, and Sea Beam bathymetric data and BIOMAPER-II data were collected while waiting for the conditions to improve. By the time the Palmer arrived back at station 46 about 0830, the seas still had a large swell running, but the wind had dropped to the low teens and the sea surface was beginning to calm. The barometer was still low (961.7 mlb), the air temperature just above freezing (0.3 C) and snow was falling lightly. During the day, the skies cleared a bit and sporadically there was some blue sky showing. But most of the time, there was a persistent fog limiting visibility. In the evening, at station 47, the winds were still a light 10-12 kts out of the south, the air temperature had dropped to -2.7 C, and the barometer was up to 969.3 mlb.


This was another day in which only a couple of stations were completed because of the long steaming time between stations and the long times needed to deploy the equipment. Work was completed at stations 45, 46 (depth 2086 m), and started at 47 (depth 2845 m) including 3 CTD casts (two to the seafloor) and an XCTD, a 1-m ring net surface zooplankton tow at station 46, and a deep 0-1000 m MOCNESS tow at station 47. Seabird and mammal observations were made during daylight under marginal visibility conditions and BIOMAPER-II was towyoed between all the stations.


April 27: Changeable weather is the hallmark of the Western Antarctic Continental Shelf and 27 April was no exception as the Palmer worked on outer portion of broad-scale survey line 7. The high winds of the day before had disappeared, but the large swell remained for most of the day. In the very early morning before sunrise, there was a clear spell and the full moon illuminated the scene. Throughout the morning, the winds were light (6 to 10 kts) out of the south, but a dense low fog developed cutting the visibility to short distances. Except for the swell, the surface of the sea had only light chop. By noon, the wind had shifted to the north northeast and was up to 15 to 20 kts where it remained until evening. The barometer rose slowly from 979 mlb in the early morning to 982 mlb around 1730. Air temperatures remained about the freezing mark (-0.5 to -1.0 C). About 2000, while work was ongoing at station 50, the wind and seas began to pickup. By 2300, wind speeds were in the 30 kt range out of the northeast and sea conditions were rough enough that the deployment of BIOMAPER-II, while possible was delayed to wait for better working conditions.


April 27th was also a Big Screen Movie night on the Palmer presented by Amy Kukulya and Romeo Lariviere. The helicopter hanger was converted into a theater with a big white bed sheet screen on the helo-door during the day by a group of movie enthusiasts. At 2000, a DVD version of “Swordfish” played to the audience bolstered by galley gorp and popcorn.


Work at station 47 was finished in the early morning hours of 27 April with an APOP cast and work was completed at stations 48, 49 and 50. Three CTD’s and a number of XBT casts were made. The XBT’s were used to explore the extent of a deep warm water zone indicative on an intrusion of water from offshore. A 1-m ring net tow was done at station 48; a MOCNESS and a 1-m Reeve net tow were done at station 50. Seabird and marine mammals observations were made during daylight when the visibility was adequate. BIOMAPER-II was towyoed between stations 47 to 49 and was under repair for the transits between station 49 to 50. Two sonobuoys were deployed along the trackline.


April 28: During 28 April, work took place along the inner portion of survey line 7 that went over the very deep (>1500 m in some places) trough that cuts across the opening of Marguerite Bay and leads into George VI sound in the southern portion of the Bay. During the day, the weather was foggy, snowy, and dreary. Very low clouds present for a couple of days, occasionally thinned during the night to let the moonlight through. Winds were around 14 to 18 kts out of the northeast (038-042) and the barometer rose slowly during the day (988.9 mlb at 1630). Air temperature was again right around the freezing mark (-0.5 C). By evening the decks had a white coating again of wet snow. During the late evening, the weather worsened some; the winds picked up to 25 to 30 and more snow began falling. What was unexpected was the fact that the sea water was so cold (around -1.7 C) that the snow did not melt when coming down on to the sea surface, but instead floated and flakes were aggregated making white patches, which were then swirled in the currents set up by the ship’s wake and also by the wind induced surface currents and circulation cells.


Work was completed at stations 51, 52, 53, 54 including 4 CTD’s, and a deep MOCNESS tow and an APOP cast at station 54. Seabird and marine mammals observations were made during daylight when the visibility was adequate. BIOMAPER-II was deployed partway to station 52, after undergoing additional servicing, and towyoed between stations 52 and 53, but it was on deck for more repair work between 53 and 54. Two sonobuoys were again deployed along the trackline.


April 29: The Southern Ocean GLOBEC survey, on 29 April was focused on stations 55 and 56 at the near shore end of survey line 7 and the beginning of line 8 within an ice pack filled region known as George VI sound. This sound, named after George VI, King of England, is a major fault depression 300 miles long with several very deep basins including those that compose the Marguerite trough, which runs northwest/southeast through the middle of Marguerite Bay. George VI sound and the rest of Marguerite Bay separate Alexander Island from the Western Antarctic Peninsula.


The trackline took the Palmer on a 30 nm transit from Station 54 across the entrance to George VI sound to station 55. We left open water and came into the ice pack about 8 nm before arriving on station. The ice never got very thick and the ship moved through it on only two engines. Another 30 nm transit on a southerly course down into the sound to station 56 took place in the late afternoon and evening. After pushing through relatively loose ice pack for several hours, the going got substantially tougher, the deeper into the sound we steamed. The ice floes thickened and were covered with a very thick blanket of snow. As we pushed through the mix on four engines, the snow and ice stuck to the hull of the ship, slowing our passage. Still about 10 nm from the station location, the Palmer began to back and ram to make forward progress. Eventually, some 7.7 nm from station, the ship came to a grinding halt. Very thick slabs of ice with a meter or more of tightly packed snow blocked our way. At around 1900, after making about 1/4 nm in 40 minutes, the stopping point became the station location.


The snow of the night of 28 April continued into the early morning hours of the 29th, but the winds were light out of the north, the barometer remained relatively high (990 mlb at 0500), and the air temperature stayed around the freezing mark (-.04 C). During the day, the visibility improved with the thinning of the clouds over head and the winds stayed in the 10 to 12 kts range. Sea surface temperature was -1.79C and salinity was 32.718 psu. Winds were close to zero during the nights work at station 56.

 

Work completed at two stations included 2 CTD’s, ice collection at station 55, and an ROV under-ice survey and an APOP cast at station 56. Seabird and marine mammal surveys took place during the daylight when visibility was adequate and BIOMAPER-II was towyoed most of the way between stations 54 to 56, being recovered to the deck only when the backing and ramming became necessary in the heavy ice pack. A solo sonobuoy was deployed during a transit between stations.


April 30: The vistas from inside George VI sound are supposed to be grand with the ice shelves and mountains surrounding the sound on three sides, but on 30 April, the first light of day was a sliver on the northern horizon and a thick cloud layer was over head. The clouds stayed the day, shrouding the mountain peaks. Only the slopes of some of the western peninsula mountains to the east were showing. To the west, the clouds lay down nearly to the sea surface, so that the mountains on Alexander Island were again hidden from view. Occasionally, snow showers reduced the visibility significantly. For a second day, the Palmer was surrounded by thick tightly pressed pack ice with a deep coating of snow as it steamed from station 56 to 57 and then 58.


The weather remained quite calm. Wind speeds for most of the day were in the 7-10 kt range, out of the south southeast (153). The barometer held steady around 986 mlb, and the air temperature varied within narrow limits about -2.0 C.


The work at the two stations included 2 CTDs, an ice collection at station 57, and an ROV under ice survey at station 58. A 1-m MOCNESS tow was taken some distance from 57 when ice conditions had become suitable for towing. This tow was originally scheduled for station 56, moved to 57, and then delayed again because the pack ice was too thick to permit towing. The towyoing of BIOMAPER-II between these stations was also abbreviated because of the pack ice, but some portion of all the transect lines was sampled. Seabirds and marine mammals were surveyed during daylight periods when the visibility permitted. One sonobuoy was deployed.


During the evening, the L.M. Gould was working in the vicinity of survey grid station 58 and a rendezvous was arranged to allow for an exchange of scientific supplies and equipment after the Palmer completed the station work. This included spare nets for the Palmer’s MOCNESS, live animals freshly caught by the Gould for experimental work by Dezhang Chu on the Palmer, some preserving fluid in short supply on the Palmer, and a replacement monitor for the Gould’s scintillation counter. In addition, with the two ships positioned bow to stern, the Palmer’s personnel carrier and crane on the bow was used to transport several individuals to the Gould, so that an exchange of information could take place regarding what had been learned by the two groups thus far and what plans there were for cooperative efforts during the second portion of the cruise. The two ships parted ways around 2300 when the Palmer began the transit to survey station 59.


May 1: A primary mission on the Southern Ocean GLOBEC survey cruises is to map the distribution of krill in the fall and winter periods as part of the effort to increase our understanding of how these animals survive during the ice covered winter period when water column primary production comes to a halt. One aspect of this is the identification of “krill hot spots”, places where the krill occur in super abundance in dense patches or layers. During the first cruise in austral fall of last year, the broad-scale survey encountered two areas within the grid area that were designated “krill hot spots”. One was in Laubeuf Fjord in the northern end of Marguerite Bay and the other was in the shoal areas off the northwest coast of Alexander Island. This year, while the areas in Laubeuf Fjord sampled by the Palmer had krill present, they were not in the numbers that would make the area a “hot spot”. On 1 May, we surveyed the first portion of the other region around stations 60 and 61. Last year at this time, station 61 was clogged with icebergs and it was thought that the icebergs were grounded and would be there for a long time (weeks to months at the least). We thought of the place as a graveyard for the icebergs. However, when we came back to the location after completing the grid, the place was cleared out and only a few icebergs were left. But the name, “the graveyard” stuck and this time around, the location has lived up to its name. Scattered throughout the station area were many icebergs, although they were not packed in as tightly as they were last year. This was also a place where we came across numerous seals, some whales, and lots of sea birds. This time it was the same for the seals and seabirds. The high frequency acoustics revealed a very strong scattering layer between 170 and 260 m that was very krill-like. On small flat topped chunks of ice were seals laying in sleep and a number were sighted in the water. So this “krill hot spot”appeared to be alive and well for a second year.


A particularly large group of icebergs were grounded right next to station 61. The Palmer moved gingerly through them to get to the station location. Crabeater seals were at the base of one of the icebergs and others were so close together that only narrow passages existed between them. Each had a unique blue/white coloration and scores of caves and cracks. A swell was running in the area and as it came up against the behemoths, huge surges were created and breaking waves that sometimes crested their tops some 50 to 100 feet above the sea surface.


The weather on 1 May remained pretty benign, but overcast with dark clouds above. Only on the horizon was there the light of the sun peaking through to the north. The clouds again shrouded the mountains of Alexander Island only exposing their flanks and the tremendous ice piedmont leading down to waters edge. During the day, snow fell on and off and the visibility varied accordingly. The wind speed stayed between 15 and 25 kts out of the east throughout the day and the barometer stayed high (990.4 mlb at 1345). Air temperature continued to vary in a narrow range (-1 to -2 C).


Work was completed at station 59, 60, 61 and 62, including 4 CTD’s, and an APOP cast and a MOCNESS tow at station 62. Seabirds and marine mammals were surveyed during daylight periods when the visibility permitted and BIOMAPER-II was deployed on the transits between stations. Two sonobuoys were again deployed.


May 2: On 2 May, the SO GLOBEC broad-scale survey nearly reached the seaward end of line 8. A large topographic feature off the continental shelf that has raised bottom depths lies centered just to the northwest of this survey line. The feature is thought to contribute to the meandering in the Antarctic Circumpolar Current in this region and perhaps to the development of the intrusions of oceanic water onto the shelf that make it into Marguerite Bay. To assist in understanding the dynamics of the currents in this area, the spacing of stations 64 to 70, which run from the edge of the continental shelf out to the deep ocean, was reduced to between 5 and 8 nm instead of the more usual 21 nm. On 2 May, sampling was done at five of these stations - 63, 64, 65, 66, and 67.


The day was dark and gray, with intermittent snow and fog in the morning. The afternoon was clearer with light winds continuing to be the norm (about 10 kts out of the northwest) and a calm sea. The barometer climbed during the day to 1002.7 mlb, the highest reading yet since leaving Punta Arenas. Air temperatures varied between -0.6 and -1.8 C. There had been remarkably little fluctuation in the air temperatures since arriving in the study site.


The work at the stations included 4 CTD’s, one each at stations 63, 64, 65, 66, and a drop of an XBT at station 67 (attempts to deploy XCTDs failed because of electrical problems with the probes and cabling). An APOP cast was conducted at station 66 and a 1-m ring net surface tow was taken at stations 63 and 66. During the transits between stations, BIOMAPER-II was towyoed to below 200 m, and seabird and marine mammal observations were made during daylight when the visibility permitted. Two sonobuoys were deployed along the trackline.


May 3: The N.B.Palmer began work on 3 May out in the deep ocean beyond the continental shelf. A half-moon with its light filtered by high thin clouds in the late night and pre-dawn held sway until the sun rose, shining through a lower broken cloud layer. Winds during the late night were around 12 kts out of the southwest and the barometer was rising well above the 1000 mlb mark (something that seems to happen very infrequently) as a large high pressure region moved in over the survey area. By mid-morning, the barometer had reached a high of 1007 mlb. Winds throughout the day remained in the 10 to 25 kt range, but the air temperature dropped from -1.8 in the morning down to -7.0 C in the late evening, making work on the deck somewhat less comfortable.


Work was completed at broad-scale survey stations 68, 69, 70, and 71 including 4 CTDs and one XCTD, a 1-m ring net tow at station 70, and an APOP cast and a MOCNESS tow at station 71. An XCTD was cast at station 69, while the ship remained underway. The transits between stations 68 to 70 were short ones (5 to 8 nm), because they were part of the high resolution physical survey described above. BIOMAPER-II was in for transits between all of the stations including the long 36 nm run between stations 70 and 71, which took over 7 hours. Seabird and marine mammal surveys took place during the daylight period and one sonobuoy was deployed during the transit to station 71.


May 4: On 4 May, the N.B. Palmer was working along the middle of the continental shelf on survey line 9. The seas remained moderate. The clouds were thicker than yesterday, but higher and the visibility was good. The mountains of Alexander Island and Rothschild Island could be seen a good portion of the day at distances 40 to 50 miles away. Only the tips of Alexander Island were hidden by the clouds. Winds stayed in the 15 to 25 kt range during the day changing direction slightly from southwest to more southerly (184). The barometric pressure fell slowly from its high yesterday of 1007 down to 1002.5 mlb at 1634. Air temperatures were decidedly colder and were mostly below - 6 C (at 1634 the air temperature was -7.0 C). It was not until reaching station 74 that sea ice appeared while coming in on survey line 9. It first appeared as grease ice and then quickly became small pancakes followed by shuga with larger older floes. Icebergs were present off in the distance in all directions. During the evening steam towards station 75, large icebergs became more plentiful and the Palmer had to detour around one giant, which was right on the trackline. Also during the steam, the skies cleared and for the first time in a number of days, stars were visible.


Just after 1600, the fire alarm went off. This time it was a drill. Within a few minutes all in the scientific party had appeared at the muster station ready, if necessary to abandon ship. There were quite a few sleepy faces of those on the 12 midnight to 12 noon watch who had been awoken by the alarm. The drill ended with everyone signing the bridge book before leaving the 03 level lounge.


Work was completed at broad-scale survey stations 72, 73, and 74 including 3 CTDs, a MOCNESS tow at station 73, and a 1-m ring net tow and an APOP cast at station 74. BIOMAPER-II was in for only a portion of the transits between stations because of a ground fault problem with the Environmental Sensing System. Seabird and marine mammal surveys took place during the daylight period and two sonobuoys were deployed during the transit to station 74.


May 5: The N.B. Palmer was working the inshore sections of survey lines 9 and 10 on 5 May just off shore of Lazarev Bay and very close to the Bongrain Ice Piedmont on Alexander Island. Early in the morning, the sky was overcast with the clouds low enough to again hide most of the mountains of Alexander and Rothschild Island. The pack ice along the track line was composed of open leads with old floes, brash ice, and new ice. There were many big and small icebergs about and the curves in the ship’s track reflected the need to maneuver around them. There was a pastel color to the sky and clouds where the sun came up close to 1000. The clouds cleared overhead towards the end of the day allowing for a lovely sunset, which took place strikingly behind a cloud layer as a filter and a very large iceberg in front. The clouds were luminous with the last rays of the day backlighting them.


The weather continued to hold and working conditions were very good. Wind speeds ranged from 4 to 10 kts in the predawn period to 15 to 20 kts during the day. The Palmer was far enough into the pack ice so that any swell motion was damped out. The barometer did a slow decline from 998.6 mlb just after midnight to a low of 990 mlb around 1700 before beginning to climb again. Air temperature varied between -4.5 and -9.6 C. Sea surface temperature was at the freezing mark (-1.788 C) and new sea ice was forming rapidly given the cold air temperatures and relative calm. Salinity was 33.204 psu.


The tedium of the seemingly endless sequence of station work and steaming was broken by a celebration of Cinco de Maio in the late evening of 5 May. A pinata filled with goodies was created by Gaelin Rosenwaks with help from others, and music and plenty of Mexican food was on hand. The penata was finished off at midnight with hefty wacks by Romeo Lariviere and Amy Kukulya, followed by a mad scramble to get the rewards. The planning committee led by Ana Sirovic did a great job as did Theresa Wisner who made all the special Mexican treats.


Work was completed at broad-scale survey stations 75, 76, and 77 including 3 CTDs, a MOCNESS tow, an attempted ROV under ice survey and ice collection at station 76, and a 1-m ring net tow and an APOP cast at station 77. BIOMAPER-II was in for transits between all of the stations. Seabird and marine mammal surveys took place during the daylight period and a sonobuoy was deployed during the transit to between stations 76 and 77.


May 6: May 6th was a day of transition for the continental shelf waters off of Alexander Island. The cold temperatures of the past several days combined with sea surface temperatures right around the freezing point (-1.79 C) set the stage for a rapid set up of sea ice almost all the way to the edge of the continental shelf. Sea ice had been a common element of the work at the stations closest to shore, but on the transits along survey lines 8 and 9, there was mostly open water once away from the inner most stations. But on the run out to the edge of the shelf on survey line 10, newly formed sea ice was with us nearly all the way to outermost station (80). This transition was no doubt aided by the low winds of the past week as the area had been dominated by high pressure.


The 6th of May was also notable for the remarkably clear skies that stayed the day. Although early morning found the Palmer some 60 nm from land, the mountains of Alexander Island could be seen in the distance silhouetted in the predawn light. Later in the day with the Palmer further offshore, they were still cloud free and cloaked in white. Visibility was excellent. Winds were somewhat fresher varying from 18 to 25 kts predominantly out of the southwest. The barometer again rose above the 1000 mlb mark reaching a high of 1003.2 mlb about 2100. Air temperatures varied between -9.0 and -5.0 C. There were clear skies overhead during the evening enabling the myriads of stars to be seen, a decidedly uncommon event this cruise.


Work was completed at broad-scale survey stations 78, 79, 80 and 81 including 4 CTDs, an ice collection at station 78 and a 1-m ring net tow at station 80. BIOMAPER-II was in for transits between all of the stations. Seabird and marine mammal surveys took place during the daylight period and two sonobuoys were deployed during the transit between stations 79 and 80.


May 7: The count down started at this station as the end of the third Southern Ocean GLOBEC broad-scale survey was in sight. On 7 May, the Palmer worked from near the outer end of survey line 11 to the inner most station, leaving only two relatively short survey lines to go. The weather continued to treat us nicely in the sense that it was another day of relatively moderate winds, except for a period in the early evening when they picked up and there were gusts to 30 kts. This was about the time the ROV was to be deployed. For the most part, however, wind speeds were 18 to 21 kts or lower. The barometer readings fell during the day from 1000.5 mlb around 0130 to 987 mlb in the late evening and the clear skies of yesterday gave way to a heavy dark overcast. There was snow during the morning and poor visibility. The snow ended before noon, but a heavy overcast remained. Air temperatures varied between -5.7 C to -2.5 C. Sea surface temperature was -1.794 C and salinity was 33.120 psu on the inner shelf during the approach to station 84.


On May 7, work was completed at broad-scale survey stations 82, 83, and 84. Four CTD casts were made (two at station 84). The ring nets, which were towed from the starboard side of the Palmer, became very difficult in the pack ice, but a 1-m ring net tow for surface zooplankton and a 1-m Reeve net tow for live animals were completed at station 82. A MOCNESS tow was completed at station 83 and an ice collection was made at station 84. An APOP cast was also done at station 84 using animals caught with the Reeve net. An ROV under ice survey, scheduled for station 84, was scrubbed because the ice was too thin and the wind too strong (gusts up to 30 kts) to hold the ship in place without significant use of the ship’s thrusters. BIOMAPER-II was in for transits between all of the stations. Seabird and marine mammal surveys took place during the daylight period and 2 sonobuoys were deployed during the transit to stations 83 and 84.


May 8: The N.B. Palmer had reached the most southern portion of the Southern Ocean GLOBEC broad-scale survey on 8 May and was working on the 12th of 13 survey lines. The work began well before dawn at station 85 about 20 miles from Charcot Island and the Wilkins Ice shelf. The station location where the work was done was about 3 miles short of the intended location because the area was clogged with a tremendous cluster of grounded icebergs (water depths were typically 200 to 300 meters) that were surrounded by sea ice. The ship could not make the intended location in a reasonable period of time.


The skies on 8 May were crystal clear and the peaks of Charcot Island stood out to the southeast of the station. The transits to the other two stations of the day were done for the most part while the sun was above the horizon and provided unprecedented opportunities to see mammoth icebergs seemingly within arms reach. One was estimated to be more than 70 m (210') tall. For much of the morning, the Palmer had to thread its way around the bergs and moved through open patches of freshly iced over leads interspersed with year old ice floes. As indicated, the weather together with the scene made it, perhaps, the most beautiful day yet of the cruise. Winds were around 10 kts out of the south in the morning, picked up into the low 20's in late afternoon, and then dropped to 10-15 kts in the evening. During the day the barometer fluctuated between 981 to 989 mlb and the air temperature hovered between -11 and -13 C. Even with the relatively light winds, the wind chill was such that when working on the deck, it felt bitterly cold.


On May 8, work was completed at broad-scale survey stations 85, 86, and 87. CTD casts were made at each of these stations. An ROV under ice survey and an ice collection were done at station 85, and a 1-m ring net tow for surface zooplankton was done at 87. BIOMAPER-II was in for transits between all of the stations. Seabird and marine mammal surveys took place during the daylight period and 2 sonobuoys were deployed during the transit to stations 87 and 88.


May 9: The N.B. Palmer made its last foray out to the edge of the Western Antarctic continental shelf off of Charcot Island during 9 May before turning back to shore on the final survey line (#13). Although the massive icebergs were left behind, the sea ice was with us all the way out to the shelf break, but for the most part it was new ice and did not hamper the work on station or the towyoing of BIOMAPER-II. The exception was the use of the 1-m nets, which could only be towed vertically for surface zooplankton because the ice conditions prevented an oblique tow.


The weather continued to be unbelievably clear and cloud free, with moderate winds. Working conditions were very good, except for the cutting cold air. The barometric pressure peaked in the late night of 8/9 May around 999 mlb and then decreased slowly during the day reaching 992 mlb near midnight. Winds stayed mostly in the 14 to 18 kt range and air temperatures ranged from -11 to -15 C.


On May 9, work was completed at broad-scale survey stations 88, 89, and 90. CTD casts were made at each of these stations. A 1-m Reeve net tow was done at station 88 and 1-m ring net was towed for surface zooplankton at station 90. Both nets were towed vertically because ice conditions prevented an oblique tow. The ROV was successfully deployed at station 88 for an under ice survey for krill. BIOMAPER-II was in for transits between all of the stations. Seabird and marine mammal surveys took place during the daylight period and 2 sonobuoys were deployed during the transit to stations 89 and 90.


May 10: Some 27 days after starting the broad-scale sampling on the Southern Ocean GLOBEC survey grid, the last two stations were reached and sampled on 10 May. At midnight on the 10th, the N.B. Palmer had traveled 2544 nm (5596 km) since leaving Punta Arenas, Chile. There was a great deal of joy and satisfaction that the continuous around the clock effort had been completed and with excellent results. The scientific party, the Raytheon technical support group, and the Officers and Crew of the N.B. Palmer did a great job in seeing the grid completed.


The transit along survey line 13 to stations 91 and 92 was entirely in the pack ice, although it was fairly new and not difficult ice to work in. And it was another day of clear, cloud free skies and moderate winds. The barometric pressure, which decreased to a low of 992 mlb around midnight of 8/9 May began slowly rising during the day and reached a high of the day around midnight of 1000.7 mlb. Winds were out of the south and below 20 kts most of the day. They dropped to around 5 kts late at night. Air temperatures remained quite cold, ranging between -15.5 C to -12.6 C.


On May 10, the work completed at broad-scale survey stations 91 and 92, included 2 CTD casts, one at each of the stations. A MOCNESS tow was taken at station 92 along with an ROV under ice survey and an ice collection. BIOMAPER-II was in for transits between the stations. Seabird and marine mammal surveys took place during the daylight period and 1 sonobuoy was deployed during the long transit between stations 92 and 51 on the way back to Marguerite Bay.


Following the completion of the sampling, the Palmer set a course to the northeast following a set of way points designed to provide new SeaBeam bathymetry data along a path that approximated the zone in which the highest krill layers and patches were found. It also was across areas where deep uncharted canyons (> 1000 m) were believed to exit.


With the grid completed, a number of tasks that needed to be done before reaching port came into focus. During the past 24 hours, a chart of the survey region and points north as far as Palmer station was up in the main lab for individuals in the scientific party to express their ideas about where and what they wished to do with the remaining ship time. These ideas were consolidated into concrete geographical positions and activities, and a draft of the plan was presented at the science meeting held at 2300 in the 03 lounge. Most of the scientific party and Captain Joe and Chief Engineer J. Pierce were able to make the meeting because at this hour most individuals on the different watches were up. The stated desires for post-grid work involved a number of locations north of Alexander Island, including inside Marguerite Bay, beyond the entrance to the Bay, in the Marguerite trough west of Adelaide Island, along survey line 2, and in Crystal Sound north of Adelaide Island. A plan was developed that included essentially all of the requests and also left plenty of time to make it back to Punta Arenas, Chile on the prescribed day.


May 11: With the grid completed and a new work plan in place that called for most of the scientific activities to take place at least 120 nm northeast of the last grid station (92), a good portion of 11 May was spent steaming to get to the first of the new locations (survey station 51) under gorgeous picture taking conditions. The trackline chosen for the run to station 51 followed the inner shelf to the west of the Wilkins Ice shelf, Rothschild Island, and Alexander Island. The nighttime portion of the steam took the Palmer through the same set of icebergs that we traveled through a few days earlier. They were massive, sculptured, and shadowy in the bright search lights used to look ahead that illuminated them. Occasionally, we steamed through small pools of open water on their down wind sides, presumably a result of the ice pack moving faster than the icebergs themselves, which may have been grounded.

 

First light came about 0830, although the sun did not rise for another 2 hours. The brilliant red on the horizon silhouetted the mountains of Alexander Island and also the icebergs ahead of the ship that rose as black forms above the pack ice. During the morning, SeaBeam bathymetry data were collected over a deep (>1200 m) uncharted portion of a canyon, which was about 5 nm across and lay offshore of Lazarev Bay (the bay lies between Rothschild Island and Alexander Island). The steep sides of the canyon rose on the northeast side to depths of around 140 m.


The trackline went over ocean areas that only a week or so ago were ice free and were now completely iced over. Knowledgeable ice observers on board gave credit for the rapid sea ice build up to the remarkably clear, cold, and relatively windless period that we have been experiencing for the past week. The process may also have been assisted by the fact that the winds that did exist were from the south/southwest and these were pushing exiting pack ice to the northeast. During the day, the winds were again out of the south (200 degrees) and stayed below about 12 kts. Air temperature stayed down around -11 C and the barometer continued to rise slowly; for most of the day it was above 1001 mlb.


Late in the afternoon, the Palmer reached station 51 and BIOMAPER-II was deployed for a “pickup” run to station 50. This portion of survey line 7 and a portion of line 6 were not sampled because of equipment problems. Thus, part of the post-grid work plan involved collecting data on some of the missed survey line sections. At station 50 around 2130, BIOMAPER-II was recovered and the Palmer began the steam to another missed section beginning at station 43 and running to station 41. During the daylight transiting, seabird and mammal observations were made and 1 sonobuoy was deployed along the trackline. There was no over-the-side CTD work for the first time in a number of weeks.


May 12: On 12 May, the Palmer was back working in the central portion of Marguerite Bay under weather conditions that had changed some. The day was overcast and the mountains of Adelaide Island to our north were obscured, but clear skies eventually developed to the south giving us another wonderful view of the mountains of Alexander Island. The barometer continued its slow climb, which started yesterday, and reached a high of over 1007 mlb in the late evening. Winds were generally light (< 10 kts) out of the southwest to west for the entire day and temperatures varied between -8 and -9 C. The ice in this portion of the Bay became less thick and was more newly formed, presenting no difficulties for doing towyoing or CTDs.


BIOMAPER-II was deployed at station 43 and then towyoed along survey line 6 to station 41. From there, the Palmer steamed to a location further in Marguerite Bay (68 15.783S; 68 59.683W) where a series of CTD casts were made to conduct studies of FRRF performance during a daylight period, and to obtain a nutrient profile for comparison with previous measurements made inside the Bay on this cruise. We intended to do a 1-m Reeve Net tow to collect live krill for an APOP cast with freshly caught animals, but this proved impossible given the pack ice conditions. So an APOP calibration cast to 205 m was done instead. After completing the work at this station, the Palmer steamed to the location of Station 28 where an ROV under ice survey was done under pancake ice slabs that were interspersed with open water areas. At the end of the ROV survey, BIOMAPER-II was deployed again for a towyo to station 27. This was another section that was not done during the survey, but deemed important to get because of the strategic location of the section relative to the coastal current running along the west coast of Adelaide Island. Seabird and marine mammal observations continued to be made along the tracklines during daylight and 2 sonobuoys were deployed, one between stations 43 and 41, and the other between the MBCTD station and station 28. Thus, the second day of the post-grid work proceeded as planned.


May 13: On 13 May, the Palmer was working most of the day in the survey grid area off of Adelaide Island. The weather continued to be a minimal factor in the over-the-side operations as a result of the large high pressure system that continued to dominate the region. In fact, the barometric pressure, which had already been unusually high, climbed a bit higher. Around 0015, it was 1006.4 mlb and by late evening it was at 1008.6 mlb. Winds were in the 10 to 15 kts range out of the south before dawn and then during the day increased to around 25 to 30 kts. In places where there was little sea ice along the trackline, the swell started to build and there was actually some motion to the ship. In the evening, the winds had diminished marginally to between 22 and 25 kts. Air temperature remained in the -8 to -9 C range all day.


The four principal activities on 13 May were: 1) completion of a the third “pickup” BIOMAPER-II section between stations 28 and 27, 2) a MOCNESS tow at station 26, which was missed due to stormy weather when work on survey line 5 was being done earlier in the cruise, 3) the starting of a CTD section up the middle of Marguerite Trough, and 4) a survey of the bathymetry around mooring location A3. The BIOMAPER-II towyo took place in the late night period and the MOCNESS tow took place in the early morning after the Palmer steamed from station 27 to 26. After the first three of the five planned CTD stations were completed during the mid-day and evening, the Palmer deviated from the course line along the Marguerite trough to steam west to circle the A3 mooring site gathering SeaBeam bathymetry data just before midnight. The bathymetry data are needed by the physical oceanographers to help interpret and model the current meter and other data acquired by sensors on the mooring during the year long period of data acquisition, which ended in February 2002. Thus, the third day of the post grid work was completed as scheduled and with no complications.


May 14: On 14 May, the Palmer was again working for a good portion of the day in the survey grid area off to the northwest of Adelaide Island. It was another day of fine weather and good sea conditions. High atmospheric pressure dominated the region and the barometer recorded the highest readings yet on the cruise - 1012.4 mlb in the mid-afternoon. Winds were low to moderate - 13 to 15 kts in the morning and less than 10 kts in the afternoon and evening. The air temperature stayed between -7 and -8 C. Some low broken clouds were over head during the day with patches of blue sky and to the east were the mountains of Adelaide Island and also the mountains on the Islands north of Adelaide Island sometimes brilliant in the rays of a low angled sun. During a good portion of the morning, there was no sea ice and the sea surface temperatures were around -1.4 to -1-1 C when the ice was not present. As we came into the coastal current region near shore on survey line 2, the pack ice reappeared and the sea surface temperature dropped accordingly.


The activities on 14 May consisted of completing the last two CTDs along the transect down the axis of the Marguerite Trough started on 13 May, re-doing the towyo section with BIOMAPER-II from station 10 to station 8 on survey line 2, doing a new BIOMAPER-II run from station 6 into Crystal Sound looking for krill, and deploying a sonobuoy during the transit between stations 10 and 8. The first BIOMAPER-II towyo took place from early morning to early afternoon. During the transit, a series of XBT’s were dropped in the vicinity of station 9, a place where water of anomalous temperature indicating offshore origin had previously been seen. The second towyo started in the early evening after steaming over to station 6 and lasted until mid-evening. During the second section, large patches of krill were surveyed in the vicinity of the Matha Strait leading into Crystal Sound. We had expected to see the krill concentrations there, thanks to the information that Meng Zhou, working aboard the L.M. Gould, had supplied during the previous 36 hours. When the Palmer reached the end of the section in Crystal Sound with no significant concentrations of krill present, the decision was made to steam back to the krill patch location. Work at the Crystal Sound station began there about midnight.


May 15: The final day of post survey grid sampling took place in Crystal Sound, which lies just north of Adelaide and Laird Islands. The scenery in Crystal Sound was spectacular. Tall mountains on the northern end of Adelaide and on Laird Island and then beyond on the Antarctic Peninsula proper ring the southern and eastern end of the sound. Lower mountains of Lavoisier and a series of smaller islands lay to the north. First light happened around 0800 and that was when we could begin to see the outlines of the mountains and the red hues coloring the few clouds on the horizon where the sun would make its appearance. The weather was great all day with bright sun and clouds only on horizon, and winds mostly less than 10 kts out of the southwest. Right towards dusk, clouds began to move in from the north and as night closed in, the clouds began to obscure the mountains. The steaming for Palmer Station began about 1800 with the barometer beginning to fall from a high around 1007 mlb in the early morning and the winds picking up. In the late evening, the barometer had dropped to 1003.5 and the winds were around 30 kts out of the southwest. The air temperature warmed during the day from a morning low of -7 C to an evening high of -1.8 C.


The work on 15 May consisted of doing a Reeve net tow just after midnight to catch live krill for use in an APOP cast, which was done shortly after. This was followed by a MOCNESS tow and a CTD in the vicinity of the krill patch. A nearby location with pack ice was chosen for the last ROV under ice survey. After that the sea bird observers began a search from the bridge for a site in which to use the zodiac to go and find Penguins returning from feeding to their haul out locations in order to do “diet sampling”. A decision was made for the Palmer to steam over to a set of small islands, the Barcroft Islands, that were known for being the site of a penguin colony (These islands and several others south of Lavoisier Island are named after noted scientists who have conducted cold climate or ice research). The “penguin seekers” left in the zodiac shortly before noon. The Palmer then moved a mile or two so that a sonobuoy could be deployed to listen for marine mammal sounds while the ship lay doing the calibration work with BIOMAPER-II and APOP back at the position where the zodiac was dropped off (The reason for deploying the sonobuoy at a distance is because of the noise generated by the ship totally obscures most biological sounds). The afternoon was spent doing the BIOMAPER-II and the APOP acoustic calibrations in succession. About 1600, the bird observers returned from a very successful trip (14 penguins sampled). And after the APOP calibration was finished about 1800, the N.B. Palmer got underway for Palmer Station.


Although, there was still some more work to be accomplished on the steam back to Punta Arenas, Chile, the work in Crystal Sound marked the end of the data collection for many in the scientific party.


May 16_17 : On 16 May, the N.B. Palmer arrived in Arthur Harbor on Anvers Island where the Palmer Station is located just before noon after a 16 hour steam from Crystal Sound. Since the dock was too small and the water too shallow to tie up at the Station, the ship held station in the harbor. Joe Pettit, the Palmer Station Director, came by zodiac out to the ship about 1300 to issue a welcome and to brief us on the ins and outs of the Station. During the stay, several zodiac trips were arranged to enable the scientists on board to visit small islands near the station on which there were seals and penguins that could be viewed up close (Torgersen and Humble Islands) and the wreck of an Argentine cruise ship that went down in late 1980's next to DeLaca and Janus Islands. It did so when upon leaving Arthur Harbor, it took a “shortcut” through a channel that was poorly charted and too shoal. On Torgersen Island, there were a number of fur and elephant seals, one Weddell seal, and about 16 penguins, and Humble Island had a number of elephant seals. A more regular shuttle service was set up to enable N.B. Palmer personnel to visit the station and become familiar with the activities there. In addition, it afforded the opportunity to do a short hike by climbing a small glacier that has its base a few hundred meters from Palmer Station. In the early evening, the N.B. Palmer hosted many of the residents of Palmer Station at a barbeque dinner and then later in the evening, many on the ship went to the Station to socialize.


The weather during the day was not wonderful; it was cloudy with on and off light snow or drizzle. Winds were around 20 kts out of the southwest, but the temperature was around -0.7 C, the warmest it had been in quite a few days. The barometric pressure continued to drop from 1000.6 mlb in the morning to 995.9 mlb around midnight.


The N.B. Palmer left Palmer Station in the early morning hours of 17 May on a course that took us back to Punta Arenas, Chile via the inland passage. This route went first through the Bismark Strait along the southern side of Anvers Island and then along the Gerlache strait. To the northwest of this strait were Brabant and Liege Islands. To the east was the Danco Coast, the Arctowski Pennisula, and the Forbidden Plateau. All were snow and ice covered with ice cliffs at the waters edge. Sea ice and icebergs occurred sporadically. The last point of land as we steamed through the Boyd Strait was Intercurrence Island at the end of the Palmer Archipelago. Although somewhat longer than the more direct route from Arthur Harbor out across the continental shelf, it was selected because marine mammal observation opportunities were enhanced and it is a beautiful passage. Furthermore, there was a great deal of work to be done on the deck and the passage afforded the protected waters needed to complete the work before running into the usual high wind and seas of the Drake Passage. One of the major tasks was to end-for-end the electro-optical cable used to tow BIOMAPER-II. The towing end of the cable had experienced a great deal of wear during the first three Southern Ocean GLOBEC broad-scale cruises and strands of the outer armor were beginning to break. Reversing the wire, put unused wire on the front line and the worn wire where it would not experience additional wear. The end-for-ending was done by laying the more than 600 m of cable in a figure eight on the deck and then winding the cable back on the winch drum in reverse. This sounds simple, but in fact it was a hard job that took most of the day and was done with great care by MTs Jenny White and Steve Tarrent, and BIOMAPER-II group members Phil Taisey, Gaelin Rosenwaks, Amy Kukulya, and Andy Girard.


As anticipated, the Gerlache strait afforded Deb Glascow a great opportunity to observe several groups of whales, as reported below, in spite of the weather. In the morning, there was a light snow and low thick clouds, but low winds (< 10 kts). Visibility for a while was quite poor, but during the day it improved and there was even a bit of sunlight for a short time. But the barometer continued to drop from 987.6 mlb around 0900 to 980.4 mlb around 2330 and the winds picked up to the low 20 kts by close of day. The air temperature varied between -2.3 to -0.4 C.


May 18_21: By mid-day on 18 May, we were well out into the Drake Passage. The seas were rough for a while on the southern portion of the passage with winds in the 30 to 35 kt range, but later in the northen reaches, the winds dropped into the mid-20 kt range and the ride improved. The CTD group dropped XCTDs, and XBTs at 10 nm intervals once beyond the 2000 m contour after leaving Boyd Strait early on the 18th of May. Seabeam bathymetry, ADCP, and along track meteorological and sea surface water properties were also measured. Most of this data collection ceased when the 200 nm limit of Argentina was reached late on the 18th. From there, the Palmer steamed to the Estrecho del la Maire on the southern end of Argentina, reaching there around midnight on the 19th. Then on the 20th, the ship moved up along the eastern Argentine coast to the entrance to the Magellan straits. After picking up a pilot, the final leg of this cruise was along the Magellan straits to Punta, Arenas, Chile, which we reached around 0800 on 21 May.



This cruise has been very successful, having sampled at all of the survey grid stations and at a number of ancillary locations as well, in spite of encountering pack ice and icebergs that proved quite challenging. Some work that had to be dropped because of bad weather or equipment problems was later picked up and some special projects that could only be done after the grid was completed, such as the penguin diet sampling, were successfully accomplished. The success of this cruise owes much to the incredible competence, skill, and great attitude of the Raytheon technical support group. The Officers and crew of the N.B. Palmer also provided superb assistance.


INDIVIDUALS PROJECT REPORTS


1.0 Report for Hydrography, Circulation, and Meteorology Component (John Klinck, Tim Boyer, Chris MacKay, Julian Ashford, Andres Sepulveda, Kristin Cobb)

  

1.1 Introduction


The primary goals of the U.S. Southern Ocean GLOBEC program are to elucidate circulation processes and their effect on sea ice formation and Antarctic krill (Euphausia superba) distribution and to examine the factors that govern Antarctic krill survivorship and availability to higher trophic levels, including penguins, seals and whales. Consequently, a primary objective of this third U.S. SO GLOBEC broad-scale survey cruise (NBP02-02) was to provide a description of the water mass distributions and circulation on the west Antarctic Peninsula (WAP) continental shelf in the vicinity of Marguerite Bay, as well as measuring surface fluxes and microstructure, both of which modify water properties.


Historical hydrographic data for this region are limited, particularly during times other than austral summer. However, these data show that the water masses in the area consist of Antarctic Surface Water (AASW) in the upper 100 to 120 m, a cold Winter Water (WW) at 80 to 120 m and a modified (cooled) form of Upper Circumpolar Deep Water (UCDW) that covers the shelf below the permanent pycnocline (typically from 150 to 400 m). UCDW, which is the oceanic water that is the source of the modified water on the WAP shelf, is found in the Antarctic Circumpolar Current over the continental slope and offshore at depths of 200 to 600 m. Thus, the first objective of the hydrographic component is to fully describe the water mass distribution on the WAP continental shelf. This objective also includes documenting the water structure changes from the previous two SO GLOBEC regional surveys, which covered fall and winter of last year (2001).


Circulation in the study area had not been measured directly before the SO GLOBEC program, so it is inferred from the limited hydrographic observations. These suggest a clockwise gyre on the shelf near Marguerite Bay as well as onshore movement of UCDW across the shelf break at specific sites in the study area. The previous two survey cruises have found evidence of this shelf gyre and intrusion of oceanic UCDW. The details of this circulation, and its spatial and temporal variability, remain to be clarified. Thus, the second object of the hydrographic component is to provide a description of the large-scale circulation of this portion of the WAP shelf. Ship mounted Acoustic Doppler Current Profiler (ADCP) measurement are monitored by the hydrographic group. The resulting circulation will be compared to drifter, current meter measurements as well as circulation derived from theoretical models.


Upward diffusive flux of heat and salt are thought to maintain the salinity of the surface layers and to limit the amount of ice that forms and its duration. The magnitude of turbulent kinetic energy in this region was surveyed for the first time with a newly developed instrument (CMiPS) that measures rapid changes in pressure, conductivity, and temperature. This profiling microstructure sensor was attached to the CTD, and sampled small-scale water property variations at all but the deepest stations. Exchange of heat and water with the atmosphere, as well as solar heating, change the water properties near the sea surface. The ship carries a suite of optical and meteorological instruments that are used to estimate the heat and freshwater fluxes at the surface during the cruise. A further effort of the hydrographic group was to oversee the collection of these observations and to provide estimates of surface fluxes.

  

1.2 Details of Data Collection


The hydrographic data were collected from individual stations aligned in across-shelf transects perpendicular to a baseline parallel to the coast. The basic survey grid (Figure 2) consists of thirteen across-shelf transects at 40 km separation. On each transect, stations were established approximately every 40 km, which produced 92 stations over the grid. Some stations were moved or added to provide additional detail or to avoid land. The stations were occupied from north to south along the shelf starting at the northern offshore station (Station 1).


Of the original survey grid, station 32 was not occupied as it was within a cluster of islands in a region in which bathymetry is not well known. Stations 56, 57 and 85 could not be reached because of heavy ice cover, but CTD casts were done as close as possible, typically within 3 nm of the station. At three locations (stations 9-10, 20-21 and 50-51), XBT were used to increase the density of temperature measurements.


After the survey grid was occupied, additional CTD casts were made in Marguerite Bay, to investigate possible changes in nutrient properties during the cruise, and along the axis of the Marguerite Trough, to


fig3_saltempcomp.jpgFigure3. Comparison of duplicate conductivity and temperature sensors on the CTD. (a) Conductivity sensor difference, in terms of the calculated salinity. (b) Temperature sensor difference in degree C.













better define water exchange that might be occurring. A final station, including a CTD cast, was done in Crystal Sound in pursuit of krill, penguins, and whales.

  

1.2.1 CTD and water samples


The primary instrument used for hydrographic measurements was a SeaBird 911+ Niskin/Rosette conductivity-temperature-depth (CTD) sensor system. The CTD included dual sensors for temperature and conductivity. Other sensors mounted on the CTD Rosette measured dissolved oxygen concentration, optical transmission (water clarity), fluorescence, and photosynthetically active radiation (PAR). Most CTD casts descended to within 5 m of the bottom. At stations less than 500 m deep, a Fast Repetition Rate Fluorometer (FRRF) was mounted on the Rosette. At many deeper stations, a second cast was made to 100 m to get a FRRF profile (no bottles were closed on these casts). At most stations, a new CTD-mountable Microstructure Profiling system (CMiPS) was also mounted on the Rosette. In all, 107 CTD casts were made (see Appendix 2 for details).


The 24-place Rosette was equipped with 10-liter Niskin bottles. For most casts, 23 bottles were used (the FRRF replaced the bottle in slot 23). The number of discrete water samples varied with different stations (for details see Appendix 3). Water samples were taken at the surface, 5, 10, 15, 20, 30, 50, 75 and 100 m. Other samples were taken at the oxygen minimum, the bottom, and at other interesting features below the pycnocline. The remaining bottles were distributed uniformly to get good coverage of sub-pycnocline nutrients.


Water samples were taken from these bottles for several purposes. Some samples were used to measure salinity and oxygen as a check on the CTD sensors. A water sample was taken from each bottle to measure nutrients (as described below). Samples from near-surface bottles were taken to measure chlorophyll and primary production. On a few occasions, large volumes were taken from near surface samples for genetic studies.

  

1.2.1.1 Salinity Calibration


The two conductivity sensors on the CTD were used to calculate independently salinity, labeled S0 and S1. These values, at times when the bottles are closed, were compared to reveal any differential drift in the conductivity cells over the period of the cruise (Figure 3a). The sensors were in good agreement over the entire cruise period; the mean different was 0.0033 and the standard deviation was 0.029.


The two temperature sensors on the CTD, labeled T0 and T1, were also compared. No differential drift was evident over the period of the cruise (Figure 3b). The mean difference was -0.00056 and the standard deviation was 0.016.


The accuracy of the conductivity sensors was determined from water samples taken from three Niskin bottles from each CTD cast on which bottles were tripped, amounting to about 320 samples. These samples were typically from the surface, the halocline, and the deepest depth reached by the CTD. Samples were allowed to reach room temperature, typically taking 12 to 24 hours; the salinity was determined by a laboratory salinometer.


Two Guildline Autosal (Model 8400B) laboratory salinometers on the RVIB N. B. Palmer were used to measure the conductivity ratio, standardized against Standard Seawater. A logging computer recorded these ratios and calculated salinity.


The salinity from the Autosal was compared to the salinity calculated from each conductivity cell on the CTD. These values were automatically recorded when the bottles were closed (found in the processed .btl files and detailed here in Appendix 4). The difference is plotted against Autosal sample numbers (which were assigned consecutively during the cruise and are proxies for time) to show any drift in the accuracy of the conductivity cells (Figure 4a). Accuracy was also plotted against depth (figure not shown) and against salinity (Figure 4b).


The mean difference between salinity S0 and the bottle salinity (Sb) was -0.0000115 with a standard deviation of 0.006. The mean difference between salinity S1 and Sb was -0.0000172 with a standard deviation of 0.006. These differences are very small in comparison with the accuracy of the CTD sensor (about 0.003). There was a trend for positive differences (higher CTD sensor values) towards the end of the cruise. This difference is very small and is likely due to one Autosal session during which there was a problem establishing a correct calibration of the Autosal with Standard Seawater.


The difference between each CTD sensor and bottle salinity as a function of CTD salinity (Figure 4b) showed a trend. The largest differences were found at intermediate salinities (between 33.9 and 34.6). These salinities were mostly found in the samples taken from the halocline, where salinity was changing rapidly. The distance between the bottle and the conductivity sensor (about 0.5 m) may account for some of the discrepancy. There may also have been incomplete flushing of the bottles in these high gradient regions. The differences are small in any case.

  

1.2.1.2 Oxygen Calibration


Water samples were taken for comparison with the dissolved oxygen sensor on the CTD. A total of 107 CTD casts were made that resulted in 353 water samples taken from 96 casts (Appendix 5). Water samples were not taken on short FRRF casts when the Niskin bottles were not closed.


Samples were analyzed on board usually within 48 hours of collection, using an automated amperometric oxygen titrator developed at Lamont-Doherty Earth Observatory. Four readings were lost when the titrator failed to reach an equilibrium.


After Cast 40 on 23 April, bubbles began to form in the samples taken. Tests were performed to see if the bubbles were due to air introduced during processing of samples. This possibility was eliminated, as well as other potential errors in sample collection, leaving the alternative that the gas in the bubbles was coming out of solution. We concluded that the problem probably lay with the fixing reagents; however, increasing the amount of fixing agents used did not improve matters. Of the 349 water samples, 136 had bubbles and 213 had no bubbles.


For the samples with no bubbles, comparison of the titrated oxygen values with the corresponding values from the oxygen sensor on the CTD showed a tight linear relationship (r2 = 0.987, see Figure 5). Examining the residuals, there were two outliers, and data for the practice cast (Cast 1) showed


fig4a_salcomptime.jpg
fig4b_salcompsal.jpgFigure 4. Comparison of the two conductivity sensors, in terms of the calculated salinity, to the Autosal measurements of water samples. (a) Conductivity sensor salinity minus bottle salinity versus sample number. (b) Conductivity sensor salinity minus bottle salinity versus salinity.














































fig5_ploto2.jpgFigure 5. Oxygen sensor comparison to titrated oxygen. The green line is the one-to-one curve. The blue line is a linear fit to the titrated values as a function of the value reported by the CTD oxygen sensor reported at the time of bottle closing. The dark line is the quadratic fit.















































marginally higher values than for subsequent casts. Without these data, a better fit was obtained (r2 = 0.995). The estimated linear relationship was:


O2(titrated) = 1.121 O2(sensor) - 0.2625


The estimate for the intercept departed significantly from 0 (t-test, alpha = 0.05, df = 190), and the slope of the relationship also departed significantly from the expected value of 1, indicating that the titration and/or sensor data were biased.


Examining the possibility of bias in the titration data due to bubble formation, we found that data taken from a subset of the samples with bubbles departed little from the relationship estimated using samples with no bubbles. Furthermore, the range of values for the titration data corresponded to that found during the earlier GLOBEC 2001 cruises. With no evidence of bias in the titration data due to the effect of bubbles, we concluded that the deviation from the expected value of 1 in the relationship between oxygen values taken by titration and by sensor was due to the sensor. The deviation can be corrected using the linear relationship estimated.


1.2.2 Expendable Probes


Expendable Bathythermographs (XBT) and expendable CTDs (XCTD) were used to increase the number of profiles between stations, to make rapid measurements at closely spaced stations and to measure the water structure in Drake Passage. The bulk of the XBTs were used in Drake Passage, specifically 39 probes were used at 36 stations on the southbound trip and 22 XBT probles and 3 XCDTs were used at 20 stations on the northbound trip. An additional 30 XBTs and 3 XCTDs were used in the sampling grid. Details of each of these uses is in Appendix 6.


Thirty XBT probes were used between the following station pairs (9-10, 20-21 and 50-51) to provide additional information about temperature structure near stations where warm UCDW was detected.


Two XCTDs were used at stations 67 and 69 to fill information in a high density transect across the southern side of the ACC.


A certain number of expendable probes failed due to a variety of reasons. On this cruise, we used 89 probes to get 70 profiles yielding a failure rate of 17%.


No intercomparisons were made between CTD, XCTD and XBT instruments. The first SO GLOBEC cruise (NBP01-03) made simultaneous measurements with these instruments and found no differences among them.

  

1.2.3 Microstructure Profiler


The microstructure profiler CMiPS (CTD-mountable Microstructure Profiling System) was used to obtain measurements of small-scale structure in the ocean due to processes such as shear instabilities, tidal stirring, mesoscale eddies, and double diffusion. Vertical diffusion through the permanent pycnocline has been suggested as an important process for heat, salt, and nutrient transport upward into the surface layer.


The CMiPS package carries two FP07 thermistors, a SeaBird SE07 microconductivity probe and a Keller pressure transducer with analog electronics to produce the following signals: (1) temperature from the first thermistor,T1, (2) temperature plus its derivative, T1+dT1/dt, also from the first thermistor, (3) similarly, T2+dT2/dt, from the second thermistor, (4) pressure, P, from the pressure transducer, (5) pressure plus its scaled derivative defined as P+57*dP/dt, and (6) conductivity and its scaled derivative, C+1.59*dC/dt, from the SE07 sensor. These signals are low pass filtered and presented to a 16-bit analog-to-digital converter where they are each sampled at a rate of 512 per second.


The instrument, which was new for this cruise, is housed in two metal cylinders which were mounted inside the Rosette on the CTD with the temperature and microconductivity probes positioned 7.5 cm up from the bottom of the CTD frame. The original plan was to mount CMiPS on the outside of the frame but it was felt that the advantages of protection for the sensors and ease of passing through Baltic Room door outweighed any disadvantages caused by the possible wake from the CTD frame. Initially, there also were concerns about risk to the sensors during installation and removal of CMiPS from the CTD frame; this turned out not to be a problem.


There was one initial problem with CMiPS due to a fault in the solid state disc drive used to store the data. This problem required the use of a conventional hard disc for the first 9 profiles of the cruise. The disadvantages of this drive were higher power consumption and introduction of a burst of noise in some of the data channels every 10 seconds when data was written to disc. After station 13, the solid state disc was able to be used by installing a floppy disc drive to boot the system which was then able to log data to the solid state drive. This worked reliably for the remainder of the cruise and power consumption was sufficiently low that only one set of batteries was required.


Data were acquired at 81 of the 92 stations on the grid and at stations MBCTD and the Marguerite Trough series of 5 stations as well as the final station in Crystal Sound. CMiPS was removed from the CTD at various times during the cruise when the water depth exceeded its 2000 m limit. At these times, temperature sensors were replaced and the conductivity sensor was examined with a microscope for signs of fouling. There were some problems with the longevity of some of the temperature sensors, so during the cruise data were collected with all of the 5 available sensors installed 2 at a time to allow cross calibration with the CTD.


In total 1.6 gigabytes of data were obtained. This includes the time for the upcast and deployment and recovery as the instrument logs at all times when it is turned on. At regular intervals the data were downloaded to a laptop computer using a 10 base T ethernet port in the instrument and data were subsequently uploaded to the ship's network for storage. CMiPS provides an analog temperature signal to one of the analog inputs on the SeaBird CTD which was logged by the CTD. This allows time alignment of the two sets of data for later analysis.

  

1.2.4 ADCP Measurements


The RDI 150 kHz Acoustic Doppler Current Profiler (ADCP) system mounted in the hull of the RVIB N.B. Palmer collected data from 0011 GMT on 11 April 2002, while we crossed the Drake Passage. The system continued to collect data until we reached the Argentine EEZ (18 May) on our way back to Punta Arenas, Chile. The system was configured to acquire velocity measurements using fifty eight-meter depth bins and five minute ensemble averages. This configuration provided velocity measurements from the first bin at 31 m to 300 to 400 m, depending on scatterer and sea state. Depth bins two through ten were used with navigation to remove the ship's motion.


The ADCP was manually set to bottom track mode whenever water depths were less than 500 m. Bottom tracking was disabled during times when the survey extended beyond the continental shelf edge and into deeper waters for several hours. The Raytheon ET's were responsible for switching the ADCP tracking mode.


Preliminary processing of the ADCP data was done during the cruise using an automated version of the common Oceanographic Data Access System (CODAS) developed by E. Firing and J. Hummon from the University of Hawaii. Maps of the ADCP-derived current vectors along the ship track were generated at daily intervals at eight different depth bins using one hour ensembles. Although the system ran continuously, there are sporadic gaps of one or two hours in the data output at the beginning of the survey, probably due to heavy seas. The largest data gap for this cruise lasted about 12 hours on 21 April 2002 due to heavy seas. In addition, there were few observations during the southernmost transect (stations 89-92) due to heavy sea ice. In most shallow areas, currents below 125 m show a suspicious tendency to be aligned with the navigation track, pointing opposite to the ship's direction of travel. This may be due to insufficient removal of the ship's movement. A few large current vectors were also removed from surface (above 125 m) measurements. A final assessment of the ADCP data will be done after the cruise.

  

1.2.5 Meteorology Measurements


Underway meteorological observations were collected to document surface conditions during the cruise and to characterize surface forcing in the study area. All sensors were active once we left the Argentine EEZ (April 11) until we returned north to the same EEZ (May 18).


The following instruments collect observations and store them on the ship's data acquisition system. All data were stored at one minute intervals. A pair of Belfort propeller/vane anemometers were mounted on the science mast, one on each side of the ship. Three optical sensors were mounted on the mast to measure shortwave, long wave, and photosynthetically active radiation (PAR). Sensors to measure air temperature, relative humidity and pressure were mounted at the base of the mast.


Surface water conditions were measured from a water inlet in the stern thruster housing. A thermosalinograph and fluorometer provided salinity and chlorophyll, respectively. A thermometer was placed near the intake to provide sea surface temperature.

  

1.3 Preliminary Results


Four general results are presented here: water masses, spatial patterns, microstructure and surface fluxes. These results were obtained from analyses of the observations as they were taken, in part to make sure that the measurements were meaningful. Some of these results are consistent with measurements taken on earlier cruises and thus are confirmations of earlier ideas about processes.

  

1.3.1 Water Mass Distributions


The water masses in the region are clearly indicated on a potential temperature - salinity (θ - S) diagram (Figure 6) constructed from all CTD observations. Much of the surface water (lower left of figure 6) is close to the surface freezing point. Antarctic Surface Water (AASW) is water above the permanent pycnocline (generally above 100 m) and is strongly changed over the seasons by surface warming or cooling and ice freezing or melting. Many stations had a Winter Water layer, which is indicated by a subsurface temperature minimum (colder than -0.5 and salinity between 34.0 and 34.2). Oceanic Upper Circumpolar Deep Water (UCDW) appeared as a temperature maximum (about 2.0 C and salinity of 34.6). A similar Tmax was observed on the shelf at a lower temperature (1.0 to 1.5 C) at about the same salinity. This water was designated Modified CDW. Offshore of the shelf break at depths of 800 to 1000 m was Lower Circumpolar Deep Water (LCDW), which is distinguished by the salinity maximum at temperatures around 1.5 C and salinity 34.7.


The appearance of surface waters near the freezing point means that the fall season was far along and conditions were approaching those of winter. The ultimate winter condition of surface water is to be at the freezing point with salinity between 33.8 and 34.0. Many stations had relatively warm water below 30 m depth and relatively low salinity. Thus, considerable heat remained in the surface ocean which will be lost to the atmosphere in the coming month. The surface salinity will be increased by haline expulsion from freezing seawater.

  

1.3.2 Spatial Distributions and Circulation


The spatial distribution of water properties is used to estimate water circulation and the location of exchanges between the offshore ACC and the shelf waters. The indirect estimates of circulation are augmented by ADCP measurements from the ship.


One purpose of the large-scale survey is to determine the physical structure of the shelf ecosystem. Two descriptions of this distribution are presented here: the temperature at the subsurface Tmax and the dynamic topography.


Water temperature is a good tracer of oceanic water, since it is somewhat warmer than the shelf water; the dividing isotherm is roughly 1.5 C. The temperature of the Tmax below 200 m (to avoid solar warmed water in the surface layer) showed the oceanic water (1.8 to 2.0 C) all along the shelf break (Figure 7). A plume of warmer water intruded onto the shelf west of Adelaide Island (between 400 and 450 km alongshore distance). A plume of warm water has been seen in this location at the previous two GLOBEC cruises and may be tied to the Marguerite Trough, or perhaps enters northeast of this trough. A second area of warmer water was seen in the center of the study region, but it is unclear if this water was intruding from the ocean, or intruded further to the northeast and had drifted around the gyre (described below). There was little subsurface warm water, and thus little oceanic influence, within Marguerite Bay or on the inner shelf on the southern half of the grid.


The dynamic topography, the vertical integral of the density anomaly, is a more traditional indicator of circulation which uses the geostrophic balance (horizontal pressure gradients balance the Coriolis acceleration). For this shelf, the vertical density variation is weak and the shelf is relatively shallow (generally less than 500 m), which produces a weak dynamic topography. However, a clear pattern appeared in the dynamic topography calculated at the surface relative to 300 m (Figure 8). A similar pattern was seen in the 0/400 m topography (figure not shown). The sense of the circulation was


fig6_pts.alls.jpgFigure 6. Potential temperature - Salinity plot for cruise data. The one meter resolution data from the CTD casts at the 90 stations on the survey grid are used to produce this figure. Potential temperature is calculated relative to 0 db. The dashed blue line is the freezing point. The dotted lines are isopycnals at 0.3 kg/m3 intervals.















































fig7_tmaxmap.jpgFigure 7. Potential temperature at temperature maximum below 200 m constructed from CTD, XCTD and XBT measurements. Dark, labeled, lines are temperature contours with an interval of 0.1 C. Dots indicate sample locations. The lighter lines are isobaths (500, 1000, 1500 m). Dark shading shows land.















































fig8_dyntopomap.300.jpgFigure 8. Dynamic topography at the surface relative to 300 m constructed from CTD and XCTD observations. The dark numbered lines are isopleths of dynamic topography (dynamic meters) with a contour interval of 0.1 m. Dots indicate sample locations. The lighter lines are isobaths (500, 1000, 1500 m). The heavy lines show the coastline.















































clockwise around low values of dynamic topography. Flow was southwestward along the inner shelf with a strong onshore flow west of Adelaide Island and a compensating offshore flow west of Alexander Island (between 150 and 250 km alongshore distance). There was indication of two anti-clockwise circulations in Marguerite Bay, although it might be an hourglass shaped single gyre. The ACC normally flows northeastward along the shelf break, although from this cruise, the ACC seems to have a convoluted shape so flow at some places on the shelf break was backwards (southwestward).


An estimate of the speed of this flow was obtained from the horizontal difference of dynamic topography (the units are meters) divided by the horizontal distance and the Coriolis parameter (about .0001 s-1). A fast flow was seen coming out of the southern half of Marguerite Bay; the speed was 8 cm/s (7 km/day). A faster flow entered the shelf on the north end of the study area at 12 cm/s (10 km/day).


The ADCP records confirmed this general pattern of flow, although the data had much more spatial and temporal variability (Figure 9). The general pattern was northeastward flow along the shelf break and southwestward along the coast and into Marguerite Bay. There were some indications of variations of this flow pattern at some places, but this may have been due to temporal variations due to wind forcing changes or tides. The median flow speed from the ADCP was 6 cm/s in the upper layers and 5 cm/s at middepths. The ACC flow was observed by ADCP to be about 15 cm/s. There was a strong coastal flow south of Adelaide Island and into Marguerite Bay with speeds of 40 to 50 cm/s.

  

1.3.3 Microstructure Results


The microstructure sensor, CMiPS, produces a large volume of data for each cast. Since this instrument is new, analysis software has yet to be developed. A quick analysis of data indicated that sensors were observing small scale variations.


A few samples of the observations were returned to Dr. Rolf Lueck, the instrument designer, for analysis. It was determined that the sensors were working as expected. A few events in these records were identified as possible microstructure due to double diffusive layering. This analysis requires calibrating the CMiPS records with the CTD record in order to estimate the density ratio and other parameters. Analysis of the full data record will proceed once the data are returned to Drs. Rolf Lueck and Laurie Padman. One problem, a low frequency (15 Hz) signal, was detected, which was thought to be due to a wake from part of the ctd frame. Modifications were made to the frame to see if this was the cause; results depend on analysis to be done after the cruise.

  

1.3.4 Surface Fluxes


Description of Cruise Weather and Surface Forcing


Surface meteorological conditions were collected during the cruise at 5 min intervals over the whole region of the large scale survey during 13 April-10 May (YD 103-130) (Figure 10). This information was sufficient to estimate surface wind stress and heat flux (Figure 11). Weather conditions varied during the cruise. A flavor of this variation is provided by the descriptions below of two time periods which were characterized by weak and strong surface cooling, respectively.


fig9_goodvectors.gifFigure 9. One hour averaged vectors in two depth ranges are shown for the duration of the cruise.















































fig10_metnbp0202103-130_b.gifFigure 10. Meteorological conditions over the cruise using 5 minute averaged observations.

(a) Wind speed (m/s). (b) Wind direction (pointing into the wind in degrees true. (c) Air (blue) and water (red) temperature (degree C). (d) Relative humidity (percent).

(e) Surface pressure (millibars). (f) Short wave (blue) and long wave (red) radiation (W/m2).
















































fig11_fluxesnbp0202103-130_b.gifFigure 11. Surface fluxes over the cruise. (a) Surface stress (N/m2) pointing in the direction the wind blows. (b) Magnitude of the wind stress (N/m2). (c) Wind stress direction (degrees true). (d) Net surface heat flux (W/m2) is the sum of latent, sensible, short and long wave fluxes. Positive flux will heat the ocean. (e) Short (blue) and long (red) wave fluxes (W/m2). (f) Sensible (blue) and latent (red) fluxes (W/m2).















































For a large part of the survey, the net surface heat flux was near zero. This period extended from the beginning of the survey (station 1, 13 April - day 103) to the southern end of Marguerite Bay (station 71 2 May - day 122). A low pressure system covered the area during these times and the skies were mainly overcast. During this period, the mean wind speed was 8 m/s and air-sea temperature difference was very small (-0.10 C) resulting in a small sensible heat flux of 2 W/m2 (Table 1). The latent heat flux, Q_lat was also small due to the low average air temperature (-0.87 C) and a high relative humidity (94%). The shortwave radiation decreased continuously as the austral winter approached. Even then, the net shortwave radiation on some days was comparable to the net long wave radiation during the daylight hours; there were even small periods when the net heat flux was zero or positive (maximum of 88 W/m2). For the weak cooling period, 96% of the net heat flux loss was due to net long wave flux.


Table 1. Surface heat budget summary for the time period 13 April to 2 May. Units are

watts/m2.


Flux                  Mean    STD     MIN     MAX

Net                    -41       41         -203      88

Short wave         8         17          0        138

Long Wave       -49       28         -156      -6

Sensible             2         10          -42       42

Latent                 -2        10          -47       24


A stronger heat loss was observed in the area south of Marguerite Bay. Clear sky conditions predominated for this period with high barometric pressure (maximum of 1012 mb). For this reason, net long wave was the dominant process in the surface heat flux (Table 2). Sea ice was present during most of the time; sea surface temperature was near freezing (mean of -1.67 C). Air temperature decreased significantly (mean of -7.47 C) leading to a relatively large air-sea temperature difference (-5.80 C) and a mean sensible heat flux of -79 W/m2. The mean long wave heat flux was high (-108 W/m2) due to the clear skies. The mean shortwave heat flux was small (2 W/m2) and was not a significant contributor to the net heat balance. The mean latent heat flux was -47 W/m2, mostly due to the low sea temperature and high relative humidity (86%). The average net heat flux for this period was a loss of 232 W/m2. To put these rates in perspective, surface cooling at 200 W/m2 for 5 days will cool a 25-m deep mixed layer by 0.84 C.


Table 2. Surface heat budget summary for the time period 13 April to 2 May. Units are

watts/m2.


Flux                 Mean    STD     MIN     MAX

Net                    -232     115       -482      29

Short Wave        2         6          0         47

Long Wave       -108      46        -172     -28

Sensible             -79       51        -207      1

Latent                 -47       23        -110      0


1.4 Acknowledgments


Much of the credit for the high quality hydrographic observations collected during NBP02-02 goes to the Raytheon marine technicians: Jennifer White, Steve Tarrant, and Stian Alesandrini; and electronic technicians: Romeo LaRiviere and Sheldon Blackman. Their willing and cheerful response to all requests made collection of these data a pleasure. We also recognize efforts by deck hands Sam Villanueva, Bienvenido (Ben) Aaron and Ric Tamayo, who endured cold tedium to obtain these data. To all of these individuals, we extend our appreciation.

 

1.5 References


UNESCO, 1991. Processing of Oceanographic Station Data. United Nations Educational, Scientific and Cultural Organization, Paris. 138 pp.



 2.0 Nutrients (Kent A. Fanning [PI not present on cruise], Robert T. Masserini Jr., Yulia Serebrennikova)


2.1 Introduction


In addition to temperature and salinity, dissolved inorganic nutrients (nitrate, nitrite, phosphate, ammonia, and silica) are important tracers of the circulation of waters in and around Marguerite Bay. Deeper water upwelling to shallower regions close to the peninsula should be traceable by higher nutrient signatures. Nutrient concentrations nearer to the sea surface are important to physical/chemical modeling of the fate of plankton in the region that sustain krill, both as "targets" to be explained by nowcasting and as starting points for forecasting.


2.2 Methods


Analytical methods used for silica, phosphate, nitrite, and nitrate follow the recommendations of Gordon et al. (1993) for the WOCE WHP project. The analytical system we employ is a five-channel Technicon Autoanalyzer II upgraded with new heating baths, proportional pumps, colorimeters, improved optics, and an analog-to-digital conversion system (New Analyzer Program v. 2.40 by Labtronics, Inc.) This Technicon is designed for shipboard as well as laboratory use. Silicic acid is determined by forming the heteropoly acid of dissolved orthosilicic acid and ammonium molybdate, reducing it with stannous chloride, and then measuring its optical transmittance. Phosphate is determined by creating the phosphomolybdate heteropoly acid in much the same way as with the silica method. However, its reducing agent is dihydrazine sulfate, after which its transmittance is also measured. A heating bath is required to maximize the color yield. Nitrite is determined essentially by the Bendschneider and Robinson (1952) technique in which nitrite is reacted with sulfanilamide (SAN) to form a diazotized derivative that is then reacted with a substituted ethylenediamine compound (NED) to form a rose pink azo dye which is measured colorimetrically. Nitrate is determined by difference after a separate aliquot of a sample is passed through a Cd reduction column to covert its nitrate to nitrite, followed by the measurement of the "augmented" nitrite concentration using the same method as in the nitrite analysis.


In the analytical ammonia method, ammonium reacts with alkaline phenol and hypochlorite to form indophenolblue. Sodium nitroferricyanide intensifies the blue color formed, which is then measured in a colorimeter of the nutrient-analyzer. Precipitation of calcium and magnesium hydroxides is eliminated by the addition of sodium citrate complexing reagent. A heating bath is required. Our version of this technique is based on modifications of published methods such as the article by F. Koroleff in Grasshoff (1976). These modifications were made at Alpkem (now Astoria-Pacific International, Inc.) and at L.Gordon's nutrient laboratory at Oregon State University.


2.3 Data


Nitrate, nitrite, phosphate, ammonia, and silicic acid were measured from every Niskin bottle tripped from all hydrocasts (2035 seawater samples) on this cruise. These data are available on the cruise CDROM and will be posted to the U.S. GLOBEC Data website.


2.4 Preliminary Results for Nutrient Concentrations


Nitrate and phosphate exhibited the expected vertical distributions: high concentrations at depth overlain by slight increases just below the mixed layer followed by substantial decreases within the euphotic zone. Approximate concentrations for nitrate and phosphate (respectively) in these regions were: 33.0 and 2.32 μM (deep water), 35.3 and 2.47 μM (just below the mixed layer), and 22.5 and 1.6 μM (euphotic zone).


Nitrite and ammonia concentrations were essentially zero, here defined as less than the detection limit of the chemistries employed, below the mixed layer. Within the mixed layer the average nitrite and ammonia concentrations were approximately 0.23 and 1.9 μM, respectively. A subsurface nitrite maximum near the bottom of the mixed layer was located approximately twenty-to-forty nautical miles inshore from the furthest offshore station. The nitrite concentration within the bolus increased to roughly 0.35 μM. This offshore subsurface nitrite maximum was seen on survey lines 1-7, 9, 10, 11, and 13. However, on line 12 the feature was seen much further inshore, approximately 60 nautical miles inshore from the furthest offshore station.


Silicic acid exhibited an increase in concentration shoreward within the mixed layer. In general it also exhibited a classic nutrient structure, with average concentrations that decreased from roughly 110 μM below the mixed layer to 60 μM within the euphotic zone. One feature of note in the silicic acid data was the presence of a lens of depleted silicic acid at a depth of approximately 260 meters associated with the 1.8-degree water seen at station 9 on transect 2. This water mass had a silicic acid concentration of approximately 90 μM, or 10 μM less than the water surrounding it.


There appeared to be a nutrient frontal feature within the euphotic zone aligned generally across and penetrating about halfway into Marguerite Bay. This feature was indicated by an increase in nitrate, nitrite, silicic acid, and phosphate concentrations. The front’s position agreed well with contour maps of dynamic topography generated by other groups on this cruise. Preliminary surface contours of average mixed-layer nutrient concentrations seemed to depict a gyre on the shelf with an edge that was generally aligned across the mouth and penetrated approximately halfway into Marguerite Bay.


Within portions of the mixed layer of Marguerite Bay that are away from the influence of the gyre, ammonia exhibited an enrichment at near shore stations to a depth of approximately 50 meters. Concentrations there ranged between 2.5 and 2.9 μM. The region seemed to be closely associated with slightly fresher water found near the surface in the back of the Bay. Overall, ammonia concentrations in the mixed layer on this cruise were comparable with those of the Winter SO GLOBEC II cruise for the same region last year. Thus, they were significantly lower than those of last year’s Fall SO GLOBEC cruise values (3.5 to 4 μM) for the same region.


The mixed layer of Marguerite Bay exhibited depletions in concentrations of four of the five nutrients studied (nitrate, nitrite, silicic acid, and orthophosphate). Average shelf concentrations of nitrate, nitrite, and orthophosphate within the euphotic zone were approximately 22.5, 0.2, and 1.6 μM, respectively. Surface concentrations of silicic acid displayed more horizontal variability, increasing from about 50 μM at the furthest offshore station to a maximum of slightly more than 70 μM approximately 90 nautical miles shoreward from that station and then decreasing to 60 μM inside the Bay. Nitrate, nitrite, and phosphate declined within the euphotic zone of Marguerite Bay to roughly 18, 0.15, and 1.4 μM, respectively.


2.5 References


Gordon, L.I., J.C. Jennings, Jr., A.A. Ross, and J.M. Krest, A Suggested Protocol For Continuous Flow Automated Analysis of Seawater Nutrients, in WOCE Operation Manual, WHP Office Report 90-1, WOCE Report 77 No. 68/91, 1-52, 1993.


Grasshoff, K. 1976. Methods of Seawater Analysis, Verlag Chemie, Weinheim, Germany, and New York, NY, 317 pp.


3.0 Primary Production Component (Maria Vernet [PI not present on cruise], Wendy Kozlowski, Kristy Aller)


3.1 Introduction


The estimation of primary production has three main objectives: (1) estimation of primary productivity rates during fall and winter in the area of study as a possible source of food for krill and other zooplanktors;  (2) understanding the mesoscale patterns of phytoplankton distribution with respect to physical, chemical and biological processes; and  (3) obtaining insight into the over-wintering dynamics of phytoplankton, including their interaction with sea ice communities. For this purpose, primary production was measured with two methods during this cruise: estimation of daily net production with simulated in situ experiments (SIS), and profiles with a Fast Repetition Rate Fluorometer (FRRF), with the aim to increase resolution in the sampling of phytoplankton activity and the expectation of modeling primary production with this method using 14C experiments as comparison.  A third approach, that of estimating potential primary production and gaining information on the dynamics of light adaptation by means of Photosynthesis vs Irradiance curves was carried out on all ice samples collected.


During this third Southern Oceans GLOBEC cruise, we also increased our emphasis on estimation of phytoplankton biomass, with measurements of chlorophyll (chla) and particulate organic carbon and nitrogen (CHN) throughout the water column. Recording of both surface and water column photosynthetically available radiation (PAR) was carried out throughout the sampling duration of the cruise.


3.2 Methods


3.2.1 Sampling Locations


The FRRF was deployed at all stations where the water depth was less than 500 m, and at stations 12, 22, 37, 46, 70, and 84, a separate cast was done before the main CTD cast to a depth of 100 m for collection of FRRF data at deep water stations (Figure 12). SIS experiments were done once a day, with water generally sampled from the station closest to, but preceding sunrise in order to allow for accurate simulations of daylengths (Figure 12). Chlorophylls were sampled from all stations where the rosette was deployed, plus from a bucket sample at station 44 when the weather prevented use of the CTD, and water was filtered for POC samples at every other station sampled along the grid.


3.2.3 Depths


For SIS experiments water was collected from the surface, and from five, ten, fifteen, twenty, and thirty meters deep. The FRRF was deployed as part of the CTD rosette, with a descent rate of 10 meters per minute for the first fifty meters, 20 meters per minute to 100 meters in depth and 50 meters per minute for the remainder of the cast. Data was analyzed from the downcasts, to a depth of 150 meters. Chlorophylls and CHNs were collected at the same depths as for SIS experiments, plus at 50 meters, 100m, the bottom and three other intermediate depths varying based on total cast length.


3.2.3 Ice Sampling


Ice sampling during the cruise was generally opportunistic. See Table 3 for a summary of Ice Station Locations and Samples collected. On a few occasions, sampling was done while underway, with a bucket over the side of the ship. When the ice was larger, ice was again collected into a bucket, but using the personnel basket as a working platform. When the ice floes were large enough to core from, personnel were lowered with the basket to the ice and worked directly from the floes.


Once the ice samples were brought on board the ship, 0.2μ filtered seawater was added (to samples other than slush and pancake) to approximate a 0.33 dilution, and the ice was allowed to melt in the dark in a 2̊ C cold room. Once melted, the water was sub-sampled for chlorophylls, particulate carbon and nitrogen, and production (PI). Ice that was not diluted was allowed to melt under the same conditions, and was additionally sub-sampled for nutrients and salinity.


3.2.4 Equipment


Chlorophylls were measured using a Turner Designs Digital 10-AU-05 Fluorometer, serial number 5333-FXXX, calibrated using a chlorophyll a standard from Sigma Chemicals, dissolved in 90% acetone. The “Fast Tracka” Fast Repetition Rate Fluorometer, serial number 182037, is made by Chelsea Instruments, and was outfitted with independent depth and PAR sensors. All data was recorded internally to the instrument, and data was downloaded directly to computer after every few casts. Incubations for the SIS experiments were done in Plexiglas tubes, shaded to simulate collection light levels with window screening, incubated in an on-deck Plexiglas tank, which was outfitted with running seawater in order to maintain in situ temperatures. PI curves were done in custom built incubators, designed to hold 7ml vials, irradiate at light levels between zero and 460 μE/m2/sec, and were attached to water baths to maintain in situ collections temperatures. CHN samples will be analyzed upon return to the States. Ice water nutrients were measured on board by USF analysts, and salinities were measured using a hand held refractometer. Light data was collected using a Biospherical Instruments GUV Radiometer, serial number 9228, mounted on the science mast, configured with a PAR channel, as well

fig12_246pp.jpgFigure 12. Map of all primary production stations sampled.















































as channels for 305, 320, 340 and 380nm wavelengths. Additional PAR data was collected using a Biospherical Instruments QSR-240 sensor, serial number 6356, also mounted on the science mast.


Table 3. Summary of sea ice samples, with locations and ice types. Possible Samples collected are chlorophyll (chl), particulate carbon, hydrogen and nitrogen (CHN), Dissolved Inorganic Nutrients (DIN), salinity (salt), and Primary Production (PP).


Date

Nearest Cons St #

Lat

Lon

Sample

Ice Type

Samples Collected

4/23/02

037

-68.183

-68.240

Ice1

pancake

chl, CHN, DIN, 2xPP

4/24/02

040

-68.480

-68.804

Ice2

slush

chl, CHN, 2xPP

4/29/02

055

-68.885

-68.976

Ice3A

Core: 0-83cm

SD, IT, chl, CHN, 1xPP

4/29/02

055

-68.885

-68.976

Ice3B

Core: 83-233cm

SD, IT, chl, CHN, 1xPP

4/30/02

057

-68.998

-69.429

Ice4A

Core: 0-126cm

SD, IT, chl, CHN, 1xPP

4/30/02

057

-68.998

-69.429

Ice4B

Core: 126-207cm

SD, IT, chl, CHN, 1xPP

4/30/02

057

-68.998

-69.429

Ice4C

Core: 207-293cm

SD, IT, chl, CHN, 1xPP

4/30/02

057

-68.998

-69.429

Ice4S

slush/brine

chl, CHN, DIN, salt, 1xPP

5/1/02

059

-68.694

-70.462

Ice5

slush

chl, CHN, 2xPP

5/5/02

076

-69.171

-72.754

Ice6A

Core: 0-79cm

SD, IT, chl, CHN, 1xPP

5/5/02

076

-69.171

-72.754

Ice6B

Core: 79-96cm

SD, IT, chl, CHN, 2xPP

5/5/02

076

-69.171

-72.754

Ice6C

Core: 96-185cm

SD, IT, chl, CHN, 1xPP

5/5/02

076

-69.171

-72.754

Ice6S

slush/brine

Chl, chn, DIN, salt, 1xPP

5/6/02

078

-68.727

-74.309

Ice7

slush

chl, CHN, DIN, salt, 1xPP

5/8/02

084

-69.233

-74.196

Ice8

pancake

chl, chn, 1xPP

5/8/02

085

-69.549

-74.431

Ice9A

Core: 0-92cm

SD, IT, chl, CHN, 1xPP

5/8/02

085

-69.549

-74.431

Ice9B

Core: 92-167cm

SD, IT, chl, CHN, 1xPP

5/8/02

085

-69.549

-74.431

Ice9C

Core: 167-205cm

SD, IT, chl, CHN, 1xPP

5/8/02

085

-69.549

-74.431

Ice9D

Core: 205-257cm

SD, IT, chl, CHN, 1xPP

5/8/02

085

-69.549

-74.431

Ice9S

slush/brine

chl, CHN, 1xPP

5/10/02

092

-69.530

-76.323

Ice10A

Core1: 0-41cm

SD, IT, chl, CHN, 1xPP

5/10/02

092

-69.530

-76.323

Ice10B

Core1: 41-94cm

SD, IT, chl, CHN, 1xPP

5/10/02

092

-69.530

-76.323

Ice10C

Core1: 94-146cm

SD, IT, chl, CHN, 1xPP

5/10/02

092

-69.530

-76.323

Ice10D

Core2: 0-149cm

SD, IT, chl, CHN, 1xPP

5/10/02

092

-69.530

-76.323

Ice10S

slush/brine

chl, CHN, DIN, salt, 2xPP

5/10/02

092

-69.530

-76.323

Ice10E

Core3: 0-14cm

DIN, salt

5/10/02

092

-69.530

-76.323

Ice10F

Core3: 14-41cm

DIN, salt

5/10/02

092

-69.530

-76.323

Ice10G

Core3: 41-86cm

DIN, salt

5/10/02

092

-69.530

-76.323

Ice10H

Core3: 86-109cm

DIN, salt

5/10/02

092

-69.530

-76.323

Ice10I

Core3: 109-127cm

DIN, salt

5/10/02

092

-69.530

-76.323

Ice10J

Core3: 127-146cm

DIN, salt




3.2.5 Data Collected


Over the course of the thirty-six science days of this trip, a total of twenty seven SIS experiments were completed. Twenty seven PI curves were run on ice from ten different locations, and the FRRF was cast (with data acquired) 57 times throughout the grid. For estimations of biomass (standing carbon stocks), both CHN and chlorophyll samples were taken. A total of 609 POC samples were collected, and 1606 chlorophyll samples were taken from the 102 sampling stations. Of those biomass samples, 30 were ice-related samples.


Surface PAR data was on all days that primary production experiments were done. GUV data was collected at one minute intervals and logged directly to computer (see Table 4 for daily measured light levels). QSR PAR data was collected as part of the JGOF meteorological data set. A comparison of the two instruments was done to continue to monitor differences between the two types (scalar vs. cosine) of sensor (see Figure 13). PAR data were also collected during each daylight CTD cast using a profiling PAR sensor, as well as on the FRRF, and will be used in conjunction with surface PAR data for the analysis of water column production.


3.3 Preliminary Results


Final analysis is yet to be completed on the majority of the data collected on this cruise. There appears to be similar North-South and onshore-offshore trends in the chlorophyll levels as were seen in GLOBEC I and II, with slightly higher levels seen on the Northern, outside part of the grid. Higher chlorophyll levels were also seen at five stations in the North Eastern side of Marguerite Bay. Surface chlorophyll values throughout the grid ranged from 0.09 μg/l down to 2.16 μg/l, with a maximum integrated value seen at consecutive station 14 (166.28 μg/m2 integrated to 100m), and a minimum at consecutive station 56 (3.54 μg/m2). Water column primary production followed the same pattern as chlorophyll, with highest production seen on the North Western corner of the grid. Of the stations where SIS experiments were done, production estimates ranged from 8.1 mgC/m2/d at station 59, to 249.6 mgC/m2/d at station 15. All ice samples had measurable amounts of production, with several of the new pancake and brine samples showing some of the highest productions seen on the cruise.


fig13_246fig2.jpgFigure 13. Plot of comparison of Biospherical Instruments QSR-240 and GUV 500 Photosynthetically Active Radiation (400-700 nm) measurements over the course of NBP 02-02.






















Table 4. PAR (Photosynthetically Available Radiation, 400 – 700 nm) data, from BSI GUV500 mounted on Science Mast. Day lengths and daily irradiance values were calculated using PAR values above 0.0 μE/cm2*sec.


Date

Sunrise

Sunset

Dec. Hours

μE/cm2

4/14

11:32

21:45

10.22

256.70

4/15

11:35

21:27

9.87

160.83

4/16

11:46

21:37

9.85

289.22

4/17

11:47

21:33

9.77

223.01

4/18

11:53

21:30

9.62

253.48

4/19

11:55

21:28

9.55

154.72

4/20

11:57

21:33

9.60

318.51

4/21

12:18

21:13

8.92

74.57

4/22

11:58

21:18

9.33

276.75

4/23

11:54

21:02

9.13

363.76

4/24

12:15

20:50

8.58

141.10

4/25

12:24

21:09

8.75

197.80

4/26

12:40

21:22

8.70

166.96

4/27

12:41

20:58

8.28

126.38

4/28

12:49

20:25

7.60

30.82

4/29

12:27

20:39

8.20

160.43

4/30

12:35

20:37

8.03

169.28

5/1

12:54

20:37

7.72

66.16

5/2

13:02

20:47

7.75

74.31

5/3

13:00

20:47

7.78

107.89

5/4

13:07

20:34

7.45

51.41

5/5

13:12

20:28

7.27

63.72

5/6

13:14

20:44

7.50

122.57

5/7

13:41

20:22

6.68

43.36

5/8

13:28

20:26

6.97

75.95

5/9

13:34

20:36

7.03

92.67

5/10

13:45

20:22

6.62

71.51

5/11

13:26

20:13

6.78

92.23


4.0 Zooplankton Studies

(Peter Wiebe, Carin Ashjian, Scott Gallager [PI not present on cruise], Cabell Davis [PI not present on cruise])


The winter distribution and abundance of the Antarctic krill population throughout the Western Peninsula continental shelf study area are poorly known, yet this population is hypothesized to be an especially important overwintering site for krill in this geographical region of the Antarctic ecosystem. Thus, the principal objectives of this component of the program are to determine the broad-scale distribution of larval, juvenile, and adult krill throughout the study area, to relate and compare their distributions to the distributions of the other members of the zooplankton community, to contribute to relating their distributions to mesoscale and regional circulation and seasonal changes in ice cover, food availability, and predators, and to determine the small-scale distribution of larval krill in relation to physical structure of sea ice. To accomplish these objectives, the same three instrument platforms that were used on the first two Southern Ocean GLOBEC broad-scale cruises, were used on this cruise. A 1-m2 MOCNESS equipped with a strobe light was used to sample the zooplankton at a selected series of stations distributed throughout the survey station grid. A towed body, BIOMAPER-II was towyoed along the trackline between stations to collect acoustic data, video images, and environmental data between the surface and bottom in much of the survey area. An ROV was used to sample under the ice and to collect video images of krill living in association with the ice under surface, environmental data, and current data. This section of the cruise report will detail the various methods used with each of the instrument systems or in the case of BIOMAPER-II, its sub-systems.


4.1 Zooplankton Sampling with the 1m2 MOCNESS Net System

(C. Ashjian. P. Alatalo, G. Rosenwaks)


4.1.1 Introduction


The 1-m2 MOCNESS net sampling of zooplankton had two main objectives. The first was to sample the vertical distribution, abundance, and population structure (size, life stage) of the plankton at selected locations across the broad-scale survey grid. The second objective was to collect information on the size distribution of the plankton, especially the krill, in order to ground-truth the acoustic and video data collected using the BIOMAPER-II multi-frequency acoustic and video plankton recorder system. Using the size distribution of planktonic taxa from different depths and locations, the acoustic intensity resulting from insonification of that water parcel will be calculated to check and ground-truth the acoustic backscatter from the BIOMAPER-II. The dominant species of the taxa enumerated using the Video Plankton Recorder also will be identified.


4.1.2 Methods and Approach


Sampling was conducted using a 1-m2 MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System) equipped with 333 μm mesh nets and a suite of environmental sensors including temperature, conductivity, fluorescence, and light transmission probes. The fluorometer and transmissometer were removed part way through the cruise in order to transfer the options case from the MOCNESS to the BIOMAPER-II on which the options case had failed. The MOCNESS also was equipped with a strong strobe light, which flashed at 4-second intervals. Because krill are strong swimmers and likely can see slow moving nets such as the MOCNESS, krill frequently avoid capture by net systems. The rationale behind the strobe system was to shock or blind the krill temporarily so that the net would not be perceived and avoided.


Tows were conducted at 24 locations (Figure 14). Oblique tows were conducted from near bottom to the surface, sampling the entire water column on the down-cast and selected depths on the up-cast with the remaining eight nets. Typically, the upper 100 m was sampled at 25 m intervals, with 50 m intervals in the intermediate depth ranges and greater intervals (150, 200 m) in the deepest depth ranges. Samples were preserved upon recovery in 4% formalin except for the first net (water column sample) that was preserved in ethanol to be utilized for genetic analyses.


fig14_mocposplot.gifFigure 14. Location of the 1 m2 MOCNESS tows. Standard station numbers, where available, are shown next to the symbols. Different symbols demonstrate the presence or absence of krill and furcilia and locations where abundances of these taxa were notably greater.














































Despite the light ice cover encountered at many locations, towing was not seriously impaired. Cautionary measures were employed in ice covered regions. The wire was watched closely with a dedicated video camera to quickly observe any ice that became caught under the cable so that the ship could be stopped quickly. Also, less wire than bottom depth was utilized so that the MOCNESS would not hit the sea floor if the ship slowed or halted because of heavy ice.


Samples will be analyzed for displacement volume biomass and taxonomic and size composition of the plankton upon return to the laboratory. The taxonomic/size composition analysis will be conducted using silhouette analysis that yields size specific abundances of the different taxa (e.g., large copepod, large krill, small krill, ctenophore). These abundances and sizes then are used to extrapolate sample biomass using empirical relationships between size and biomass for each taxon. The size/taxa information also will be used to predict the backscatter that would result from insonification of this plankton community by the BIOMAPER-II acoustic transducers.


4.1.3 Preliminary Findings


Overall, abundances and taxonomic composition were much reduced relative to those observed during the fall cruise cruise of 2001 (NBP0103) and were similar to those observed during the winter of 2001 (NBP0104). Copepods frequently were important both numerically and in terms of biomass. Very few furcilia and adult krill were seen. Only two locations in Marguerite Bay appeared to have abundant krill and furcilia; Stations 28 and 54 both of which were located along the axis of the mouth of Marguerite Bay in cold, fresh water of the “coastal” current which flows south along Adelaide Island, loops into Marguerite Bay, and exits at the southern end flowing south and west along the shelf. Sampling volumes were comparable between all of the cruises so it is likely that these qualitative observations represent relative plankton abundances on the shelf. High abundances of krill were observed in Matha Strait at the entrance to Crystal Sound, north of Adelaide Island. These high abundances were correlated with the presence of elevated backscatter observed both on the SIMRAD echosounder during the tow and with the BIOMAPER-II acoustics during a survey conducted prior to the MOCNESS tow.


4.1.4 Acknowledgments


Many people assisted with the MOCNESS tows and their assistance is gratefully acknowledged. Special thanks to Peter Martin, Romeo LaRiviere, Jenny White, Stian Alesandrini, Steve Tarrant, Alice Doyle, Julian Ashford, the BIOMAPER-II group, Peter Wiebe, and the bridge crew of the NBP (Capt. Joe, Val, Rich, John, Rachelle).


4.2 BIOMAPER-II Survey


The BIO-Optical Multi-frequency Acoustical and Physical Environmental Recorder or BIOMAPER II is a towed system capable of conducting quantitative surveys of the spatial distribution of coastal and oceanic plankton/nekton. The system consists of a multi-frequency sonar, a video plankton recorder system (VPR), and an environmental sensor package (CTD, fluorometer, transmissometer). Also included are an electro-optic tow cable, a winch with slip rings, and van which holds the electronic equipment for real-time data processing and analysis. The towbody is capable of operating to a depth of 300 meters at 4 to 6 knots, but because of several re-terminations following damage to the electro-optical towing wire thus reducing the wire length, the operational depth on this cruise was a little over 200 m. The system can be operated in a surface towed down-looking mode, in a vertical oscillatory "towyo" mode, or in a sub-surface up/down looking horizontal mode. All three modes were used to some extent on NBP0202. To enhance the performance and utility of BIOMAPER II in high sea states, a winch, slack tensioner, and over-boarding sheave/docking assembly were used.


As on the first two SO GLOBEC broad-scale cruises (NBP0103, NBP0104), BIOMAPER-II was deployed from the stern of the RVIB N. B. Palmer. Attached to the starboard side of the A-frame on the Palmer was a stiff arm, designed and constructed at WHOI, to lower the over-boarding sheave/docking assembly to a level that would minimize the distance that BIOMAPER-II needed to be hauled up to be docked and still clear the stern rail when the A-frame was boomed in. It was shackled at two points to pad eyes on the top of the A-frame. The over boarding sheave articulated and was equipped with a hydraulic ram, so that its position could be adjusted to keep the docking mechanism vertical during launch and recovery, and to move it inboard of the wire when towing. During the port setup in Punta Arenas before this cruise, the deck plates holding the winch and slack tensioner were repositioned in an attempt to better align the cable leaving the slack tensioner with the overboarding sheave. In addition, a newly fabricated set of rollers were mounted on the inboard side of the over-boarding sheave assembly to help keep the wire on track. In spite of the modifications, the effort was not successful in making the alignment better and while at sea, a line was attached to the top of the over-boarding sheave to pull the sheave to starboard so that the wire stayed aligned.


This system worked reasonably well under all the conditions experienced during the cruise. In anticipation of the high winds, cold temperatures, and wet working conditions on the stern deck of the Palmer, a shipping container, modified into a working “garage” for BIOMAPER-II, was located on the port side of the vessel centerline and forward of the stern A-frame. The towed body was easily moved on dollies to a position where it could be picked up by a motor drive hoist suspended from a movable I-beam and moved inside the van. The van again proved essential in working on the towed body both for maintenance and for repair, or in providing dry warm storage. On 17 April, while preparing to deploy BIOMAPER-II, it was discovered that there had been a fire at the back of the van where the electrical panels were located. The consensus was that the fire started with the failure a Makita battery charger, which was at the back of the van close to one of the electrical panels. The fire produced a thick black soot, which covered all surfaces, and the heat ruined some of the electrical wiring, but the damage was relatively little. Cleanup of the deck van and the re-wiring of the damaged circuits began shortly after. The Ship’s engine room crew, led by Johnny Pierce, and the Raytheon technical support people did a great job in helping to get the van back into working condition. Members of the BIOMAPER-II group also worked very hard and put in long hours to right the situation.


The BIOMAPER control van was located on the 03 level inside the helicopter hanger. The heated van accommodates three or four individuals and computers for four operations: acoustic data acquisition and processing, VPR data acquisition and processing, ESS acquisition, and hardware monitoring. A power supply in the van provides BIOMAPER-II with 260 volts of DC power. A VHF radio base station and two portable units provided communication with the bridge, deck, and labs. Two deck video cameras were mounted on an aluminum mast attached to a corner post of the garage van and had monitor outputs in the control van. One, a fixed camera, was used when towyoing BIOMAPER-II for observing the winch. The second, with pan, tilt, zoom, and focus controls, was for observing the slack tensioner and the overboarding sheave during launch and recovery of the towed body. A third camera (also pan and tilt) was installed on a post about mid-ships on the helicopter pad. This camera was used for observing the cables towing BIOMAPER-II and the MOCNESS’s and for early detection of sea ice snagging the cables. This latter camera had outputs to all of the ships monitors. Inputs to the van from the Palmer’s navigation and bathymetry logging system, included P-code GPS (9600 baud), Aztec GPS (4800 baud), and Bathy bottom depth information.


An electro-optical cable with a diameter of 0.68 “ was used to tow BIOMAPER-II. The tow cable contains three single mode optical fibers and three copper power conductors. Data telemetry occupies one fiber (using two colors), the video the second, and raw acoustic data the third. A cable termination matched to meet the strengths of the towing cable and the towed body's towing bail was designed and built at WHOI.


BIOMAPER-II and the garage van were shipped back to WHOI and the towed body underwent extensive re-building during the period between NBP0104 and NBP0202 as a result of the beating it took working in the ice pack during the winter cruise. The towed body framework was straightened and breaks in the aluminum structure re-welded. A new stainless steel framework to hold the VPR cameras and strobe light was designed and built to better withstand collisions with pack ice. A new tail assembly was also designed and built. The towing bail, which was badly damaged in one encounter with the pack ice, was duplicated. The VPR was modified by constructing and installing new end-caps and ruggedized bulkhead connectors and cable assemblies. The HTI acoustic system also needed extensive examination and repair, and this work was completed during the inter-cruise period.


During this cruise, BIOMAPER-II suffered only minor structural damage when the towed body collided with the stern of the Palmer during a couple of the recoveries in rough seas. On both occasions, the cage holding the VPR was bent inwards and had to be straightened (Many thanks to MTs Steve Tarrent, Stian Alesandrini, and Jenney White). The electro-optical towing cable sustained damage twice and had to be re-terminated. There were a number of electrical issues, requiring skilled trouble-shooting, that appeared throughout the cruise. Ground-faults were a common occurrence and in the beginning they were due to faulty parts i.e. a manufacturing flaw in a the bulkhead connector on the upward looking 43 kHz transducer or to a wiring of the chassis ground circuit in the HTI acoustic system that was in conflict with the overall grounding scheme of BIOMAPER-II. Both were tracked down by Peter Martin and fixed. Another problem involved the intermittent operation of the upper 200 kHz transducer. It was finally determined that the cable between the upper 200 kHz transducer and the echosounder in the towed body was causing the intermittency on that frequency, although the cable itself did not appear flawed. When a spare cable was used in its place, the transducer began working properly again. Twice during the cruise, the electro-optical cable had to be re-terminated, a process that takes at least 8 hours. The first time was due to the discovery of a broken strand of the outer armor on the towing cable near the termination on 18 April. Examination of the wire and over boarding sheave assembly revealed another problem. One of the newly installed rollers on the sheave was also damaged and may have contributed to the break. While the cable was being re-terminated, the roller on the sheave was replaced with a backup method of keeping the wire in place. Later, a means to fix the roller was found and it was restored to duty. The second was on 21 April, when a large swell caused the cable to jump past a guard rail on the over-boarding sheave and it was damaged severely enough to warrant re-termination.


There were also problems with the ESS system. One involved the failure of the SeaBird pump, which may have contributed to the failure of key electronics in the Options underwater unit. A Raytheon pump and the MOCNESS options case were “borrowed” and the pump re-wired to an auxiliary 12 volt supply on 23 April. The ESS underwater unit also needed repair after seawater leaked into the unit through the pressure sensor tubing. Fortunately, although a half-cup of water was in the case, there was no damage. Cleaning of the circuitry with alcohol and contact cleaner, and refitting of the pressure unit tubing by Andy Girard, put the unit back in service.


On 22 April, during the towyo starting at station 29, the VPR camera system stopped working. The towed body was brought on deck at station 30 and trouble shooting of the system began. A retainer ring holding the strobe light lens had come loose inside the pressure case and allowed the lens to move out of alignment. The system was repaired during the transit to station 31 and BIOMAPER-II was re-deployed at the end of station work there. Unfortunately, one of the two cameras was still not working properly because of an alignment problem, so at the end to the transit to station 33, the towed body was again retrieved and during the short transit station 34, the VPR was worked on again.

 

4.2.1 Acoustics Data Collection, Processing, and Results

(Peter Wiebe, Carin Ashjian, Scott Gallager [not present on Cruise], Cabell Davis [not present on Cruise])


4.2.1.1 Introduction


The use of high-frequency sound to ensonify the water column and produce echograms that portray the vertical distribution of entities that backscatter sound is one of the few means of visualizing their continuous distribution and gaining some sense of their abundance. Single frequency systems while useful in this regard, are much less capable of providing insight into the taxonomic makeup of the scatterers than is a system with multiple frequencies. Likewise, echo integration provides an estimate of the strength of the backscattering as a function of depth, but does not provide any information about the size range of the entities whose backscattering has been integrated. The echosounder on BIOMAPER-II provides both echo integration data and target strength data on four of the five pairs of transducers and as a result, in combination with the ground truthing data obtained with the 1-m2 MOCNESS and the VPR, should be able to provide considerable information about the distribution and abundance of the zooplankton populations along the survey tracklines. On NBP0202, a large quantity of acoustic data were collected during the 4 weeks of the survey, in spite of the down time for repairing the towed body. Approximately 400 GB of raw acoustic data were recorded and all of these data were processed in real-time so that echograms could be created and comparisons made of the changes in the backscattering fields as the cruise progressed. Refinements to the processed data are required before a final analysis can be done, but a preliminary look at the data presented below provides insight into the patterns that were observed and the changes that took place on this third SO GLOBEC broad-scale cruise.


4.2.1.2 Methods


BIOMAPER-II collects acoustic backscatter echo integration data from a total of ten echosounders (five pairs of transducers with center frequencies of 43 kHz, 120 kHz, 200 kHz, 420 kHz, and 1 MHz). Half of the transducers are mounted on the top of the tow-body looking upward, while the other half are mounted on the bottom looking downward. This arrangement enables acoustic scattering data to be collected for much of the water column as the instrument is towyoed, lowered and raised vertically between a near surface depth and some deeper depth as the ship steams at about 5 kts through the survey track. Due to differences in absorption of acoustic energy by seawater, the range limits of the transducers are different. The lower frequencies (43 and 120 kHz) collect data up to 300 m away from the instrument (in 1.5 m range bins), while the higher frequencies (all with 1 m range bins) have range limits of (150, 100, and 35 m respectively).


There were three transducer configurations used on this cruise. The original (and standard) configuration and MUX assignments were used until there were problems with the upper 200 kHz transducer. In order to determine whether the problem was with the transducer or with the echosounder, the cables for the pair of 200 kHz transducers were swapped on the transdcuer end and the MUX ports reassigned to keep the order of triggering standard. The same was done with the cables running to the 43 kHz transducers later in the cruise to see if the noise associated with them changed. This third configuration was kept to the end of the cruise.


The acoustic data were recorded by HTI software and stored as .INT, .BOT and .RAW files on a computer hard drive (Appendix 11). The data were archived on removable 40 gig hard drives. The .INT and .BOT files were further post-processed using a series of MATLAB files contained in the HTI2MAT toolbox (written by Joe Warren, Andy Pershing, Gareth Lawson, and Peter Wiebe) to combine the information from the upward and downward looking transducers. The acoustic backscatter data from the HTI system were then integrated with environmental data from the ESS (Environmental Sensing System) onboard BIOMAPER-II. These latter data included depth of the towed body, salinity, temperature, fluorescence, transmittance, and other parameters.


The integrated acoustic and environmental data were concatenated into typically half-day (am or pm) chunks and used to make maps of acoustic backscatter throughout the entire water column (or at least to the range limits of the transducers). Larger files (of the entire survey track for instance) were decimated and then plotted to provide 3D views of the data for the entire survey grid. Files were saved as d###_am_sv.mat and d###_am_sv_w.mat, and a tiff image of a plot of the acoustic data from all five frequencies was also saved. The d###_am_sv.mat files are in the correct format for looking at environmental information and can be plotted using the pretty_pic series of m-files. The data in d###_am_sv_w.mat are in New Wiebe format and can be viewed using the curtainnf.m program.


In addition, information about the three-dimensional position of BIOMAPER-II (pitch, roll, yaw) and data from the winch (tension, wire out, wire speed) were recorded.


4.2.1.3 Results


In this report, analysis of the acoustic data collected with BIOMAPER-II is limited to qualitative descriptions of overall patterns. Future quantitative analyses and examinations of the distributions of particular taxa will await the incorporation of the acoustic data with information derived from net tows and the video plankton recorder (VPR).


The general pattern of backscattering across much of the survey area was low backscattering in the surface mixed layer, moderate backscattering in the pycnocline, a midwater zone that typically had faint scattering, and a usually well developed bottom scattering layer often 100 to 200 m above the bottom (when bottom depths were 350 to > 500 m) and often with a more intense zone 25 to 50 meters thick starting some 20 to 30 m above the bottom (Figures 15, 16). The overall levels of backscattering


fig15_nbp0202_120_200khz.gifFigure 15. Volume backscattering data collected during the NBP0202 broad-scale survey with BIOMAPER-II. Top: 120 kHz data; Bottom: 200 kHz data. The black area at the top of the echograms is high backscattering due to the ships wake. The white line on the echograms marks the position of BIOMAPER-II as it was towyoed along the survey tracklines.














































fig16_nbp0202_420_1000khz.gifFigure 16. Volume backscattering data collected during the NBP0202 broad-scale survey with BIOMAPER-II. Top: 420 kHz data; Bottom: 1000 kHz data. See Figure 15 for additional details.













































 appeared to be lower than last year at this same time, but higher than during the winter cruise. This basic pattern was modified in a number of ways depending upon location within the survey grid.


The acoustic backscattering in Marguerite Bay was generally much higher than that observed on the continental shelf or further offshore. In addition, there was evidence for diel vertical migration by the zooplankton populations in the Bay under some conditions (Figure 17). During the night period on 23 April, for example, the volume backscattering was highest right near the surface and this high backscattering extended down 50 to 100 m. This pattern was evident on the 120, 200, and 420 kHz echograms. By early morning, just after first light, highest backscattering was below about 50 m and a “clear” zone close to the surface had developed on the echograms. Later in the day, the scattering layer intensified at depth and there were discrete high intensity targets (fish?) present. After dark, the intense backscattering moved close to the surface in the zone that had been clear of scatterers during the day and the nighttime pattern was restored.


The persistent occurrence of the bottom layer on NBP0202 was a feature observed on the previous two cruises. The pattern of distribution of this bottom layer was also similar in that it varied in thickness from 25 to as much as 250 m (Figures 15, 16). This layer was visible primarily at 120, 200, and 420 kHz, although it was seen best on the 120 kHz because of its greater range. The bottom layer was less well developed in the northern portion of the grid and best developed on the continental shelf in mid-shelf areas off of Marguerite Bay and further south. Unlike, the previous year, on the more southerly transects, the bottom layer was not pronounced on the outer shelf. The highest deep scattering was observed in Marguerite Bay in Lebeuf Fjord and the Marguerite Trough off of the northern end of Alexander Island.


Intense patches of krill-like scatterers (a number of which were confirmed as krill patches by the VPR) were seen principally in two distinct locations. 1) Discrete patches ranging from a few hundred meters to as much as two kilometers horizontally and a few tens of meters to about 100 m vertically occurred sporadically along the outer portion of the continental shelf, but inside of the shelf break on the northern six survey lines. They were much less frequent in the more southerly portion of the grid until survey line 13 when they again occurred fairly frequently. They were absent from much of the mid-shelf region on the northern half of the grid, but occurred sporadically in the southern end. 2) Intense layers of krill occurred in the entrance to Crystal Sound just north of Adelaide Island, in the vicinity of station 7 next to the Fuchs Ice Piedmont on Adelaide Island, and in inshore waters west of Alexander Island, Rothschild Island, the Wilkins Ice Shelf , and Charcot Island. Somewhat less intense backscattering layers occurred throughout Marguerite Bay (including under the pack ice in George VI sound) that also were composed of krill, but not in the concentrations seen in the other inshore areas or last year’s first cruise.


Another feature that has occurred frequently on this and the other two cruises was the presence of a zone of moderate backscattering starting at the top of the pycnocline that varied between being either a diffuse weak single layer or a series of thin layers of somewhat more intense scattering. On occasion, the latter tended to each be 7 to 10 meters thick, and similar in placement and dimensions to those observed in the CTD profiles. The fact that the backscattering is associated with the physical structure of the water column leads to the hypothesis that the scattering in the thin layers is due to microstructure/turbulence. The microstructure measurements made with the CMiPS sensor on the CTD/rossette should help determine this. Related to the thin layers, were the presence of internal waves in one set of the backscattering records. On the transit to station 23, after completing the work at station 22, an internal wave was highlighted on 120, 200, and 420 kHz echograms at 90 to 130 m below the


fig17_nbp0202_vertmig_200.gifFigure 17. Diel Migration in Laubeuf Fjord, Marguerite Bay during the morning of 23 April 2002 (YD 113). The white line on the echograms marks the position of BIOMAPER-II as it was towyoed along the survey tracklines.















surface. It had 10 m wave heights (trough to crest), which showed up as thin layers of alternating high and low backscattering. Another wave packet was also seen on this off shore transit, but no others were noted elsewhere.


At a number of locations along the mid- and outer shelf areas, and offshore waters, the 1 MHz transducers had high backscattering levels in the 0-60 m depth interval that correlated with very high diatom and radiolarian concentrations that were observed on the Video Plankton Recorder. A diatom bloom of significant proportions had been occurring in the northern and central portion of the SO GLOBEC survey grid and this was most evident in the 1 MHz echograms, but also the 420 kHz (Figure 16). This high backscattering was not observed in Marguerite Bay nor was it very evident on the southern portion of the grid. Although, chlorophyll concentrations were not particularly elevated, surface (0-50 m) net tows in the area of high 1 MHz backscatter often came up dominated by a “green goo” in which it was hard to find many zooplankton. Survey line 2 was sampled twice during the cruise between station 8 and 10 and on the second pass, the intense backscattering was not present, providing an indication of the time frame for the end of the bloom (Figure 18).


As on the two previous cruises, very little backscattering was observed on the 43 khz transducers and most locations throughout the grid. Our interpretation of this remains that there are few larger targets present at this time of year that scatter sound at this frequency.


On the final day of scientific work, an in situ calibration was undertaken of all the transducers. To do the calibration, the upper looking transducers were taken out of their top frame mounts and bolted into a calibration rig that Terry Hammar (WHOI) had made up to bolt onto one side of the towed body so that both sets of transducers were side by side facing downward. A series of 3 standard targets (calibration balls of 31.8 mm, 21.2 mm, and ping pong ball) were suspended underneath the transducers at 5, 6, and 7 m. A number of runs with different sets of the transducers were done with the calibration balls hanging directly under them. In spite of the very low winds, the very narrow beamwidths (3 degrees for all, but the 43 kHz, which was 6 degrees) together with moderate current made it difficult to get the balls aligned with the axis of the transducers. After three hours, a satisfactory set of measurements was obtained. More detailed analyses of these calibration data will be critical to scaling measurements of acoustic backscattering to quantitative estimates of zooplankton abundance.


4.2.3 Video Plankton Recorder (C. Ashjian, S. Gallager [PI not present on cruise], C. Davis [PI not present on cruise])


4.2.3.1 Overview


The Video Plankton Recorder (VPR) is an underwater video microscope that images and identifies plankton and seston in the size range 0.5–25 mm and quantifies their abundances, often in real time. As part of the Southern Ocean GLOBEC Program, the goal of the VPR studies is to quantify the abundance of larval krill as well as krill prey, including copepods, large phytoplankton, and marine snow.


4.2.3.2 Methods


BIOMAPER-II integrates the acquisition of VPR video data with the acquisition of high-resolution acoustical backscatter data in order to better quantify abundance patterns of adult krill. The two systems


fig18_surveyline2_420_1meg.gifFigure 18. Volume backscattering along Survey Line 2 between stations 8 and 10 showing the strong 420 and 1000 kHz backscattering in the near surface waters (surface to 75 m) associated with a diatom and radiolarian bloom that was occurring when the broad-scale survey was started and the much lower backscattering that was present when the line was re-surveyed some 28 days later.




























together allow high-resolution data to be obtained on adult and larval krill and their prey. The range-gated acoustical data provide distributional data at a higher horizontal resolution than is possible with the towyoed VPR, while the video data provides high-resolution taxa-specific abundance patterns along the towpath of the VPR. In addition to generating high-resolution taxa-specific distributional patterns, the VPR allows for direct identification, enumeration, and sizing of objects in acoustic scattering layers that the VPR is able to view, so that the VPR data are used to calibrate the acoustical data. The BIOMAPER-II towed body also includes a standard suite of environmental sensors (CTD, fluorometer, transmissometer).


4.2.3.3 The VPR system


4.2.3.3.1 Cameras and strobe: A two-camera VPR was mounted on the BIOMAPER-II towed body for this cruise. The cameras and strobe were mounted on top of BIOMAPER-II, forward of the tow point. The cameras were synchronized at 60 HZ with a 16-watt strobe.


4.2.3.3.2 Calibration: The two cameras were calibrated to determine the field of views (width and height of the video field) of the imaged volumes for each camera by using a translucent grid placed at the center of focus. One field of view was utilized for the entire cruise for the high magnification camera while three slightly different fields of view were utilized for the low magnification camera because of changes in camera settings during the cruise. The field width and height of the high magnification camera were 10 x 8 mm, respectively, while the low magnification camera had a field of view of 21 mm x 15.5 mm for the first portion of the cruise, 19 mm x 15 mm for the middle portion, and 20.5 mm x 15 mm for the latter portion. The depth of field of the imaged volume was estimated to be 50 mm for the low magnification camera and 55 mm for the high magnification camera. The depth of field can be quantified by videotaping a tethered copepod as it is moved into and out of focus along the camera-strobe axis using a micropositioner, while recording (on audio track) the distance traveled by the copepod in mm. The cameras and strobe will be shipped back to Woods Hole after the cruise in their final configuration for final calibration and the establishment of the depth of field.


4.2.3.3.3 Video Recording and Processing. The analog video signals (NTSC) from the two cameras were sent from the fiber optic modulator (receiver) in the winch drum through coaxial slip rings and a deck cable to the BIOMAPER-II van. The incoming video was stamped with VITC and LTC time code using a Horita Inc. model GPS time code generator. Horita character inserters were used to burn time code directly on the visible portion of the video near the bottom of the screen. The two video streams with time code then were recorded on two Panasonic AG1980 SVHS recorders and looped through these recorders to two image processing computers.


The software package Visual Plankton (WHOI developed and licensed) was used to process the VPR video streams. This software is a combination of Matlab and C++ code and consists of several components including focus detection, manual sorting of a training set of in-focus images, neural net training, image feature extraction, and classification. Visual Plankton was run on two Dell Inc. Pentium 4 1.4GHZ computers (Windows 2000 operating system) containing Matrox Inc. Meteor II NTSC video capture cards. The two video streams (=camera outputs) were processed simultaneously using the two computers (one stream per computer).


Regions of each field that were in focus (“region of interest (ROI)”) were extracted and saved to “tif” files using a focus detection program written in C++. This step was conducted in real time as the video images were collected. The focus detection program interfaces with the Matrox Meteor II board using calls to the Mil-Lite software written by Matrox Inc. The incoming analog video stream first was digitized by the Meteor II frame grabber at field rates (i.e. 60 fields per second). Each field was digitized at 640 by 207 pixels, cropping out the lower portion of the field to remove the burned-in time code. The digitized image then was normalized for brightness and segmented (binarized) at a threshold (150) so that the pixels above the threshold were set to 255 and ones below the threshold were set to 0. The program then ran a connectivity routine that stepped through each scan line of the video field and to determine which of the “on” pixels (those having a value of 255) in the field were connected to each other. Once these clusters, termed “blobs”, were found, it was determined whether they were above the minimum size threshold, and if so, they were sent to the edge detection routine to determine the mean Sobel edge value of the blob. If the Sobel value was above the focus threshold, the region of interest (ROI) containing the blob was expanded by a specified constant and saved to the hard disk as a TIFF image using the time of capture as the name of the file. The digitized video, as well as the segmented image, Sobel sub-images, and final ROIs were all displayed on the computer monitor as processing took place. ROI files were saved in hourly subdirectories contained in Julian day directories.


Once a sufficient number of ROIs were written to hourly directories, a subset of the ROIs was copied to another directory for manual sorting of the images into taxa-specific folders using an image-sorting program (Compupic). Another program was run to extract the features and sizes from these sorted ROIs and set up the necessary files for training the neural network classifier. At this point, the training program was executed which built the neural network classifier. Once the classifier was built, the feature extraction and classification programs processed all the ROIs collected thus far.


These automatic identification results were written to taxa-specific directories containing hourly files, the latter comprising lists of times when individuals of a taxon were observed.


4.2.3.3.4 Plankton Abundance and Environmental Data


Plankton abundances coincident with the environmental data (e.g., pressure, temperature, fluorescence) were obtained by binning the times when specific plankton were observed into the time bins (4-second intervals) of the navigational and physical data from the environmental sensors. The number of animals observed during each 4-second interval was divided by the volume imaged during that period to produce a concentration at that time/depth in # of individuals/L. Size parameters for each individual and the mean size of individuals within each time interval were derived from parameters defined during the feature extraction procedure; area was used to describe particle size since it is relatively independent of orientation, unlike length, and can easily be converted to equivalent spherical diameter for comparison with other plankton size quantification instruments. These data were combined to produce comprehensive files of the environmental, plankton abundance, and plankton size data which then were utilized to produce curtain plots of environmental parameters (data mapped to a regular grid using the NCAR ZGRID routine) and dot plots or curtain plots of the plankton abundances. Plots of the environmental variables were produced in real time during the cruise.


4.2.3.3.5 Sampling


Video Plankton Recorder data were collected along the survey grid between CTD stations as the BIOMAPER-II was towyoed between depths of 20-30 m and 250 m or to within what was deemed a safe distance from the bottom and the under-ice surface. When in ice, the upper depths of the sampling range (30 m) were somewhat deeper than usually used with the BIOMAPER-II in order to avoid collisions between ice chunks and the vehicle. The ship steamed at 5 knots during the grid sampling.


Sampling in an ice covered sea produces multiple challenges, the most notable being the dangers associated with snagging the cable on ice floes in the wake of the ship and the ship coming to a halt to back and ram because of heavy ice conditions. Fortunately, the ice encountered during most of the cruise could be traversed easily by the ship, with ice chunks advected away from the wake and clear of the wire. The wire position was monitored closely using a dedicated video camera at all times when the ship was in ice. It was necessary to recover the BIOMAPER-II so that the ship could easily maneuver only in the deep snow covered ice of George VI sound.


4.2.3.4 Results


The quality of the video signals from both cameras was very high during the entire cruise. The quality of the images from the high magnification camera were quite good, being sharp and of high contrast. Many particles of marine snow were observed with the high magnification camera, perhaps because of the close alignment of the camera and strobe. For the low magnification camera, high quality images were obtained initially. During the 11th tow, the strobe lens apparently was dislodged, causing the strobe to be out of focus. The lens was re-affixed upon recovery of the BIOMAPER-II after the tow. However, the low magnification camera had gone out of alignment as well, either during the process of repairing the strobe or during the event which may have caused the strobe lens to dislodge (the BIOMAPER-II may have been subject to some shock force during several high tension jerks on the cable that occurred in heavy seas). The focal point of the low magnification camera had changed from midway between the strobe and camera tubes to within 2” of the face plate of the camera tube. The camera was removed from the tube and then lens discovered to be loose from the body. The camera was re-set, unfortunately using an f-stop of 5.6. This resulted in a much lower depth of field than the previous setting. The contrast of the images also was lower and very few objects were in focus. The camera settings again were adjusted following Tow 30, using an f-stop of f-8 and increasing the depth of field. These images were similar to those collected prior to the camera misalignment.


The abundance of invertebrates, including krill, was much reduced during this cruise than during the previous fall cruise (NBP0103, April-May 2001). This was evident both from the low abundances seen by the VPR and also from low abundances captured using the MOCNESS plankton net system. Regardless, it was remarkable how few krill were observed using the VPR. Furthermore, it appeared that when krill were present, the ROI extraction program did not capture krill images. This may have been because the krill were not within the imaged volume and out of focus or because the parameter settings were incorrect on the wrtvpr program. The parameter settings were set using the most common type of particle field, which for this cruise consisted of marine snow, algal mats, diatoms, radiolarians, and small copepods. Because of the high contrast, the Sobel setting was high for both cameras. Lowering the Sobel setting, and hence increasing the likelihood of capturing an image, resulted in the capture of many images of out-of-focus “ellipses”. The scant abundances of krill that were observed could not be used quantitatively to describe krill distributions because they were so rare. Hence, the more stringent Sobel settings were utilized to prevent the collection of even more out-of-focus images.


Overall, a high number of images were collected from both cameras. For example, over 62,000 images were collected during one eight hour tow that was conducted in an area with high marine snow and diatom abundance. This resulted in a storage problem. The number of ROIs easily overwhelmed the storage space available on the computers. Diligent backups of ROIs during the cruise permitted us to delete already backed up tows to make room for new images from subsequent tows. Because the BIOMAPER-II was in use for much of the cruise, and hence the computers were busy, it was difficult to accomplish much beyond disk space management during the cruise.


Images were transferred from the primary ROI collection computers to an additional computer for identification to be used to develop the classification algorithm. After the images were classified manually to taxa, they were transferred back to the primary computers where the feature extraction and classification development were conducted. For both cameras, this occurred late in the cruise when the computers were available for this activity.


Classification algorithms for both cameras were developed. For the low magnification camera, it was initially thought that three algorithms would be necessary, one for each of the camera setups. However, examination of the ROIs revealed that a single algorithm would suffice for both of the periods when the f-stop of the camera was set to f8 and that the images collected when the f-stop was set to f5.6 were so poor that it is doubtful whether they would be of any use, since so few were in focus. For the low magnification camera, a classifier that identified 5 taxa was developed. The taxa included copepods, algal mats, diatoms, radiolarians, and “fuzzy” (out of focus images). It was hoped that the “fuzzy” category would effectively eliminate out of focus images. Because larval krill are the target species of the Southern Ocean GLOBEC study, an effort was made to include this taxon in a classification algorithm. However, it was discovered that the algorithm incorrectly classified many images as larval krill. Larval krill simply were too rare to be included in the classification algorithms. Furthermore, the classification routine was unable to differentiate between diatoms and radiolarians, classifying all radiolarians as diatoms and producing no images classified as radiolarians. Hence, in practice, three taxa were identified for the low magnification camera: copepods, algal mats (including marine snow), and diatoms (including radiolarians). The accuracy of the classification of the training algorithms was 90.2%. The images from all tows when the camera was set to f8 (4-13, 31-63) were classified during the cruise.


Five taxa were utilized to develop the classification algorithm for the high magnification camera: algal mats, copepods, fuzzy, UIDstick, and marine snow. Based on experience from the low magnification camera, and also on the type of images, all stick like taxa (diatoms, radiolarians) were clumped into a single category of unidentified stick (UIDstick) since the classification algorithm would be unable to differentiate between these categories. The training classification accuracy was 84.3% and the algorithm did appear to differentiate between algal mats and marine snow. Because of the high number of ROIs extracted from each tow, classification is very time consuming. As many as 8000 ROIs were extracted per hour for some tows. Hence, it was impossible to complete the classification of images during the cruise and only images from Tows 4-24, 50, and 56-63 were classified.


4.2.3.4.1 Planktonic Taxa Observed with the VPR


Low abundances of plankton were observed in the study region during the cruise. In particular, low abundances of large copepods and larval krill were obtained. The reasons for this are not clear. Low abundances relative to the fall of 2001 were present based on the MOCNESS plankton net system collections. In particular, much lower abundances of larval krill were present than had been observed previously. The low abundances of krill in the video images may have resulted from several factors: 1) avoidance of the BIOMAPER by fast swimming krill, 2) low abundances of furcilia, which are smaller and weaker swimmers and hence less able to escape than larger krill, and 3) the abundance of krill and large copepods being less than the “critical” concentration at which the VPR samples effectively. There were some periods when the BIOMAPER-II was placed into depths of elevated backscatter intensity and during which krill were noted as appearing on the video monitors but were not extracted by the ROI extraction processor; these periods will be re-examined from the video tape to determine if the krill were present within the imaged volume and in fact in focus.


One of the marked distinctions of the cruise was the high numbers of algal mats that were observed early in the cruise in the northern portion of the survey grid. These algal mats appeared to be quite fresh and composed of diatom chains which had coalesced together into a “mat” or “nest” of cells. Single diatom chains also were observed. Another distinction was the observation of marine snow particles by the VPR; it is unlikely that marine snow was much more common, except for algal mats, during the present cruise than during previous cruises. The high abundance observed may have been a result of the alignment of the cameras relative to the strobe. Numerous small copepods also were observed, some with eggs (although not in sufficient densities to develop a separate category for copepods with eggs). Very few worms were observed and virtually no pteropods.


4.2.3.5 Discussion


4.2.3.5.1 Plankton Distributions


The most striking observation from the VPR, and also from MOCNESS and acoustic backscatter data, was that plankton abundances were lower in the water column at all locations across the Shelf and in Marguerite Bay than had been observed during the previous fall cruise. Plankton abundances were more similar to the abundances seen during winter 2001 than during the fall of 2001. The presence of large algal mats in the northern region of the grid at the beginning of the cruise also was striking.


A section of the second transect was re-sampled at the end of the cruise, allowing a comparison between the hydrographic and biological characteristics of the water column between the two times (April 16 and May 14, 2002; Figure 19). The temperature structure of the water column had evolved during the period. In April, winter water from the previous winter was observed as the band of low temperature water between 50-100 m extending across the section. Much warmer water also was present at ~ 69.6°W in the deepest part of the water column which resulted from an intrusion of warm, salty Antarctic Circumpolar Current water onto the shelf. A month later, the upper portion of the water column had cooled considerably because of seasonal cooling and winter water was absent. Warm water was present at depth at the western end of the transect (~70.4°W). Isolines (salinity and density not shown) shoaled upwards at the eastern end of the transect.


During April, elevated abundances of algal mats/marine snow were observed in and below the winter water, extending throughout the water column to depth. Greater abundances were observed offshore. By May, abundances of algal mats/marine snow were much reduced, being present in high abundances at only a few depths. Most striking was the change in the size (area, mm2) of the algal mat/marine snow


fig19_transectcomp.gifFigure 19. Temperature, plankton, and particle distributions from a section of survey transect #2 that was sampled twice at an interval of a month (April 16, May 14). The left column shows characteristics from the April 16 sampling; the right from the May 14 sampling. The upper three rows demonstrate sections of temperature, algal mat/marine snow concentration, and copepod concentration from across the transect as functions of longitude (horizontal) and depth (vertical). Temperature data were gridded to a uniform grid prior to plotting. For the plankton and particle distributions, each dot represents a longitude-depth location where individuals/particles were observed with the color of the dot representing the concentration of plankton/particles at that location. The towyo path of the instrument can of necessity be traced in these distributions. Note the scale change between April and May. The bottom row demonstrates the size frequency distribution of the area of algal mat/ marine snow particles for each sampling time.













































 particles. During April, the mean size was much greater with a wider range (mean=26.09, sd= 18.05 mm2) than during May (mean 4.37, sd 2.59 mm2). The particles observed in April were significantly larger than those observed in May (ANOVA, p<0.05). Based both on dimensions and visual observation of video images, the particles observed during May were mostly smaller, marine snow particles while those seen in April were large, algal mats. The high abundance of algal mats seen throughout the water column during April had settled to the benthos during the month intervening between the two sampling periods. Abundances of copepods were much greater during May than during April.


4.2.4 Water column hydrographic and environmental characteristics from the BIOMAPER-II ESS system (Carin Ashjian, Peter Wiebe)


4.2.4.1 Overview


The BIOMAPER-II was equipped with a CTD, fluorometer, and transmissometer (ESS; environmental sensing system) to describe the hydrographic and environmental characteristics of the water column that then will be related to plankton distributions and abundances. For the Video Plankton Recorder, which is mounted on the BIOMAPER-II, the environmental data are collected coincidentally in time and space with the plankton distributions. For the acoustic data, the hydrographic data are coincident only within the period of an up or down cast (10-45 minutes, depending on the water depth) and distance between casts (<1-2 km). The towyos of the BIOMAPER-II were more closely spaced than the standard stations at which the CTD casts were conducted and hence these data provide a higher resolution spatial description of the hydrographic features than obtained from the CTD casts.


Data were collected in two phases: A broad scale survey covering much of the region, but which missed several key locations because of equipment breakdown and the period after the broad scale survey during which these missed locations were surveyed, but much less synoptically. Because of temporal changes in hydrographic characteristics, especially the temperature in the upper water column, these later sampled data were not included in the plots presented in this report. The standard VPR group (Ashjian, Davis, Gallager) plotting software (developed in Matlab) was used to generate 3-dimensional plots of the environmental data.


The options underwater unit for the BIOMAPER-II ESS failed partway through the cruise and was replaced by the options unit from the MOCNESS plankton net system that also was on board in order to continue to obtain fluorescence and transmissivity data. The transmissometer frequently gave unrealistic values, perhaps because of condensation within the sensor or ice. Most transmissometer data must be treated with caution.


4.2.4.2 Distributional Patterns of Environmental Data


The survey data reveal that the water column was sharply stratified in both temperature and salinity throughout the study area (Figures 20 a, b) . The penetration of Upper Circumpolar Deep Water (warm, salty) onto the shelf is seen in the lower portions of the water column along the shelf break and in the northern region along the second transect from the north. This water extended quite far into Marguerite Bay in the deep trough that intersects the shelf. Note the diminished effect of UCDW across transects in the southern portion of the survey. Lowest salinity was found in coastal currents near the coast in Laubeuf Fjord (upper Marguerite Bay), in southern Marguerite Bay, off of Alexander Island, and near the


fig20a_b_tempsalcurt.gifFigure 20. Vertical and horizontal distributions of temperature (a), salinity (b), and fluorescence (c) from along the broad-scale survey. The towyo path of the BIOMAPER-II is overlain on the curtains as the thin white line and demonstrates the density of data utilized to produce the environmental grids. Fluorescence data the northern portion of Marguerite Bay is faulty because of the failure of the BIOMAPER-II options unit.














































fig20c_fluorcurt.gifFigure 20c. Vertical and horizontal distributions of fluorescence from along the broad-scale survey. The towyo path of the BIOMAPER-II is overlain on the curtains as the thin white line and demonstrates the density of data utilized to produce the environmental grids. Fluorescence data the northern portion of Marguerite Bay is faulty because of the failure of the BIOMAPER-II options unit.















































coast in the northeastern portion. Density patterns (not shown) were most similar to the distribution of salinity. Temperature in the upper 50 m demonstrated a temporal pattern, with seasonal cooling resulting in colder temperatures in the south (later) relative to the north (earlier).


Fluorescence values were very low throughout the region (Figure 20 c). Elevated fluorescence also was seen at the western/oceanic ends of the transects in the upper portion of the water column in the transects in the middle of the survey region and in Marguerite Bay. A diatom bloom, and the formation of algal mats, were observed across the northern transects and near the shelf break using the VPR and the distribution of fluorescence supports these observations. Greatest fluorescence was seen in the upper water column, associated with the remnants of the winter water above the thermocline.


4.2.5 Acknowledgments. The PI’s thank the other members of the BIOMAPER-II Group (Phil Alatalo, Mark Dennett, Phil Taisey, Amy Kukulya, Gaelin Rosenwaks, Andy Girard, and Peter Martin) for their tireless assistance in towyoing BIOMAPER-II and in keeping it running. A special thanks to Mark Dennett in helping to process the acoustics data. We also express our deep appreciation to the MTS who helped launch, recover, and repair the towed body on a number of occasions and to Johnny Pierce and his engine room crew for quickly effecting the repairs to the “garage” van electrical system after the fire.


4.3 ROV observations of juvenile krill distribution, abundance, and behavior (Philip Alatalo, Andrew Girard, Amy Kukulya, Gaelin Rosenwaks, Scott Gallager[PI not present on the cruise])


4.3.1 Objective


The seasonal accumulation of ice is an effective barrier preventing traditional methods of assessing organism populations associating with the underside of ice. Ice provides cover, a refuge from predators, and a substrate for potential food items for krill, particularly krill furcilia. The ROV is used to observe and quantify juvenile krill distributions, abundance, size structure, and behavior.


4.3.2 Methods


The Sea Rover ROV was equipped with a navigational pan/tilt color camera, compass and depth sensor. Mounted forward of the camera was a 43 cm horizontal bar with two black/white video cameras and a single strobe, which allowed stereo images of 1-m3 imaged volume. Additional sensors included a Microcat SBE-37 CTD, a DVL Navigator 1200 kHz ADCP, and an Imagenex 630 kHz-1mHz scanning sonar used to navigate. An upward-pointing light was installed to aid tether-tenders providing under-ice location information to the operator.


The ROV was deployed off the stern starboard quarter with the aft crane into leads created by the ship. Surveys were conducted into nearby ice for up to 60 m, though efficient handling of the vehicle warranted no more than 45 m of tether released into the water column. Unlike the previous cruise, no clump weight was used to anchor the tether. Under ideal conditions, the survey track line would radiate out from the ship, return, and radiate out at a slightly different bearing, thereby covering new territory each time. Approximately an hour was taken to conduct the survey.


Data collected included conductivity, temperature, depth, current/vehicle speed and direction, sonar, macroscopic video, and microscopic video of the underside of the ice surface. Observations of above-ice conditions and the overall survey track were noted. Video analysis in Woods Hole will entail estimation of furcilia density, patch size, swimming velocity, and behavior correlating with gradients in temperature, conductivity, and subsurface ice structure.


4.3.3 Results


ROV under-ice surveys were conducted at Stations 56, 58,76, 85, 88, 92, 28, and CS1 (Table 5). These stations constituted in-shore locations along Adelaide, Alexander, Rothschild, and Charcot Islands as well as a mid-shelf station on Grid Transect 12 (Figure21). Ice conditions varied from thin, small pancake to heavy pack ice with small bergs. Ice encountered in Marguerite Bay on the eastern side of Alexander Island was very thick, snow-covered, with some bergs submerged to 12m. At Station 56, large slabs and crevices were present underwater. The ice surface was smooth and no organisms were observed. Station 58 ice cover appeared similar to Station 56, but underwater rugged pieces of ice had more protrusions and appeared more eroded. Several krill furcilia were observed as singles or small groups. An amphipod and two ctenophores were also recorded. Station 76, west of Alexander Island and north of Rothschild Island was cut short due to a broken wire on the strobe. Despite the presence of crevices and contoured ice, no organisms were seen using the navigational camera. Station 85, directly east of Charcot Island provided wonderful footage of single and small groups of krill furcilia congregating amongst contours in the older ice. Thin, new ice bordering the older berg held far fewer furcilia. Video images were very clear, imaging the distinct motion of pleopods, the swimming appendages of krill. The mid-shelf station 88 provided consolidated pancake ice at the surface; the underwater surface was one continuous sheet of smooth ice. Only a few krill furcilia were observed in this deployment. Station 92 was our southern-most deployment. The ice pack here at the tip of Charcot Island was mixed: smooth pancake ice next to year-old floes approximately 2 m thick. Subsurface ice features were smooth with little structure. Krill furcilia appeared singly in association with older, more contoured ice. Station 28 (which was sampled with the ROV after the grid survey was completed) was located at the southwest end of Adelaide Island. Here we documented early krill furcilia colonization of very new pancake ice. Subsurface structure was limited to the down-turned edge of each pancake. Many furcilia were present as individuals and small groups, swimming directly below the smooth ice surface. Ctenophores and amphipods were also present. At the opposite end of Adelaide Island, dense swarms of adult and juvenile krill were documented in the deep water of Crystal Sound, but did not appear in mixed ice at the surface. Krill furcilia were also absent in this inshore station, suggesting that time or space scales are different for habitat utilization between larval and adult forms.


Table 5. ROV Deployment Positions NBP0202


ROV Station Latitude Longitude

1

56

69 deg. 09.56

69 deg. 14.02

2

58

68 deg. 53.26

69 deg. 55.92

3

76

69 deg. 11.17

72 deg. 46.38

4

85

69 deg. 32.58

74 deg. 25.43

5

88

69 deg. 00.62

76 deg. 21.88

6

92

69 deg. 31.79

76 deg. 48.49

7

28

67 deg. 45.90

69 deg. 48.49

8

CS1

66 deg. 31.18

67 deg. 40.67

fig21_rovposplot.gifFigure 21. Locations of the eight ROV under ice surveys for krill.















































We would like to gratefully acknowledge the able assistance of the bridge, MT's, and fellow watch-standers who helped deploy and recover Sea Rover.


4.4 Microplankton Studies (Philip Alatalo, Amy Kukulya, Scott Gallager[PI not present on the cruise])


4.4.1 Introduction


The objective of our study is to characterize microplankton populations from the western Antarctic peninsula and document their motility patterns. We are particularly interested in the distribution of pelagic ciliates and heterotrophic dinoflagellates in relation to horizontal and vertical gradients within the water column. While many ecosystems are well defined by the types of plants and animals that seasonally occur there, we hope to include microplankton in this characterization and to further extend this definition to include motility of microzooplankton. Similar studies at the GLOBEC site on Georges Bank, NW Atlantic, have demonstrated the potential importance of microplankton as prey for larval cod and haddock and preliminary experiments from the previous SO GLOBEC cruise NBP0104, show that krill furcilia are capable of consuming microplankton. Therefore the abundance and swimming behavior of such prey may be important in determining overwintering strategies of krill populations.


4.4.2 Methods


Samples were procured from 10-l Niskin bottles deployed at standard stations along the survey grid. Typically, samples were taken from three depths: surface, pycnocline, and bottom. Additional samples were taken in instances where subsurface features showed salinity, temperature, or fluorescence discontinuities. All samples were gently siphoned from the top of the Niskin bottle to avoid damaging fragile protozoans or algal colonies. At each depth two samples were taken: one for video filming and one preserved in 2 % Lugol's fixative. Based on motility or abundance observations, selected video samples were fixed in 1% formalin. These samples were stained with acridine orange or DAPI, filtered onto black micropore filters, and examined under the onboard Zeiss microscope. Video samples were transferred to a 250-ml filming flask and recorded using a Sony black and white video camera outfitted with a macro-lens. Light was provided with a microscope ring illuminator and the entire recording system was self-contained in a gimbaled frame to minimize motion from the ship. Temperature was kept constant at 2 deg. C. Recording was achieved using a Panasonic AG1980 SVHS video recorder. While recording a 2-3 minute sequence for later analysis, observations on abundance and motility of particles were made. Lugol's samples were kept cool and in the dark awaiting transport to Woods Hole. There they will be placed in settling chambers to be counted and identified. Video segments from each station will be converted into AVI files and processed. Particle size, abundance, velocity (speed/direction), net to gross displacement, and energy dissipation will be calculated and used to describe the microplankton community.


4.4.3 Preliminary Results


A total of 89 stations were sampled along the grid and at special locations following the grid transect. From these stations 304 separate video recordings and Lugol’s samples were made (see Appendix 7). An additional 32 samples were fixed in 1 % formalin for microscopic staining and identification. Notes taken during filming were used to determine the following observations.


First, particle abundance was generally greater at the surface than at other depths. However bottom samples were distinguished by often containing a great number of very small particles. Overall, concentrations of particles remained the same or decreased gradually over the survey, declining noticeably on the very last transect, #13. Inshore stations seemed to harbor small diatoms, ciliates, and flagellates, whereas larger diatoms such as Corethron and Chaetoceros convolutus seemed prevalent offshore and along the deep shelf waters. Large, slow-swimming ciliates appeared inshore at George VI sound and tintinnids appeared more frequently at the mouth of Marguerite Bay. Diversity of microplankton appeared quite high initially (Figure22) and declined as winter conditions set in.


The ciliate Mesodinium sp was present in nearly every surface sample. Offshore it was found as deep as 200m (Sta. 23, 68), but typically was found in the well mixed surface waters down to 50m. By survey transect #10, Mesodinium began to decline in abundance in shallow waters and by #11 was infrequent along the shelf. On transects 12 and 13, it was absent in offshore waters. Comparison with surface salinity data from the CTD will prove useful in determining any correlation with fresher water.


Motility of microzooplankton followed a general pattern of little activity along the shelf and highest activity at offshore and nearshore stations. Swimming activity was due most often to dinoflagellates, both heterotrophic and autotrophic. Ciliates were fewer in number and exhibited swimming behavior that most often was fairly fast and sinusoidal. Mesodinium, in contrast, hovers for a few seconds and then darts in a random direction approximately 2 mm. Tintinnids exhibited forward swimming followed immediately by backing up, changing direction, and swimming ahead. Large, lumbering ciliates displayed a much slower, less directed swimming pattern. Analysis of video tapes in Woods Hole will determine swimming velocity, net to gross displacement, energy dissipation, and size distribution of organisms. Examination of Lugol's samples will help identify the organisms exhibiting these swimming characteristics. Ice cover and hydrographic data from the cruise will help determine factors affecting the distribution of microplankton along the western peninsula during austral winter.


4.5 Phytoplankton Clones (Mark Dennett)


Water from the CTD at the surface and the bottom of the mixed layer was sequentially filtered for the development of eukaryotic clone libraries. Samples from stations within Marguerite Bay (36, 52, 55) and to the north (9) and south (83) of the Bay along the continental shelf were frozen and will be returned to Woods Hole Oceanographic Institution for amplification and further processing. These are some initial samples for methods testing in preparation for a return trip to the Antarctic in 2003. Along with samples collected on a previous cruise to the Ross Sea, we plan to construct various group and genus specific molecular probes for use in trying to better understand microbial community structure in this cold environment.


5.0 Material Properties Of Zooplankton (Dezhang Chu & Peter Wiebe)


5.1 Introduction


The material properties of zooplankton are very important parameters that are necessary to the interpretation of acoustic backscattering data from zooplankton. Antarctic krill, such as Euphausia superba, can be treated acoustically as weakly scattering fluid objects, which means that their bodies do not have or have negligible elastic properties. As a result, the sound speed contrast (h) and density


fig22_mzfig1.jpgFigure 22. Selected photographs of microzooplankton stained with Acridine Orange that were collected from the CTD casts on the NBP0202 Southern Ocean GLOBEC grid survey. A) Ciliate Protozoan, Sta. 37 (40X,35 um length). B) Corethron sp. Diatoms, Sta.48 (20X, 65 um length). C) Nauplius, Sta. 55 (40X, 50 um length). D) Tintinnid Ciliate, Sta. 37 (40X, 75 um length). E) Ciliate Protozoan, Sta. 37 (40X, 62 um length). F) Dinoflagellate, Sta. 55 (40X,50um width).













































contrast (g) of an individual relative to the surrounding seawater are the two dominant acoustic parameters of the material properties of the weakly scattering zooplankton. It has been shown that a few percent errors in these parameters could cause order of magnitude error in estimates of abundance and/or biomass of zooplankton (Chu et al., 2000 a,b). However, few measurements have ever been made of g and h for zooplankton and little is known about how they vary for any species with depth, season, or life stage. This project is focusing on obtaining such data for zooplankton, especially krill, in the SO GLOBEC study region.


5.2 Methods and Instruments

5.2.1 Sound speed contrast measurements


To conduct this type of measurements, a specially designed Acoustic Properties Of Plankton (APOP) instrument was used during the cruise. The system was modified from the original version in order to make a series measurements in one cast. The basic idea of the APOP is to measure the time difference for acoustic waves or sounds traveling directly from one acoustic transducer (the transmitter) to another transducer (the receiver) with and without animals in the acoustic path. If sound travels faster in animal bodies than in water, the travel time with animals present in the acoustic path will be shorter and vice versa. The ratio of the sound speed in animals to that in water is called sound speed contrast or h, and is an important parameter used in describing acoustic scattering by weakly scattering objects such as krill.


A dual-chamber acoustic apparatus was used in the modified APOP, with one being a primary acoustic chamber holding animals and seawater, and the other as a secondary or a reference chamber holding just seawaer that can provide information reflecting relative sound speed changes at different depths. Each acoustic chamber contains two identical broadband transducers with a center frequency around 500 kHz and a bandwidth of about 300 kHz. The two chambers were mounted next to each other in a stainless steel bucket-shaped container.


5.2.2 Density contrast measurements


Similar to the sound speed contrast, the density contrast or g, is another important parameter used in describing acoustic scattering by weakly scattering objects. It is defined as the ratio of the density of the animals to that of the surrounding water. To measure the density, or density contrast of the krill on board the ship, a motion compensated dual-density method was used. The ship motion was compensated by using an additional electric balance. Two identical electric balances (Ohaus, AP210) were mounted on the same table next to each other, with one as a primary balance and the other as a reference balance. The latter had a calibration mass on its weighing platform throughout the measurement. Since both balances underwent the same accelerations, the fluctuations of the weight readings from the two balances were supposed to be simultaneous. The output digital readings from the two balances were received by a computer through the serial links (RS 232) and then the actual weight of the object being weighted on the primary balance could be inferred or calculated. The relative accuracy of this motion compensated weighing system was better than 0.02%.


5.3 Data Collection and Preliminary Results

5.3.1 Data collection


The main focus of the material property measurements on krill during this cruise was to use live animals. To catch live krill as well as other live zooplankton, a 1 m diameter “Reeve” net was used, with a mesh size of 333 microns. The codend bucket of the Reeve net is much larger than those of MOCNESS, more than 4 times larger in volume. The krill that we caught were almost exclusively Euphausia superba. Other than krill, animals that were caught with Reeve net were copepods, mostly Calanus sp., amphipods (Parathemisto sp.), and diatoms (Table 6).


Table 6. Summary of Reeve Net Tows.


Cast #

Date

Station #

Cast Depth (m)

Catch

1

4-15-2002

4

300

diatoms

2

4-15-2002

7

100

a few adult and juvenile krill

3

4-15-2002

7

100

more than 30 adult and 70 juvenile krill

4

4-17-2002

11

400

diatoms

5

4-18-2002

17

350

a few juvenile krill

6

4-22-2002

29

165

a dozen adult and a number of juvenile krill

7

4-22-2002

34

150

about 10 adult and a few juvenile krill

8

4-25-2002

44

60

diatoms, copepods

9

4-27-2002

50

360

more than 100 amphipods and thousands of copepods

10

5-07-2002

82

435

lots of copepods, a few juvenile krill

11

5-09-2002

41

375

copepods

12

5-15-2002

 

100

more than 200 juvenile, sub-adult, and adult krill


In addition to the animals we collected using the Reeve net, the group studying krill ecology and physiology lead by Dr. Kendra Daly on the L.M. Gould was willing to spare some of their live animals without interfering with their experiments. Through the two rendezvous with the Gould on April 23 and April 30, Kendra generously provided a large number of live krill (more than 200, E. superba and E. crystallorophias) and other zooplankton (mysids, amphipods, and copepods), as well as about 25 different sized fish (Pleuragramma) for use in the material properties experiments.


The APOP casts were all made from the surface to 205 m depth, except for the one on May 5 at station 77, where the water depth was only 180 m. The measurements were made at 20 m interval from 5 m to 205 m during both down and up casts. A total of 18 APOP casts were made. There were 16 casts with animals inside the APOP acoustic chambers (Table 7), including 10 with E. superba, two with E. crytallorophias, and two with copepods (Calanus). There were also two calibration casts made at the end of the cruise and two test casts made at the beginning of the cruise. The density contrast measurements were always conducted right after a sound speed measurement was made either on shipboard or during an APOP cast. The dual-density method was used throughout the cruise, except for one measurement of fish (Pleuragramma) where a displacement volume method was used instead.


5.3.2 Preliminary Results


There were total of 16 APOP casts, measuring the sound speed contrast of zooplankton, and corresponding density contrast measurements, as well as a number of shipboard measurements (Table 7).


One of the primary objectives of our project during this cruise was to study the temperature and pressure (depth) dependence of sound speed contrast of krill. The target species was E. superba and it was used in 10 out of 14 casts. The size range of the animals used in the casts varied from about 20 mm to 57 mm ( as measured from anterior to the eyeball to the tip of telson), which covered life stages from juvenile to sub-adult, and to the adult. We also made two APOP casts on another krill species, E. crystallorophias, whose minimum size was smaller than E. superba (Everson, 2000). The size distribution of the E. crystallorophias used in the two casts varied from 21 mm to 38 mm, with a mean size of 32 mm and a standard deviation of 3 mm, a much narrower distribution than that of E. superba.


There was no statistically significant depth dependence observed from the data sets involving E. superba, but there was a mild depth-dependence in sound speed contrast for E. crystallorophias, in which the sound speed contrasts were maximal at around 85 m and 105 m for the two casts, respectively.


For density contrast, all measurements were made in the ship lab. The mean density of 13 measurements made on krill E. superba was 1.025, with a standard deviation of 0.008. However, the density contrasts of E. crystallorophias from two measurements were 1.009 and 1.000, respectively, and were significantly smaller than the mean value of E. superba. Both the density and sound speed contrasts of the two krill species were relatively small compared with those of decapod shrimp (Palaemonetes vulgaris), whose sound speed and density contrasts are almost always greater than 1.04 (Chu et al., 2000a, b).


Although there were no statistically significant differences in measured sound speed and density contrasts between the freshly caught animals and those kept alive in aquariums for a longer time, there were slight size dependences observed from the data. Linear regressions showed that the density and sound speed contrasts had gradients of 5.485e-4 and 5.942e-4, respectively (Figure 23). This means that the difference of the target strength between a juvenile krill of size 27 mm and an adult krill of size 54 mm would be about 5 dB more than that resulting purely from size difference (6 dB in this case).


5.3.3 Calibration


 Two APOP calibration casts were performed towards the end of the cruise on May 12 and May 15. The first one was conducted in the mouth of Marguerite Bay between Alexander Island and Adelaide Island and the second one was conducted in Crystal Sound. The objective of the calibration was to compare the differences in travel times between the two sets of transducer pairs that make up the APOP system. As noted above, one set of transducers is used for the primary acoustic chamber, which is filled with animals during a normal cast, and the other pair is in the reference chamber, which is kept empty during a cast. However, during the calibration casts, the compartments of both chambers were empty. The two calibrations casts gave the consistent results and will be incorporated in the later data processing.


5.3.4. References


Everson, I. (ed.), 2000. Krill, Biology, Ecology, and Fisheries. Blackwell Science Ltd., MA, USA.

fig23_fig1_gh_l.gifFigure 23. Sound speed and density contrasts of krill as a function of the length of the krill. (a) Sound speed contrast as a function of length. (b) Density contrast as a function of length.

Chu, D., P.H. Wiebe , and N. Copley, 2000a. “Inference of material properties of zooplankton from acoustic and resistivity measurements,” ICES J. Mar. Sci., 57:1128-1142.


Chu, D., P.H. Wiebe, T.K. Stanton, T.R. Hammar, K.W. Doherty, N.J. Copley, J. Zhang, D.B. Reeder, and M.C. Benfield, 2000b. "Measurements of the material properties of live marine organisms," Proceedings of the OCEANS 2000 MTS/IEEE International Symposium, Sept. 11-14, 2000, Providence, RI, Vol. 3, pp 1963-1967.







































Table 7. Summary of Material Property Measurements on Zooplankton and Fish


Date

Station

Task

Animal

<L> (mm)

g

h

4-16-2002

 

shipboard

E. superba

50.9

1.026

-

4-17-2002

12

APOP cast 3

E. superba

51.9

1.029

1.024

4-19-2002

21

APOP cast 4

E. superba

26.9

1.007

1.018

4-23-2002

 

shipboard

Pleuragramma

antarticum

60-70

1.018

1.017

4-23-2002

 

shipboard

Pleuragramma

antarticum

69

1.007

1.013

4-23-2002

 

shipboard

Eusirus sp.

47.9

-

1.096

4-23-2002

36

APOP cast 5

E. superba

43.2

1.027

1.022

4-24-2002

 

shipboard

Eusirus sp.

47.9

1.051

1.038

4-24-2002

41

APOP cast 6

E. superba

50.4

1.026

1.037

4-25-2002

 

shipboard

Mysid arctomysis

50.4

1.041

1.077

4-26-2002

 

shipboard

Mysid arctomysis

48.3

1.024

1.078

4-26-2002

 

shipboard

E. superba

36.6

1.027

1.048

4-27-2002

47

APOP cast 7

E. superba

34.9

1.027

1.020

4-28-2002

 

shipboard

Parathemisto sp.

19.2

1.042

0.949

4-28-2002

54

APOP cast 8

E. superba

52.7

1.026

1.040

4-29-2002

 

shipboard

E. superba

25.4

1.023

1.032

4-29-2002

55-56

APOP cast 9

E. crystallorophias

32.3

1.009

1.025

5-01-2002

 

shipboard

E. superba

50.5

1.036

1.039

5-01-2002

62

APOP cast 10

E. superba

50.5

1.036

1.044

5-02-2002

 

shipboard

Calanus sp.

4.1

0.995

0.959

5-02-2002

66

APOP cast 11

Calanus sp.

4.1

0.995

0.949

5-03-2002

 

shipboard

E. crystallorophias

31.7

1.000

1.026

5-03-2002

71

APOP cast 12

E. crystallorophias

31.7

1.000

1.030

5-04-2002

 

shipboard

E. superba

34.3

-

1.021

5-04-2002

74

APOP cast 13

E. superba

34.3

-

1.020

5-05-2002

 

shipboard

E. superba

28.1

1.022

1.028

5-05-2002

77

APOP cast 14

E. superba

28.1

1.022

1.024

5-07-2002

 

shipboard

Calanus sp.

3.2

0.996

1.012

5-07-2002

84

APOP cast 15

Calanus sp.

3.2

0.996

1.023

5-15-2002

Crystal Sound

shipboard

E. superba

27.1

1.017

1.034

5-15-2002

Crystal Sound

APOP cast 17

E. superba

27.1

1.017

1.030


6.0 Seabird and Crabeater Seal Distribution in the Marguerite Bay Area During NBP0202 (Christine Ribic [PI not present on cruise], Erik Chapman, Matthew Becker)


6.1 Introduction


The association of seabirds with physical oceanographic features has had a long history. For example, seabirds have been found to be associated with temperature, water masses, currents, and the ice pack. Evidence for the association of seabirds with biological features has not been as strong. Veit (Veit, Silverman & Everson 1993), working during the breeding season at South Georgia, was not able to find a small-scale association of seabird distributions and krill patches. Only at a very large scale was there some evidence that there were more seabirds in the vicinity of krill patches than elsewhere. This may be due to the patchiness of the krill and the inability of seabirds to track these patches at small scales. Therefore, in the Antarctic system, seabirds may associate with physical features that have a higher probability of containing krill than associating with krill patches directly. The primary objective of the seabird project is to determine the distribution of seabirds in the Marguerite Bay area and to investigate their associations with physical and biological features. A second objective is to determine the foraging ecology of the seabirds in that area.


Because the SO GLOBEC cruises take place during the non-breeding season when birds will not be closely tied to nesting areas, we hypothesize that ability to detect enhanced food resources will be the driving factor determining seabird distributions.


We will be developing and testing competing models using existing knowledge of the marine system and Antarctic seabird biology. Models will be developed separately for each species or group of species based on their foraging ecology. We will be using seabird distribution and foraging ecology data that we collect along with data collected concurrently by physical and biological oceanographers to test these models.


6.2 Methods


Seabird distribution within the SO GLOBEC study area was investigated using daytime and nighttime (using night vision viewers) survey work, and foraging ecology of the Adelie Penguins was investigated through diet sampling. Nighttime surveys were designed to increase survey coverage of the study area when extended time on station and short days limited daylight survey time. During this cruise, Crabeater Seals (Lobodon carcinophagus) were observed in sufficient numbers to comment on their abundance throughout the study area. Diet sampling efforts are used to complement an Adelie Penguin (Pygoscelis adeliae) foraging ecology study being carried out by Dr. William F. Fraser on the RV Laurence M. Gould during the SO GLOBEC cruises. Surface tows, using a 1-m diameter ring-net, were carried out at CTD stations in order to sample prey available to seabirds throughout the study grid. A review of daytime surveys, diet sampling, and surface-tow effort and results are outlined separately below.


6.3 Daytime Surveys

6.3.1 Methods


Strip transects were conducted simultaneously at 300 m and 600 m widths for birds. Surveys were conducted continuously while the ship was underway within the study area and when visibility was > 300 m. For strip transects, two observers continuously scanned a 90o area extending the transect distance (300 m and 600 m) to the side and forward along the transect line. Binoculars of 10X and 7X magnification were used to confirm species identifications. The 7X pair of binoculars also included a laser range finder. Ship following birds were noted at first occurrence in the survey transect. Ship followers will be down-weighted in the analyses because these individuals may have been attracted to the ship from habitats at a distance from the ship. For each sighting, the transect (300 m or 600 m), species, number of birds, behavior, flight direction, and any association with visible physical features, such as ice, were recorded. Distances were measured either by a range finder device as suggested by Heinneman or by the laser distance finder (when in the ice). Marine mammal sightings within the 600 m transect were also recorded. Primary ice-type and concentration within 800 m of the ship were also recorded and updated as they changed.


Surveys were conducted from an outside observation post located on the port bridge wing of the R/V NB Palmer. When it was not feasible to conduct surveys from this observation post, we surveyed from the inside port bridge wing.


6.3.2 Data Collected

             Survey Locations: See Figure 24a.

             Total Survey Time: 117 hours, 21 minutes

             Distance Covered (km): 962.6

             Boat Speed (knots): 4.9 (1.2 SD)

             True Wind Speed (m/sec): 7.2 (3.1 SD)


6.3.3 Preliminary Results

6.3.3.1 Ice Condition


Ice conditions in the study area presented an interesting contrast between those of the first two SO GLOBEC cruises last year. During the first cruise, virtually the entire study area was ice-free, and during the second cruise it was mainly ice-covered. During this cruise, just the southern third of the study grid was covered in ice. The sea-ice appeared to be of two types; one-year-old ice separated by new ice types, and continuous new ice types. One-year-old ice covered 7 to 8/10ths of the ocean surface in George VI Sound. This ice extended to the northern tip of Alexander Island and then continued south, close to shore along the western shore of the island. Cold, still weather contributed to a large amount of new ice development during the cruise. By the time the ship reached the southern portion of the grid, combinations of new gray, new white, nilas, pancake and grease ice covered 8 to 10/10ths of the ocean surface. This new ice coverage was consistently observed on the 4 southern-most grid lines. New ice was also forming along the southwestern edge of Adelaide Island. Ice coverage during each survey is indicated in Figure 24a.


6.3.3.2 Birds


Overall, 2598 birds from 16 species were observed during the cruise. This is more birds and species than were observed during slightly less transect length during the previous two SO GLOBEC cruises (1771 birds from 13 species during SO GLOBEC I, and 895 birds from 6 species during SO GLOBEC II). Snow Petrels were the most abundant species, followed by Cape Petrels, Southern Fulmars and Antarctic Petrels. Overall observations during SO GLOBEC III are listed in Appendix 8.


Ice, as was observed during the first two SO GLOBEC cruises, appeared to be an important habitat variable that structures the seabird assemblage in the study area. In the northern, ice-free portion of the study area species known to forage in open-water habitat, such as Cape Petrel, Southern Fulmar, Albatross spp., Wilson’s Storm Petrel and Blue Petrel, were observed. A map interpolating open water


figure24.gifFigure 24. a) Location of daytime surveys during NBP0202. The color of the survey line corresponds to ice concentration during each transect. b) Open water species (Southern Fulmar, Cape Petrel, Blue Petrel, Gray-headed Albatross, Wilson’s Storm Petrel) abundance in the SO GLOBEC study area during NBP0202. Observation data were interpolated spatially from mid-points of survey transects. They were classified by standard deviations from the mean and darker shades are above the mean and lighter shades below the mean. Ship-followers and birds attracted to the ship were down-weighted by 0.2 before being summarized for each survey transect. The color of the survey line corresponds to ice concentration during each transect.














































species abundance from surveys across the study grid is presented in Figure 24b. Within the open water there appeared to be a concentration of open water species offshore and adjacent to the northern end of Adelaide Island, perhaps in association with the intrusion of Antarctic Circumpolar Deep Water observed by physical oceanographers during this cruise. Open water species also appeared to be concentrated near shore along the southwestern shore of Adelaide Island.


In the southern third of the study area where sea ice was present, Snow Petrels were the dominant species observed. A map interpolating Snow Petrel abundance from surveys across the study grid is presented in Figure 25a. These results were expected, as Snow Petrels are typically associated with ice cover, feeding at the interface between ice and open water. Within the sea-ice during this study, it appears that Snow Petrel abundance was highest in association with new ice at the interface between the developing pack ice and open water.


In the coming months, as data from other research groups on this cruise becomes available, we will be testing hypotheses that predict abundance of seabirds based on additional physical (including sea ice) and biological variables.


6.3.3.3 Adelie Penguin (Pygoscelis adeliae)


During the fall cruise last year, no Adelie Penguins were observed on the grid while during the winter cruise, Adelies were observed in small numbers throughout the pack in association with leads. During this cruise, Adelies were once again observed in pack ice, mainly in 7 to 8/10ths coverage where one-year-old ice as the primary ice-type in George VI Sound and along the westshore of Alexander Island. A map interpolating Adelie Penguin abundance from surveys across the study grid is presented in Figure 25b. Adelies were not observed in open water, or in association with ice-bergs and floes in any other area within the grid. Extrapolating the density of birds observed in the pack ice to the amount of area with one-year-old ice in the grid estimated that 17,000 Adelies were using this ice coverage in the study area. While this is a significant number of birds, it is a low number relative to the number of breeding birds in Marguerite Bay and the areas further north on the Antarctic Peninsula which number in the hundreds of thousands.


Off the grid, bird researchers on the L.M. Gould saw 80 birds on Avian Island on the southern shore of Adelaide Island. This island has 60,000 breeding pairs during the summer and these observations clearly indicate that the majority of the Adelies breeding here have moved elsewhere. However, observations made during diet sampling north of Adelaide Island in Crystal Sound, suggest that a significant number of birds may be using that area, rather than the region encompassed within the study grid. Groups of between 10 and 100 Adelies were observed porpoising in the water and resting on ice or land throughout the four hour period that we were in this area. The number of penguins in the immediate vicinity was estimated to be in the hundreds, possibly into the thousands. These observations are discussed in more detail in the general discussion section below.


6.3.3.4 Crabeater Seals (Lobodon carcinophagus)


The distribution of Crabeater Seals within the study grid are presented in Figure 26a. Crabeater Seals were concentrated north and along the western shore of Alexander Island and along the southwestern shore of Adelaide Island. The area near Alexander Island is the same region that Crabeater Seals were


figure25.gifFigure 25. A) Snow Petrel abundance in the SO GLOBEC study area during NBP0202. Observation data were interpolated spatially from mid-points of survey transects. They were classified by standard deviations from the mean and darker shades are above the mean and lighter shades below the mean. Ship-followers and birds attracted to the ship were down-weighted by 0.2 before being summarized for each survey transect. The color of the survey line corresponds to ice concentration during each transect. B) Adelie Penguin abundance in the SO GLOBEC study area during NBP0202. Observation data were interpolated spatially from mid-points of survey transects. They were classified by standard deviations from the mean and darker shades are above the mean and lighter shades below the mean. The color of the survey line corresponds to ice concentration during each transect.















































figure26.gifFigure 26. a) Crabeater Seal abundance in the SO GLOBEC study area during NBP0202. Observation data were interpolated spatially from mid-points of survey transects. They were classified by standard deviations from the mean and darker shades are above the mean and lighter shades below the mean. The color of the survey line corresponds to ice concentration during each transect. b) Location of the Adelie diet sampling at the Barcroft Islands on May 15, 2002, during NBP0202.













































 observed in high abundance during the fall cruise (SO GLOBEC I) last year. These seals may be associated with the concentration of krill observed by BIOMAPER-II in the deep canyons along the western shore of Adelaide during both of these cruises.


6.3.4 Diet Sampling


6.3.4.1.Methods


During SO GLOBEC cruises, we opportunistically diet sampled from the R/V N.B. Palmer according to protocols used by Dr. William R. Fraser. Dr. Fraser was diet sampling concurrently from the R/V L.M. Gould. We used the water off-loading technique in which birds are netted and their stomachs pumped using a small water pump. This technique is used extensively in seabird research in Antarctica [Antarctic Marine Ecosystem Research in the Ice Edge Zone (AMERIEZ), Antarctic Marine Living Resources Program (AMLR), Polar Oceans Research Group] and is preferable to methods that involve killing birds.


6.3.4.2 Data Collected


Fourteen Adelie Penguins were diet sampled from 5 distinct groups of birds in the Barcroft Islands (66 25' S; 67 10' W), south of Watkins Island and north of Adelaide Island (Figure 26b). Digested stomach contents that were not identifiable were separated from fresh contents. Fresh contents were further separated into krill, amphipod and fish components. Krill were identified to species and measured according to standard krill body-size measuring protocols.


After leaving the N.B. Palmer at 11:30 local time, birds were observed hauling out on small rock islands in the area beginning at 11:45. Adelies were captured, sampled and released throughout the afternoon until low light conditions concluded work at approximately 15:00. Body weights, sex, and stomach contents are reported in Appendix 9.


6.3.4.3 Preliminary Results


All birds sampled had fresh stomach contents that were easily identifiable, indicating that they had recently returned from foraging. Many of the birds had returned by 12:00 and were probably only foraging for 3 to 4 hours prior to sampling.


Overall, the Adelie diets were 63% Euphausia superba, 12% amphipods and 3% fish. Otoliths were collected from 5 of the 6 samples with fish parts. This is a distinct difference from Adelie stomach contents during the breeding season at Anvers Island that rarely contain components other than krill. The presence of relatively large amounts of amphipods is particularly unusual.


Body weights from the 8 male and 6 female penguins were high relative to summer weights and were an average of 4875 grams. These relatively heavy weights are indicators of excellent condition and could indicate preparation for a period of limited prey availability later in the winter.


6.3.5 Surface Net Tows

6.3.5.1 Introduction


Surface net tows were added to the research agenda this cruise in order to complement the physical and biological oceanographic data used for analysis of the seabird surveys. Near-surface resolution of prey species by BIOMAPER II is difficult, and thus net tows provided an additional means to help determine what types of prey seabirds could be feeding on at, or near, the ocean’s surface.


6.3.5.2 Methods


Surface net tows were conducted using a 1-m diameter (0.79 m2) ring net with 333 micron mesh. The net was lowered to a depth of approximately 60 m in the water column (while this is considerably deeper than any birds aside from penguins would be able to forage, it compensated for any vertical prey migrations that might be occurring) at an average rate of 30 m/min, then brought up at 10m/min. A general analysis of the sample composition was then made before preserving it in formalin. Tows were usually performed in the morning or evening periods in order to maximize the few hours of daylight available for surveying. Tows did not occur in heavy ice transects or at stations with MOCNESS tows.


6.3.5.3 Data Collected/Preliminary Results


A total of 22 samples were collected from 22 stations over the course of the grid (Figure 27). Results are summarized in Appendix 10. No extensive analysis of both the sample composition and correlations with seabird survey results will be able to be conducted prior to the conclusion of this cruise; however preliminary results were promising enough that surface net tows will be continued on SO GLOBEC IV.


6.3.6 General Discussion


The most significant finding during this cruise may have been the large numbers of Adelie Penguins observed during diet sampling work in Crystal Sound. There are 17 breeding colonies with a total of 1600 pairs where the diet sampling was conducted in the Barcroft Islands. In addition, BIOMAPER-II, MOCNESS tows, and incidental observations from krill biologists on the L.M. Gould both last year and this year suggest that Crystal Sound has relatively large krill stocks at this time of year.


Adelies appear to have plenty of food and places to haul out in this area, and both the large numbers of birds and the large body sizes of the sampled birds suggest that this portion of the sound may represent a habitat optimum for the species at this time of year. Findings from Crabeater Seal research during SO GLOBEC also suggests that Crystal Sound may also have high Crabeater Seal abundance.


The Crystal Sound region provides an opportunity to further examine the physical and biological processes that are driving a system that appears to be attracting both seals and penguins. Because the interrelationship between physical and biological processes is the central focus of SO GLOBEC research, this area deserves attention in future research plans. Though it is possible that the same processes that existed during this time of year will have shifted with the development of sea-ice coverage later in the winter, it would be interesting to see if this area provides consistent habitat for Adelie Penguins throughout the winter survey and diet sampling work in this area is essential to assess the consistency with which penguins are utilizing Crystal Sound during the fall and winter months.



figure27.gifFigure 27. Location of 22 1-m diameter ring net surface tows during NBP0202. Blue circles indicate surface tows where no diatoms were not found and green circles indicate where diatoms were found. These data will eventually be used along with MOCNESS surface net data to look for spatial differences in species composition and abundance of plankton at the surface. MOCNESS tow locations are indicated by black triangles.





































6.3.7 References


Veit, R.R., Silverman, E.D. & Everson, I. (1993) Aggregation patterns of pelagic predators and their principle prey, Antarctic Krill, near South Georgia. Journal of Animal Ecology, 62, 551-564.


6.3.8 Acknowledgments:


We would like to thank Captain Joe and all the ship’s mates for welcoming us on the bridge and putting up with the bird box on the port bridge wing during the cruise. We are particularly appreciative of the assistance of Gaelin Rosenwaks, Carin Ashjian, Ana Sirovic, Jenny White, and Steve Tarrant with the surface net tows. We would also like to thank Peter Wiebe and the other researchers on the ship for helping to schedule their work during the evenings so that we could survey for longer periods during the limited daylight available to us. Without that effort, our work would be seriously compromised.


7.0 International Whaling Commission Cetacean Visual Survey

(Debra Glasgow)


7.1 Introduction


Recently the International Whaling Commission (IWC) developed proposals for collaborative work in the Southern Ocean with the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and the International Global Ocean Ecosystem Dynamics (GLOBEC) program under the IWC Southern Ocean Whale Ecosystem Research (SOWER) program. This research program has the long term aim to “...define how spatial and temporal variability in the physical and biological environment influence cetacean species in order to determine those processes in the marine ecosystem which best predict long term changes in cetacean distribution, abundance, stock structure, extent and timing of migrations and fitness.”


This objective is being pursued through collaboration with GLOBEC and CCAMLR using a multidisciplinary ecosystem approach to data collection, analysis, and modeling. The IWC also recognizes that it lacks the data to determine baseline patterns of distribution (and the biological and physical processes responsible for such patterns) of baleen whales from which to judge the potential effects of climate change. Therefore, three further objectives have been defined by the Commission. They are: to characterise foraging behaviour and movements of individual baleen whales in relation to prey characteristics and physical environment, to relate distribution, abundance and biomass of baleen whales species to same for krill in a large area in a single season, and to monitor interannual variability in whale distribution and abundance in relation to physical environment and prey characteristics.


SO GLOBEC studies provide the ideal platform for such long term studies, where scientists from a range of disciplines can conduct intensive focused studies, within the framework of long term data synthesis and planning. Given the shared objectives among the IWC, GLOBEC and CCAMLR, the IWC has determined that the most effective means of investigating these ecological issues is to focus a considerable body of cetacean research within the framework provided by these programs (taken from D.Thiele).


The first of the 'Predator Science Questions' in SO GLOBEC has been formulated as: How does winter distribution and foraging ecology of top predators relate to the distribution and characteristics of the physical environment and prey (krill) (taken from J.A. van Franeker).


7.2 Methods


Standard IWC methodology for multi-disciplinary studies is being used throughout all GLOBEC collaborative cruises. This involves experienced cetacean researchers conducting line transect sighting surveys throughout daylight hours in acceptable weather conditions. Data are recorded on a laptop based tracking program (Wincruz), and photo and video records are also obtained for species identification, group size verification, feeding (and other behavior), ice habitat and individual identification (taken from D.Thiele).


During this cruise, observations were made from the ice tower by a single observer (Debra Glasgow). When conditions permitted, the observer was outside along the cat- walk of the ice tower, otherwise observations were made from the inside. Effort was focused 45o to port and starboard of the bow ahead of the vessel, while also scanning to cover the full 180o ahead of the vessel. In ice, the method was adjusted to include searching behind in the vessel's wake as well, in order that cetaceans and seals hidden by ice would be detected more readily. The observer used a combination of eye and binocular searching (7x50 Fujinon). Effort would commence when the following conditions allowed: appropriate daylight, winds less than 20 knots or Beaufort sea state less than 5-6, visibility greater than 1 nautical mile (measured by the distance a minke whale blow could be seen with the naked eye as judged by the observer) and the ship actually steaming. An Incidental watch was kept in borderline conditions or in variable visibility such as fog and snow squalls. Subjective weather data was recorded to keep track of the changing conditions e.g. Beaufort sea state, cloud cover, glare, ice, sight ability etc.


Sightings were recorded on a laptop based Wincruz Antarctic program which also logged GPS position, course, ship speed, and a suite of other environmental and sightings conditions automatically. Visual observations were made both during the station-transect portion of the trip, as well as during transit. When possible, photographic and/or video documentation was made of each sighting for later use in individual identification, species confirmation, and habitat description.


7.3 Results


Generally, sighting conditions were poor, particularly during the first half of the cruise. The appropriate combination of environmental and ship conditions were not conducive to good sighting conditions. Yet 183 hours and 34 minutes of “On Effort” and “Incidental” survey effort were made during the entire cruise.


A total of 54 cetacean sightings of 112 animals were made (Appendix 12, Figure 28). These include 21 sightings of 49 humpback whales, Megaptera novaengliae and 10 sightings of 25 'like' humpback whales (Figure 29A); 5 sightings of 7 minke whales, Baleanoptera acutorostrata and 3 sightings of 3 'like' minke (Figure 29B); 2 sightings of 7 killer whales, Orcinus orca (Figure 29C); 1 sighting of 1 Commerson's dolphin, Cephalorhynchus commersonii; 2 sightings of 4 unidentified dolphins; 8 sightings of 12 various unidentified whales (Figure 29D); 1 sighting of a 'like' blue whale, Baleanoptera musculus (Figure 29E).


fig28_allwhalesightings.gifFigure 28. Distribution of Cetacean sightings on NBP0202 (See Appendix 12 for more details).













































fig29_mammal_sightings.gifFigure 29. Distribution of selected whales species sightings

Photo identification photos/video were obtained from at least six groups of humpbacks (WOS#10,13,19,20,50,52) and digital images of habitat, sea and ice conditions were taken. On 17 May 2002, as we steamed through Gerlache Strait, some ship time was made available to obtain ID photographs. One group of 3 humpback whales (WOS#52) was extremely cooperative - swimming to the ship and remaining within 10 to 30 metres of the vessel for over half an hour, even following the ship briefly as we left, allowing good images to be taken (Figure 30).


On 17 April 2002 a 'like' blue whale body was sighted underwater to port, swimming away from the vessel and Ana Sirovic was recording good blue whale sound from a sonobuoy at that time.


7.4 Preliminary Findings/Discussion


Sightings data from this cruise show mainly humpback (Megaptera baleanoptera), minke (Baleanoptera acutorostrata), and killer whales (Orcinus orca) present in the study region in the austral fall and beginning of this winter.


Correlation of cetacean distributions with concurrent hydrographic distributions show whales associated with: 1) the southern boundary of the Antarctic Circumpolar Current, 2) the frontal boundary between intrusions of warm Upper Circumpolar Deep Water and continental shelf water, and 3) the frontal boundary between inner shelf coastal current and continental shelf waters (E.Hoffman pers. Comm).


Humpback sightings were particularly numerous along the mid shelf area just outside Marguerite Bay, along the continental shelf and near the frontal boundary formed as the coastal current exits the Bay. There was also a group of humpbacks near the ice edge off Alexander Island associated with a patch of krill recorded by the BIOMAPER-II team. Minke sightings were more widespread, but seemed to be associated closer to the ice edge and to the coastal frontal boundaries. Killer whales were seen within the ice edge on both occasions in areas where large numbers of seals were recorded.


The correspondence between the cetacean sightings and hydrographic features suggests that the austral fall/winter distribution of cetaceans along the west Antarctic Peninsula is not random, but rather is determined by the structure of the physical environment, which in turn determines prey distribution. Continued analyses and collection of sightings data in conjunction with concurrent prey and hydrographic distributions will allow determination of the causal relationships underlying austral fall/winter cetacean distributions in the Antarctic Peninsular region (D.Thiele).


7.4 Acknowledgments


Thanks must go to the Captain and crew of the N. B. Palmer, the cruise leader - Peter Wiebe, and to the scientists and support staff on board for their expert help and friendship. Thanks also to the bird observers Erik Chapman and Matt Becker for extra help in gathering data and to Suzanne O'Hara for mapping work.



fig30_whalecomposite.gifFigure 30. Digital images of whales taken on NBP0202. A) Humpback dorsal fins #1 & #2 - WOS#52, 17 May 2002 (Photo by Kristin Cobb). B) Dorsal fin of Humpback whale #3 - WOS#52, 17 May 2002 (Photo by K. Cobb). C) Humpback whale fluke - WOS#52, 17 May 2002 (Photo by Ana Sirovic). D) Dorsal fin of Humpback whale - WOS #19, 25 April (Photo by A. Sirovic) E) Humpback dorsal fin #1 & head - WOS#52, 17 May 2002 (Photo by K. Cobb). F) Humpback whale fluke - 25 April 2002 (Photo by A. Sirovic). G) Humpback whales off the bow (64 32.59' S; 62 30.33' W) - WOS#52, 17 May 2002 at 1251 (Photo by A. Sirovic). H) Humpback whales - white flank markings whales #1 & #3 - WOS#52, 17 May 2002 (Photo by A. Sirovic).









































7.5 References


Related US SO GLOBEC reports for previous cruises 1,2,3 – and particularly NBP01-03 1st cruise (survey cruise) – US Southern Ocean GLOBEC Report No.2


Friedlander A.S., Thiele D., Hoffman E., MacDonald M.., Moore S., Pirzl R. A preliminary analysis of baleen whale distribution around the western Antarctic Peninsula in the Austral fall and winter.


Website for IWC cetacean summaries by cruise, cruise reports, and technical US SO GLOBEC reports


http://www1.npm.ac.uk/globec/ this site provides a direct link to the CCPO site by clicking on SO GLOBEC


8.0 Marine Mammals Passive Acoustics (Ana Širovic)


8.1 Introduction


The primary goal of this project is to determine the minimum population estimates, distribution and seasonality of mysticete whales within the West Antarctic Peninsula region. These data will be integrated with the rest of the SO GLOBEC data set to improve the understanding of krill ecology in the area. Because the vocalizations of most baleen whales are species specific and easily recognizable, passive acoustic techniques can be used to determine long-term, seasonal presence of a species in the area. The species of interest are blue (Balaenoptera musculus), fin (B. physalus), humpback (Megaptera novaeangliae) and Antarctic minke (B. bonaerensis) whales. Southern right whale (Eubalaena australis), sperm whale (Physeter macrocephalus - odontocete) calls may also be detected, but are expected less frequently. The key component of this study is a series of 8 acoustic recording packages (ARPs) that were recovered and redeployed during the LMG02-01A cruise (Feb 5 to Mar 3, 2002). They are bottom mounted and have a hydrophone component floating 5 m above the mooring. Each ARP yielded approximately 28 GB of data after the initial 11 months of deployment and they are currently recording for another 12 months.


8.2 Methods


During this cruise, sonobuoys were deployed opportunistically to supplement the information obtained from the visual observations, as well as the ARP data. Sonobuoys are expendable underwater listening devices. Four main components of a sonobuoy are a float, radio transmitter, saltwater battery, and hydrophone. The hydrophone is an underwater sensor that converts the sound pressure waves into electrical voltages that get amplified and sent up a wire (hydrophone depth can be set to 90, 400, or 1000 feet) to the radio transmitter that is housed in the surface float. The radio signal is picked up by an antenna and a radio receiver on the ship, then reviewed and simultaneously recorded onto a digital audio tape (DAT). A sonobuoy can transmit for a maximum of 8 h before scuttling and sinking.


Two types of sonobuoys were deployed: omnidirectional (57B) and difar (53B). Omnidirectional sonobuoys have hydrophones that can register signals up to 20 kHz, but they cannot determine the location of the sound source. DiFAR (DIrectional Fixing And Ranging) sonobuoys also have an omnidirectional hydrophone for recording sound, but it is limited to frequencies lower than 4.5 kHz. However, DiFARs also have 2 pairs of direction sensors, which along with an internal compass can determine the exact bearing of the sound relative to the sonobuoy. With 3 or more sonobuoys in the water, it is thus possible to determine the location of the sound source.


The Yagi directional antenna was used primarily during the cruise. The maximum range for the radio transmission during this cruise was 16 nm, but the range seemed highly dependent on weather conditions. The Sinclair omnidirectional antenna was also available throughout the cruise, but the maximum range obtained by that antenna was less than 3 nm and it was, therefore, not used very often. The problem with having to use the Yagi all the time was that sonobuoys could be heard only while steaming in a straight line. Once we were at a station and the ship started turning, signal was quickly lost.


There were several reasons for sonobuoy deployments. Firstly, they provide recordings that can be compared to the ARP data. This will provide a calibration on content as well as detection ranges. Secondly, they are a means of getting recordings outside of the seafloor array range. Lastly, they are a good complement to the visual observations and can help in positive identification of species when visual cues are not.


8.3 Data Collected


Sonobuoys were deployed both when whales were visually detected and randomly throughout the cruise. A total of 62 sonobuoys were deployed: 57 omnidirectional and 5 DiFARs. Only 4 omni sonobuoys failed upon deployment, which is a satisfactory performance. Locations of all the deployments as well as a preliminary summary of the sonobuoys on which calls were heard can be seen in the complete (Figure 31) and close-up (Figure 32) maps of the study area. Further analysis of the recordings is needed to double check for calls that were possibly not detected during the preliminary review. The locations and times of all the deployments are given in the cruise Event Log.


8.4 Preliminary Results


Species heard on the highest number of sonobuoys were blue whales. All 19 buoys that blues were heard on, however, were deployed in the northern part of the grid, either on the outer shelf or off the shelf break (where the loudest recording was obtained). No blues were heard on any of the sonobuoys deployed while steaming under ice or in Marguerite Bay. Blue whales were also heard on a couple of the sonobuoys deployed while steaming towards the grid stations at the beginning of the cruise.


Humpbacks were the second most commonly heard species; their calls were heard on 17 sonobuoys. Most of the calls resembled the song phrases that were recorded last year during GLOBEC I. The distribution of calling humpbacks, however, was quite different from the one observed during the last fall’s cruise. They were heard on sonobuoys deployed while steaming along transect lines 4 and 5 on and off the shelf, and again in the same area as we were steaming north after the end of grid work. No humpbacks were heard in Laubeuf fjord, though, where a lot of them were recorded last year. Also, instead of being concentrated around northern tip of Alexander Island like they were last year, this year the humpbacks were more spread out along the shelf due west from the northern edge of Alexander. Humpbacks were heard on one sonobuoy deployed in Crystal Sound and on both of the sonobuoys deployed in the Gerlache Strait during the steam back north. A possible fin whale was heard on the northernmost deployed sonobuoy in the Drake Passage. No minke whale calls were heard in the


fig32_nbpsbloc.gifFigure 31. Sonobuoy deployment locations with species heard on the sonobuoy marked. Calling whales can be heard at large distances from the sonobuoy so a detected call does not necessarily indicate immediate vicinity of whales.








































fig32_sbcloseup.gifFigure 32. Close-up of the study area with the sonobuoy deployment locations marked. If any calls were heard on the sonobuoy, it is marked with the appropriate symbol.










































preliminary analysis. Unidentified odontocete whistles were recorded twice, and clicks preceded those whistles on one occasion. Both of the recordings were obtained while ice was present. An unidentified seal was also heard on a sonobuoy deployed while we were steaming north from the end of the grid.


9.0 Fish Otolith Collections (Julian Ashford, ODU)


Field sampling was undertaken for a pilot study to examine the relationship between water mass and the chemical signature laid down in the calcium carbonate matrix of the otoliths of fish. If signatures can be discriminated spatially, they can theoretically be used as an internal tag to trace fish movement in space and, using the chronology laid down concurrently in the otoliths, through time and by age. The tags can then be used to estimate age-based population migration rates and site fidelity. As the uptake of trace elements is primarily from the surrounding water mass, the first-order variables influencing the chemical signature are likely to be hydrographic. The current cruise represents the first opportunity in the Antarctic to use linked carbonate chemistry and hydrographic data sets to examine water mass effects on the chemical signature and, once this is better understood, potentially further elucidate the role played by ocean dynamics in fish movement and life history.


Sampling events on board the RVIB Nathaniel B. Palmer, including MOCNESS, Reeve net, and surface net tows, were monitored for fish by-catch. Data taken during the CTD cast at the same station were used to identify water mass. Sampling of fish was considered conditioned on water mass, with spatially-based sampling units taken from a fixed frame composing the cruise grid, using a stratified hierarchical random sampling method. A limited number of samples were taken, mostly in the northern part of the grid, including species from the genera Bathylagus, Protomyctophum, Gymnoscopelus, and Electrona. These will be supplemented by collections made during the same time period on board the R/V Lawrence M. Gould, including Pleuragramma antarcticum.


Using the Laser-ICPMS facility funded by NSF at Old Dominion, comparisons will be made between the otolith signatures from samples taken from different water masses. Further comparisons are also planned between years using available samples and hydrographic data from the 2001 GLOBEC cruises, to examine the stability of the signature in time.


10.0 Science Writer Report (Kristin Cobb UCSC/NSF)


The job of the National Science Foundation (NSF) science writer was to report on the scientific activities of the third U.S. SO GLOBEC cruise. The broader goals were to make science accessible and engaging to a general audience and to describe the challenges and rewards of working on an Antarctic research vessel. Dispatches and photographs are located at http://www.nsf.gov/od/lpa/news/02/pr0236_dispatches.htm.


The first story explained the overall goals of research to be conducted on the RVIB Nathaniel B. Palmer and the R/V Laurence M. Gould. The subsequent dispatches chronicled the trip, while each focusing on a different major scientific group. Scientific groups covered in-depth included: Conductivity, Temperature, Depth (CTD), BIo-Optical Multi-frequency Acoustical and Physical Environmental Recorder (BIOMAPER-II), Acoustical Properties of zooPlankton (APOP), seabird survey and field work, and marine mammal survey and field work. In addition, a profile of the Palmer's captain was written. The stories focused on people as much as science, and attempts were made to include the voices of scientists from the Laurence M. Gould, as well as of the science support staff and of the crew aboard the Palmer.


11.0 Seabeam bathymetry of region and Mooring surveys (Suzanne O’Hara)


The multibeam bathymetric data for NBP0202 - GLOBEC III was collected with a SeaBeam 2112 system. This instrument generates 120 bathymetric and 2,000 sidescan across swath values for each ping. The total width of the data swath is 120 degrees, or about three times the depth of the water that is being surveyed. This system has been in use on the N.B. Palmer since 1994 and it will be removed from the ship after this cruise.


The SeaBeam was run continuously while the ship was underway and after the vessel was over 200 miles away from Chile and Argentina. A total of 806 hourly multibeam files were collected between April 12, 2002 (year day 102) and May 19, 2002 (year day 139) over approximately 3,536 miles of ship track. All of these files were ping edited by the science party to remove errors from the raw data. The cleaned data files were merged with multibeam data collected during other cruises to generate gridded data files and survey plots. Fifty three separate survey areas were identified, gridded and plotted. A small scale plot of the main survey area is included with this report (Figure 33).


fig33_globec_bathy.gifFigure 33. A composite view of the Southern Ocean GLOBEC bathymetry based on the SeaBeam surveys done in the area that are publically available.














































CRUISE PARTICIPANTS


Science Party (Name, Institution)


Zooplankton and Krill Survey (BIOMAPER-II, 1-m2 MOCNESS, ROV)

Wiebe, Peter                               Woods Hole Oceanographic Institution

Ashjian, Carin                             Woods Hole Oceanographic Institution

Dennett, Mark                             Woods Hole Oceanographic Institution

Alatalo, Philip                             Woods Hole Oceanographic Institution

Girard, Andy                               Woods Hole Oceanographic Institution

Kukulya, Amy                            Woods Hole Oceanographic Institution

Martin, Peter                               Oregon State University

Rosenwaks, Gaelin                     Woods Hole Oceanographic Institution

Taisey, Phillip                             Northeastern University


Zooplankton Material Properties

Chu, Dezang                               Woods Hole Oceanographic Institution

Riener, Karen  

CTD/ADCP

Klinck, John                                Old Dominion University

Ashford, Julian                           Old Dominion Universty

Sepulveda, Hector Andres          Old Dominion Universty (Chile)

Boyer, Timothy                           National Oceanographic Data Center

Mackay, Chris                            RGL Consulting LTD, Canada


Nutrients

Masserini, Rob                            University of South Florida

Serebrennikova, Yulia                Univeristy of South Florida


Productivity Measurements

Kozlowski, Wendy                     Scripps Institution of Oceanography

Aller, Kristy                                Scripps Institution of Oceanography


Seabird Survey/Ecology

Chapman, Erik                            University of Wisconsin

Becker, Mathew 

Whale Survey/Active Counting

Glasgow, Deb                             IWC (New Zealand)


Whale Survey/Passive Listening

Sirovic, Ana                                Scripps Institution of Oceanography


Science Writer

Cobb, Kristin                              NSF/University of California, Santa Cruz


Raytheon Technical Support

Doyle, Alice                               Marine Project Coordinator

Alesandrini, Stian                       Marine Technician

Tarrent, Steve                             Marine Technician

White, Jennifer                          Marine Technician

Bliss, Kevin                                Information Technology

O’Hara, Suzanne                        Information Technology

Martellero, Helena                      Information Technology

Blackman, Sheldon                     Electronics Technician

Lariviere, Romeo                        Electronics Technician


Ship’s Officers and Crew

Borkowski, Joe                           Master

Wisner, Richard                          Chief Mate

Repin, Vladimir                          2nd Mate

Higdon, John                              3rd Mate

Pagtalunan, Rachelle                  3rd Mate

Pierce, Johnny                             Chief Engineer

Ambrocio, Rogelio                     1st Engineer

Sykas, Peter                                2nd Engineer

Zipperer, Bryan                          3rd Engineer

Hanna, George                            3rd Engineer

Rogando, Rolly                           Oiler

Pagdanganan, Rogelio                Oiler

Delacruz, Fredor                         Oiler

Villanueva, Sam                         A.B.

Sandoval, Lorenzo                      A.B.

Tamayo, Ric                               A.B.

Carpio, Ronnie                            A.B.

Aaron, Bienvenido                      A.B.

Monje, Alejandra                        A.B.

Silverio, Nestor                           O.S

Wisner, Theresa                          O.S.

Cardenas, Yessica                       O.S.



Appendix 1. Event Log. or NBP0202 (9 April to 21 May, 2002)

 

Event Number

Instrument

Cast

Consec

Station #

Satndard

Station #

Local Time

Mth Day hhmm

Event

s/e

Univ Coord Time

Mth Day hhmm

Lat (S)

Deg Min

Lon (W)

Deg Min

Water

Depth

Cast

Depth

Scientific

Investigator

Comments

nbp09902.001

Depart

-

-

-

4

9

1103

s

4

9

1503

53 10.212

70 54.396

-

-

Klinck

Leave PA

nbp10102.001

XBT

test

-

-

4

11

2208

s/e

4

12

0208

58 34.007

65 0.084

-

760

Klinck

T-7

nbp10202.001

XBT

1

D1

-

4

12

0136

s/e

4

12

0536

59 10.202

64 59.613

3424

760

Klinck

T-7

nbp10202.002

XBT

2

D2

-

4

12

0231

s/e

4

12

0631

59 19.188

64 59.83

3325

760

Boyer

T-7

nbp10202.003

XBT

3

D3

-

4

12

0338

s/e

4

12

0738

59 29.871

65 0.032

3375

760

Klinck

T-7

nbp10202.004

XBT

4

D4

-

4

12

0438

s/e

4

12

0838

59 39.59

65 0.138

3808

760

Klinck

T-7

nbp10202.005

XBT

5

D5

-

4

12

0537

s/e

4

12

0937

59 49.602

65 0.191

3892

760

Klinck

T-7

nbp10202.006

XBT

6

D6

-

4

12

0635

s/e

4

12

1035

59 59.967

65 0.163

2908

760

Klinck

T-7

nbp10202.007

XBT

7

D7

-

4

12

0733

s/e

4

12

1133

60 10.00

65 0.167

3919

760

Klinck

T-7

nbp10202.008

XBT

8

D8

-

4

12

0831

s/e

4

12

1231

60 20.085

64 59.968

2974

760

Boyer

T-7

nbp10202.009

XBT

9

D9

-

4

12

0933

s/e

4

12

1333

60 30.00

65 07.525

2959

760

Boyer

T-7

nbp10202.010

XBT

10

D10

-

4

12

1024

s/e

4

12

1424

60 38.048

65 15.612

2911

760

Boyer

T-7

nbp10202.011

Sonobuoy

1

-

-

4

12

1010

s

4

12

1410

60 35.90

65 13.10

2808

120

Sirovic

 

nbp10202.012

XBT

11

D11

-

4

12

1120

s/e

4

12

1520

60 46.885

65 24.339

3204

760

Boyer

T-7

nbp10202.013

XBT

12

D12

-

4

12

1220

s/e

4

12

1620

60 55.66

65 33.015

2857

760

Sepulveda

T-7

nbp10202.014

XBT

13

D13

-

4

12

1315

s/e

4

12

1715

61 04.45

65 41.82

3623

760

Sepulveda

T-7

nbp10202.015

XBT

14

D14

-

4

12

1414

s/e

4

12

1814

61 13.83

65 50.787

3040

760

Ashford

T-7

nbp10202.016

XBT

15

D15

-

4

12

1510

s/e

4

12

1910

61 23.36

66 0.40

4291

760

Cobb

T-7

nbp10202.017

Sonobuoy

1

-

-

4

12

1255

e

4

12

1655

-

-

-

-

Sirovic

 

nbp10202.018

XBT

16

D16

-

4

12

1603

s/e

4

12

2003

61 31.526

66 8.962

4252

760

Ashford

T-7

nbp10202.019

XBT

17

D17

-

4

12

1700

s/e

4

12

2100

61 40.953

66 8.615

3945

760

Ashford

T-7

nbp10202.020

XBT

18

D18

-

4

12

1754

s/e

4

12

2154

61 49.975

66 27.799

3813

760

Ashford

T-7 bad cast

nbp10202.021

XBT

19

D19

-

4

12

1759

s/e

4

12

2159

61 51.358

66 29.258

3670

760

Ashford

T-7

nbp10202.022

XBT

20

D20

-

4

12

1851

s/e

4

12

2251

61 59.696

66 37.454

2864

760

Ashford

T-7

nbp10202.023

Sonobuoy

2

-

-

4

12

1903

s

4

12

2303

62 01.574

66 39.736

3414

1000ft

Sirovic

 

nbp10202.024

XBT

21

D21

-

4

12

1944

s/e

4

12

2344

62 08.457

66 47.042

3613

760

Sepulveda

T-7

nbp10202.025

Sonobuoy

2

-

-

4

12

2009

e

4

13

0009

-

-

-

-

Sirovic

 

nbp10202.026

XBT

22

D22

-

4

12

2041

s/e

4

13

0041

62 17.478

66 55.939

3645

760

Sepulveda

T-7

nbp10202.027

XBT

23

D23

-

4

12

2142

s/e

4

13

0142

62 26.813

67 05.668

3694

-

Sepulveda

T-7 bad cast

nbp10202.028

XBT

24

D24

-

4

12

2145

s/e

4

13

0145

62 27.285

67 06.117

3718

760

Sepulveda

T-7

nbp10202.029

XBT

25

D25

-

4

12

2249

s/e

4

13

0249

62 36.361

67 15.952

3438

760

Ashford

T-7 bad cast

nbp10202.030

XBT

26

D26

-

4

12

2252

s/e

4

13

0252

62 36.59

67 16.474

3441

760

Ashford

T-7

nbp10202.031

XBT

27

D27

-

4

12

2355

s/e

4

13

0355

62 45.904

67 26.127

3780

760

Ashford

T-7

nbp10302.001

XBT

28

D28

-

4

13

0100

s/e

4

13

0500

62 55.342

67 35.944

3724

760

Boyer

T-7

nbp10302.002

XBT

29

D29

-

4

13

0155

s/e

4

13

0555

63 4.196

67 45.043

3835

760

Boyer

T-7

nbp10302.003

XBT

30

D30

-

4

13

0242

s/e

4

13

0642

63 12.477

67 54.126

3833

760

Boyer

T-7

nbp10302.004

XBT

31

D31

-

4

13

0335

s/e

4

13

0735

63 20.488

68 2.598

3533

760

Boyer

T-7

nbp10302.005

XBT

32

D32

-

4

13

0426

s/e

4

13

0726

63 28.817

68 11.844

3507

760

Boyer

T-7

nbp10302.006

XBT

33

D33

-

4

13

0524

s/e

4

13

0924

63 38.019

68 21.825

3339

760

Boyer

T-7

nbp10302.007

XBT

34

D34

-

4

13

0621

s/e

4

13

1021

63 47.179

68 31.881

3190

760

Boyer

T-7

nbp10302.008

XBT

35

D35

-

4

13

0717

s/e

4

13

1117

63 56.359

68 41.915

3101

760

Boyer

T-7

nbp10302.009

XBT

36

D35

-

4

13

0720

s/e

4

13

1120

63 56.805

68 42.41

3101

760

Boyer

T-7

nbp10302.010

XBT

37

D36

-

4

13

0818

s/e

4

13

1218

64 6.411

68 53.206

3136

760

Boyer

T-7

nbp10302.011

CTD

1

0

691.305

4

13

0835

s

4

13

1235

64 8.082

68 55.359

3270

500

Klinck

test

nbp10302.012

CTD

1

0

691.305

4

13

0924

e

4

13

1324

64 8.082

68 55.359

3270

500

Klinck

test

nbp10302.013

BMP II

1

0

691.305

4

13

0940

s

4

13

1340

64 08.0

68 55.35

3270

180

Wiebe

test

nbp10302.014

BMP II

1

0

691.305

4

13

1215

e

4

13

1615

64 0808

69 11.818

3270

180

Wiebe

test

nbp10302.015

MOC

1

0

691.305

4

13

1554

s

4

13

1954

64 06.496

69 17.902

3405

200

Ashjian

test

nbp10302.016

MOC

1

0

691.305

4

13

1648

e

4

13

2048

64 05.021

69 20.177

3362

200

Ashjian

test

nbp10302.017

BMP II

2

0

691.305

4

13

1730

s

4

13

2130

64 4.8

69 20.8

3362

50

Wiebe

test

nbp10302.018

BMP II

2

0

691.305

4

13

1823

e

4

13

2223

64 3.15

69 22.8

3362

50

Wiebe

test

nbp10302.019

Sonobuoy

3

0--1

-

4

13

1925

s

4

13

2325

64 13.808

69 31.167

3276

400 ft

Sirovic

 

nbp10302.020

Sonobuoy

3

0--1

-

4

13

2027

e

4

14

0027

-

-

-

-

Sirovic

 

nbp10302.021

APOP

1

0

691.305

4

13

1330

s

4

13

1730

64 7.381

69 16.316

3270

195

Chu

test

nbp10302.022

APOP

1

0

691.305

4

13

1500

e

4

13

1900

64 7.471

69 16.343

3270

195

Chu

test

nbp10402.001

CTD

2

1

505.271

4

14

0407

s

4

14

0807

65 39.040

70 39.437

3064

100

Klinck

 

nbp10402.002

CTD

2

1

205.271

4

14

0422

e

4

14

0822

65 39.040

70 39.437

3064

100

Klinck

 

nbp10402.003

CTD

3

1

505.271

4

14

0430

s

4

14

0830

65 39.855

70 39.440

3064

3098

Klinck

 

nbp10402.004

CTD

3

1

505.271

4

14

0730

e

4

14

1130

65 39.855

70 39.440

3064

3098

Klinck

 

nbp10402.005

Bird obs

-

1

505.271

4

14

0740

s

4

14

1140

65 39.834

70 39.323

3058

 

Chapman

 

nbp10402.006

BMP II

3

1

505.271

4

14

0747

S

4

14

1147

65 39.879

70 40.325

3050

50

Wiebe

 

nbp10402.007

BMP II

3

1

505.271

4

14

0830

e

4

14

1230

65 40.212

70 41.151

3050

50

Wiebe

 

nbp10402.008

CTD

4

2

498.251

4

14

1109

s

4

14

1509

65 49.297

70 23.989

653

653

Klinck

 

nbp10402.009

CTD

4

2

498.251

4

14

1153

e

4

14

1553

65 49.297

70 23.989

653

653

Klinck

 

nbp10402.010

APOP

2

2

498.251

4

14

1215

s/e

4

14

1615

65 49.394

70 23.654

670

10

Chu

 

nbp10402.011

BMP II

4

2

498.251

4

14

1244

s

4

14

1644

65 49.0

70 26.0

3670

250m

Wiebe

 

nbp10402.012

Sonobuoy

4

-

-

4

14

1419

s

4

14

1819

65 51.53

70 16.17

379

120

Sirovic

 

nbp10402.013

Sonobuoy

4

-

-

4

14

1615

e

4

14

2015

-

-

-

-

Sirovic

 

nbp10402.014

Bird obs

-

2--3

-

4

14

1724

e

4

14

2124

65 58.205

69 51.23

341

-

Chapman

 

nbp10402.015

CTD

5

3

499.220

4

14

1807

s

4

14

2207

65 56.839

69 57.223

350

341

Romeo

FRRF

nbp10402.016

CTD

5

3

499.220

4

14

1855

e

4

14

2255

65 56.839

69 57.223

350

341

Romeo

FRRF

nbp10402.017

Surface tow

1

3

499.220

4

14

1900

s

4

14

2300

65 56.839

69 57.23

350

80

Chapman

 

nbp10402.018

Surface tow

1

3

499.220

4

14

1956

e

4

14

2356

65 56.839

69 57.223

350

80

Chapman

 

nbp10502.001

CTD

6

4

499.180

4

15

0115

s

4

15

0515

66 11.474

69 7.485

361

348

Boyer

FRRF

nbp10502.002

CTD

6

4

499.180

4

15

0153

e

4

15

0553

66 11.474

69 7.485

361

348

Boyer

FRRF

nbp10502.003

MOC

2

4

499.180

4

15

0220

s

4

15

0620

66 11.1

69 08.1

340

325

Ashjian

 

nbp10502.004

MOC

2

4

499.180

4

15

0357

e

4

15

0757

66 08.4

69 06.6

340

325

Ashjian

 

nbp10502.005

Reeve Net

1

4

499.180

4

15

0430

s

4

15

0830

66 07.894

69 06.083

340

300

Chu

 

nbp10502.006

Reeve Net

1

4

499.180

4

15

0505

e

4

15

0905

66 07.976

69 06.370

340

300

Chu

 

nbp10502.007

BMP II

5

4

499.180

4

15

0530

s

4

15

0930

66 07.600

69 05.4

346

250

Wiebe

 

nbp10502.008

Bird obs

-

4

499.180

4

15

0730

s

4

15

1130

66 14.766

68 58.097

382

-

Ribic

 

nbp10502.009

Sonobuoy

5

-

-

4

15

0959

s

4

15

1359

66 20.414

68 32.960

568

12

Sirovic

 

nbp10502.010

CTD

7

5

499.140

4

15

1121

s

4

15

1521

66 23.75

68 23.91

720

684

Klinck

 

nbp10502.011

Whale obs

-

5

499.140

4

15

0810

s

4

15

1210

66 12.152

68 52.218

414

-

Glasgow

 

nbp10502.012

CTD

7

5

499.140

4

15

1220

e

4

15

1620

66 23.75

68 23.91

720

684

Klinck

 

nbp10502.013

CTD

8

6

499.120

4

15

1508

s

4

15

1908

66 29.942

68 01.456

418

413

Ashford

FRRF

nbp10502.014

CTD

8

6

499.120

4

15

1552

e

4

15

1952

66 29.942

68 01.456

418

413

Ashford

FRRF

nbp10502.015

Bird obs

-

6 to 7

-

4

15

1723

e

4

15

2123

66 34.836

68 12.538

364

-

Chapman

 

nbp10502.016

Whale obs

-

6 to 7

-

4

15

1723

e

4

15

2123

66 34.836

68 12.538

364

-

Glasgow

 

nbp10502.017

Sonobuoy

5

6 to 7

-

4

15

1356

e

4

15

1756

-

-

-

-

Sirovic

 

nbp10502.018

Sonobuoy

6

6 to 7

-

4

15

1825

s

4

15

2225

66 38.81

68 19.03

193

30

Sirovic

 

nbp10502.019

Sonobuoy

6

6 to 7

-

4

15

1938

e

4

15

2338

-

-

-

-

Sirovic

 

nbp10502.020

CTD

9

7

458.115

4

15

2116

s

4

16

0116

66 49.238

68 28.387

149

145

Ashford

FRRF

nbp10502.021

CTD

9

7

458.115

4

15

2144

e

4

16

0144

66 49.238

68 28.387

149

145

Ashford

FRRF

nbp10502.022

Surface tow

2

7

458.115

4

15

2200

s

4

16

0200

66 48.819

68 30.558

184

100

Chapman

 

nbp10502.023

Surface tow

2

7

458.115

4

15

2250

e

4

16

0250

66 48.819

68 30.548

184

100

Chapman

 

nbp10502.024

Reeve Net

2

7

458.115

4

15

2230

s

4

16

0230

66 48.492

68 29.735

126

100

Chu

 

nbp10502.025

Reeve Net

2

7

458.115

4

15

2255

e

4

16

0255

66 48.726

68 30.850

126

100

Chu

 

nbp10502.026

Reeve Net

3

7

458.115

4

15

2325

s

4

16

0325

66 49.430

68 28.702

120

100

Chu

 

nbp10502.027

Reeve Net

3

7

458.115

4

15

2345

e

4

16

0345

66 49.786

68 29.608

120

100

Chu

 

nbp10502.028

BMP II

4

4

499.180

4

15

0023

e

4

15

0423

66 11.419

69 07.364

359

250

Wiebe

 

nbp10602.001

CTD

10

8

459.140

4

16

0255

s

4

16

0655

66 41.301

68 55.540

316

301

Boyer

FRRF

nbp10602.002

CTD

10

8

459.140

4

16

0327

e

4

16

0727

66 41.301

68 55.540

316

301

Boyer

FRRF

nbp10602.003

CTD

11

9

459.180

4

16

0815

s

4

16

1215

66 28.770

69 39.101

507

500

Boyer

 

nbp10602.004

CTD

11

9

459.180

4

16

0855

e

4

16

1255

66 28.770

69 39.101

507

500

Boyer

FRRF

nbp10602.005

Drogue

2

9

459.180

4

16

0912

s/e

4

16

1312

66 28.242

69 39.255

530

-

Limeburner

 

nbp10602.006

XBT

38

9A

469.180

4

16

0941

s/e

4

16

1341

66 26.526

69 35.070

500

500

Boyer

T-7

nbp10602.007

Sonobuoy

7

9A

464.180

4

16

0944

s

4

16

1344

66 26.451

69 34.241

500

500

Sirovic

 

nbp10602.008

XBT

39

9B

454.180

4

16

1057

s/e

4

16

1457

66 31.057

69 43.047

500

500

Boyer

T-7

nbp10602.009

Bird obs

-

9 to 10

-

4

16

1157

s

4

16

1557

66 29.468

69 42.46

484

-

Chapman

 

nbp10602.010

Whale obs

-

9 to 10

-

4

16

1108

s

4

16

1508

66 31.84

69 44.44

2073

-

Glasgow

 

nbp10602.011

XBT

40

9C

-

4

16

1239

s/e

4

16

1639

66 27.294

69 44.343

491

460

Sepulveda

T-4

nbp10602.012

Sonobuoy

7

9--10

-

4

16

1248

e

4

16

1648

-

-

-

-

Sirovic

 

nbp10602.013

XBT

41

9D

-

4

16

1319

s/e

4

16

1719

66 25.425

69 50.955

477

460

Sepulveda

T-4

nbp10602.014

XBT

42

9E

-

4

16

1428

s/e

4

16

1828

66 21.988

70 01.841

462

460

Sepulveda

T-4 bad below 300?

nbp10602.015

XBT

43

9F

-

4

16

1431

s/e

4

16

1831

66 21.988

70 02.422

462

460

Sepulveda

T-4

nbp10602.016

XBT

44

9G

-

4

16

1531

s/e

4

16

1931

66 19.149

70 12.188

466

460

Ashford

T-4

nbp10602.017

CTD

12

10

459.220

4

16

1649

s

4

16

2049

66 16.051

70 22.006

471

465

Ashford

FRRF

nbp10602.018

CTD

12

10

459.220

4

16

1742

e

4

16

2142

66 16.051

70 22.006

471

465

Ashford

FRRF

nbp10602.019

Bird obs

-

10

459.220

4

16

1620

e

4

16

2020

66 16.685

70 20.042

465

-

Chapman

 

nbp10602.020

Whale obs

-

-

-

4

16

1635

e

4

16

2035

66 16.04

70 21.61

482

-

Glasgow

 

nbp10602.021

Sonobuoy

8

-

-

4

16

1836

s

4

16

2236

66 14.04

70 29.37

510

120

Sirovic

 

nbp10602.022

Sonobuoy

8

-

-

4

16

1956

e

4

16

2356

-

-

-

-

Sirovic

 

nbp10602.023

BMP II

5

11

458.250

4

16

2112

e

4

17

0112

66 06.843

70 54.637

895

250

Wiebe

 

nbp10602.024

CTD

13

11

458.250

4

16

2145

s

4

17

0145

66 06.763

70 54.783

907

900

Ashford

 

nbp10602.025

CTD

13

11

458.250

4

16

2257

e

4

17

0257

66 06.763

70 54.783

907

900

Ashford

 

nbp10602.026

MOC

3

11

458.250

4

16

2329

s

4

17

0329

66 06.719

70 55.135

~2000

1000

Ashjian

 

nbp10602.027

Drogue

1

8

459.140

4

16

0336

s/e

4

16

0736

66 41.00

68 56.25

321

-

Limeburner

 

nbp10702.001

Bird capture

-

11

458.250

4

17

0004

s

4

17

0404

66 06.605

70 58.372

1297

-

Chapman

 

nbp10702.002

Bird capture

-

11

458.250

4

17

0030

e

4

17

0430

66 06.481

71 00.187

1556

-

Chapman

 

nbp10702.003

MOC

3

11

458.250

4

17

0242

e

4

17

0642

66 06.126

71 10.54

~2000

1000

Ashjian

 

nbp10702.004

Reeve Net

4

11

458.250

4

17

0304

s

4

17

0704

66 05.977

71 11.900

2734

400

Chu

 

nbp10702.005

Reeve Net

4

11

458.250

4

17

0429

e

4

17

0829

66 04.128

71 15.168

3129

400

Chu

 

nbp10702.006

CTD

14

12

457.265

4

17

0455

s

4

17

0855

66 05.250

71 14.509

3107

100

Boyer

100m

nbp10702.007

CTD

14

12

457.265

4

17

0508

e

4

17

0908

66 05.250

71 14.509

3107

100

Boyer

no bottles

nbp10702.008

CTD

15

12

457.265

4

17

0540

s

4

17

0940

66 02.295

71 11.302

3107

3102

Boyer

Deep cast

nbp10702.009

CTD

15

12

457.265

4

17

0755

e

4

17

1155

66 02.925

71 11.302

3107

3102

Boyer

 

nbp10702.010

Bird obs

-

12 to 13

-

4

17

0757

s

4

17

1157

66 02.225

71 11.390

3063

-

Chapman

 

nbp10702.011

Bird capture

-

12

457.265

4

17

0826

s/e

4

17

1226

66 02.135

71 11.252

3059

-

Chapman

 

nbp10702.012

Whale obs

-

to 13

418.247

4

17

0950

s

4

17

1350

66 01.935

71 11.508

-

-

Glasgow

 

nbp10702.013

APOP

3

12

457.265

4

17

0808

s

4

17

1208

66 02.216

71 11.348

3069

205

Chu

 

nbp10702.014

APOP

3

12

457.265

4

17

0945

e

4

17

1345

66 03.019

71 19.133

3069

205

Chu

 

nbp10702.015

BMP II

6

12--13

-

4

17

1059

s

4

17

1459

66 02.323

71 07.288

1965

250

Wiebe

fire in van

nbp10702.016

Sonobuoy

9

12--13

-

4

17

1326

s

4

17

1726

66 11.678

71 16.524

2939

~120

Sirovic

 

nbp10702.017

Sonobuoy

10

12--13

-

4

17

1406

s

4

17

1806

66 14.632

71 18.419

2823

300

Sirovic

 

nbp10702.018

Sonobuoy

9

12--13

-

4

17

1410

e

4

17

1810

-

-

-

-

Sirovic

 

nbp10702.019

CTD

16

13

418.247

4

17

1635

s

4

17

2035

66 24.900

71 24.300

779

774

Ashford

 

nbp10702.020

Bird obs

-

13

418.247

4

17

1625

e

4

17

2025

66 24.782

71 24.141

780

-

Chapman

 

nbp10702.021

Whale obs

-

13

418.247

4

17

1630

e

4

17

2030

66 24.82

71 24.08

783

-

Glasgow

 

nbp10702.022

CTD

16

13

418.247

4

17

1745

e

4

17

2145

66 24.900

71 24.300

779

774

Ashford

 

nbp10702.023

CTD

17

14

419.225

4

17

2045

s

4

18

0045

66 31.563

70 59.719

535

528

Ashford

 

nbp10702.024

Surface tow

3

14

419.225

4

17

2123

s

4

18

0123

66 34.539

70 59.750

528

80

Chapman

 

nbp10702.025

CTD

17

14

419.225

4

17

2234

e

4

18

0234

66 31.563

70 59.719

535

528

Ashford

 

nbp10702.026

Sonobuoy

10

-

-

4

17

1509

e

4

18

1909

-

-

-

-

Sirovic

 

nbp10702.027

Surface tow

3

14

419.225

4

17

2219

e

4

18

0219

66 32.361

70 58.528

528

80

Chapman

 

nbp10702.028

Sonobuoy

11

-

-

4

17

2030

s

4

18

0230

66 33.00

70 58.10

545

120

Sirovic

 

nbp10802.001

Sonobuoy

11

-

-

4

18

0008

e

4

18

0408

-

-

-

-

Sirovic

 

nbp10802.002

BMP II

6

15

419.180

4

18

0354

e

4

18

0754

66 46.

70 11.

534

250

Wiebe

 

nbp10802.003

CTD

18

15

419.180

4

18

0402

s

4

18

0802

66 44.458

70 11.265

546

524

Boyer

 

nbp10802.004

CTD

18

15

419.180

4

18

0441

e

4

18

0841

66 44.458

70 11.265

546

524

Boyer

 

nbp10802.005

MOC

4

15

419.180

4

18

0456

s

4

18

0856

66 46.06

70 10.51

531

500

Alatalo

 

nbp10802.006

MOC

4

15

419.180

4

18

0635

e

4

18

1035

66 43.62

70 10.35

490

479

Alatalo

 

nbp10802.007

Bird obs

-

to 16

-

4

18

0752

s

4

18

1152

66 47.802

70 02.381

531

-

Chapman

 

nbp10802.008

Whale obs

-

to 16

-

4

18

0815

s

4

18

1215

66 49.37

69 58.44

529

-

Glasgow

 

nbp10802.009

CTD

19

16

419.145

4

18

1104

s

4

18

1504

66 53.649

68 42.564

515

498

Boyer

 

nbp10802.010

CTD

19

16

419.145

4

18

1143

e

4

18

1543

66 53.648

68 42.564

515

498

Boyer

 

nbp10802.011

Sonobuoy

12

-

-

4

18

1205

s

4

18

1605

66 57.29

68 32.74

514

120

Sirovic

 

nbp10802.012

Sonobuoy

12

-

-

4

18

1358

e

4

18

1758

-

-

-

-

Sirovic

 

nbp10802.013

CTD

20

17

419.125

4

18

1447

s

4

18

1847

67 03.595

69 10.049

434

422

Ashford

FRRF

nbp10802.014

Bird obs

-

16

-

4

18

1455

e

4

18

1855

67 03.596

69 10.059

434

-

Chapman

 

nbp10802.015

CTD

20

17

419.125

4

18

1530

e

4

18

1930

67 03.595

69 10.049

434

422

Ashford

FRRF

nbp10802.016

MOC

5

17

419.125

4

18

1547

s

4

18

1947

67 03.433

69 10.86

450

400

Ashjian/Alatalo

nbp10802.017

MOC

5

17

419.125

4

18

1702

e

4

18

2100

67 01.98

69 15.88

450

400

Alatalo

 

nbp10802.018

Reeve Net

5

17

419.125

4

18

1715

s

4

18

2115

67 01.860

69 16.339

470

350

Chu

 

nbp10802.019

Reeve Net

5

17

419.125

4

18

1826

e

4

18

2226

67 02.112

69 19.162

374

350

Chu

 

nbp10802.020

Whale obs

-

17

419.125

4

18

1734

e

4

18

2134

67 01.891

69 17.185

480

-

Glasgow

 

nbp10802.021

Sonobuoy

13

-

-

4

18

2027

s

4

19

0027

67 09.731

69 17.115

 

120

Sirovic

 

nbp10802.022

BMP II

7

17--18

-

4

18

2123

s

4

19

0123

67 13.405

69 23.883

589

250

Wiebe

 

nbp10802.023

Sonobuoy

13

-

-

4

18

2202

e

4

19

0202

-

-

-

-

Sirovic

 

nbp10902.001

CTD

21

18

317.110

4

19

0122

s

4

19

0522

67 24.142

69 32.495

379

365

Boyer

FRRF

nbp10902.002

CTD

21

18

317.110

4

19

0201

e

4

19

0601

67 24.147

69 32.495

379

365

Boyer

FRRF

nbp10902.003

CTD

22

19

379.150

4

19

0710

s

4

19

1110

67 15.701

70 05.105

632

615

Boyer

 

nbp10902.004

CTD

22

19

370.150

4

19

0756

e

4

19

1156

67 15.701

70 05.105

632

615

Boyer

 

nbp10902.005

Surface tow

4

19

370.150

4

19

0758

s

4

19

1158

67 13.070

70 10.656

617

72

Chapman

 

nbp10902.006

Whale obs

-

19--20

-

4

19

0815

s

4

19

1215

67 13.112

70 11.575

629

-

Glasgow

 

nbp10902.007

Surface tow

4

19

370.150

4

19

0827

e

4

19

1227

67 13.205

70 12.428

614

72

Chapman

 

nbp10902.008

Bird obs

-

19--20

-

4

19

0827

s

4

19

1227

67 13.205

70 12.428

614

-

Chapman

 

nbp10902.009

Sonobuoy

14

-

-

4

19

0952

s

4

19

1352

67 09.20

70 25.04

574

120

Sirovic

 

nbp10902.010

CTD

23

20

379.180

4

19

1208

s

4

19

1608

67 03.288

70 43.884

490

484

Ashford

FRRF

nbp10902.011

CTD

23

20

379.180

4

19

1257

e

4

19

1657

67 03.288

70 43.884

490

484

Ashford

FRRF

nbp10902.012

Sonobuoy

14

-

-

4

19

1146

e

4

13

1546

-

-

-

-

Sirovic

 

nbp10902.013

Sonobuoy

15

-

-

4

19

1322

s

4

19

1722

67 02.268

70 47.716

490

120

Sirovic

 

nbp10902.014

Sonobuoy

15

-

-

4

19

1548

e

4

19

1948

-

-

-

-

Sirovic

 

nbp10902.015

Bird obs

-

20 to 21

-

4

19

1651

e

4

19

2051

66 52.308

71 21.596

467

-

Chapman

 

nbp10902.016

CTD

24

21

379.220

4

19

1757

s

4

19

2157

66 50.113

71 27.752

472

467

Ashford

FRRF

nbp10902.017

CTD

24

21

379.220

4

19

1842

e

4

19

2242

66 50.113

71 27.752

472

467

Ashford

FRRF

nbp10902.018

BMP II

7

21

379.220

4

19

1732

e

4

19

2132

66 50.1

71 27.71

481

250

Dennett

 

nbp10902.019

Whale obs

-

21

379.220

4

19

1736

e

4

19

2135

66 50.110

71 27.725

483

-

Glasgow

 

nbp10902.020

MOC

6

21

379.220

4

19

0703

s

4

19

2303

66 50.011

71 26.158

460

440

Alatalo

 

nbp10902.021

MOC

6

21

379.220

4

19

2042

e

4

20

0042

66 48.264

71 34.12

466

440

Alatalo

 

nbp10902.022

APOP

4

21

379.220

4

19

2055

s

4

20

0055

66 48.142

71 34.859

476

205

Chu

 

nbp10902.023

APOP

4

21

379.220

4

19

2241

e

4

20

0241

66 48.063

71 34.837

476

205

Chu

 

nbp10902.024

BMP II

8

21

379.220

4

19

2251

s

4

20

0251

66 47.8

71 35.7

482

250

Wiebe

 

nbp11002.001

CTD

25

22

379.264

4

20

0322

s

4

20

0722

66 37.471

72 11.875

3327

100

Boyer

FRRF

nbp11002.002

CTD

25

22

379.264

4

20

0338

e

4

20

0738

66 37.471

72 11.875

3327

100

Boyer

FRRF

nbp11002.003

CTD

26

22

379.364

4

20

0409

s

4

20

0809

66 37.471

72 11.975

3326

3332

Boyer

 

nbp11002.004

CTD

26

22

379.364

4

20

0648

e

4

20

1048

66 37.471

72 11.975

3326

3332

Boyer

 

nbp11002.005

BMP II

8

22

379.364

4

20

0315

e

4

20

0715

66 35.646

72 14.34

3248

250

Kukulya

 

nbp11002.006

Surface tow

5

22

379.364

4

20

0700

s

4

20

1100

66 35.644

72 14.344

3281

72

Chapman

 

nbp11002.007

Surface tow

5

22

379.364

4

20

0737

e

4

20

1137

66 36.107

72 15.737

3306

72

Chapman

 

nbp11002.008

BMP II

9

22

379.364

4

20

0740

s

4

20

1140

66 36.161

72 16.513

3306

250

Wiebe

 

nbp11002.009

Bird obs

-

22 to 23

-

4

20

0803

s

4

20

1203

66 36.375

72 19.200

3306

-

Chapman

 

nbp11002.010

Whale obs

-

22 to 23

-

4

20

0809

s

4

20

1209

66 36.81

72 20.315

3340

-

Glasgow

 

nbp11002.011

Sonobuoy

16

-

-

4

20

1230

s

4

20

1630

66 40.37

73 19.612

3574

120

Sirovic

 

nbp11002.012

CTD

27

23

339.295

4

20

1358

s

4

20

1758

66 41.845

73 20.991

3675

3679

Ashford

 

nbp11002.013

CTD

27

23

339.295

4

20

1725

e

4

20

2125

66 41.845

73 20.991

3675

3679

Ashford

 

nbp11002.014

BMP II

9

23

339.295

4

20

1330

e

4

20

1730

66 41.85

73 21.00

3684

250

Ashjian

 

nbp11002.015

Bird obs

-

23

339.295

4

20

1329

e

4

20

1729

66 42.195

73 20.37

3616

-

Chapman

 

nbp11002.016

Sonobuoy

16

23

339.295

4

20

1500

e

4

20

1900

-

-

-

-

Sirovic

 

nbp11002.017

MOC

7

23

339.295

4

20

1741

s

4

20

2141

66 41.69

73 20.87

3630

1000

Alatalo

 

nbp11002.018

Bird capture

-

23

339.295

4

20

1329

s/e

4

20

1729

66 42.195

73 20.342

3616

-

Chapman

 

nbp11002.019

MOC

7

23

339.295

4

20

2045

e

4

21

0045

66 38.544

73 15.17

3630

1000

Alatalo

 

nbp11002.020

Sonobuoy

17

23

339.295

4

20

2121

s

4

21

0121

66 30.627

73 15.177

3520

120

Sirovic

 

nbp11002.021

BMP II

10

23

339.295

4

20

2126

s

4

21

0126

66 38.874

73 15.369

3579

 

Wiebe

 

nbp11002.022

Sonobuoy

17

23--24

-

4

20

2325

e

4

21

0325

-

-

-

-

Sirovic

 

nbp11102.001

CTD

28

24

339.253

4

21

0251

s

4

21

0651

66 55.781

72 37.243

452

443

Boyer

w/FRRF

nbp11102.002

CTD

28

24

339.253

4

21

0328

e

4

21

0728

66 55.781

72 37.243

452

443

Boyer

w/FRRF

nbp11102.003

CTD

29

25

339.220

4

21

0737

s

4

21

1137

67 07.159

72 01.159

423

408

Boyer

 

nbp11102.004

CTD

29

25

339.220

4

21

0807

e

4

21

1207

67 07.159

72 01.159

423

408

Boyer

 

nbp11102.005

Bird obs

-

25--26

-

4

21

0828

s

4

21

1228

67 07.818

71 59.873

412

-

Chapman

 

nbp11102.006

CTD

30

26

339.180

4

21

1315

s

4

21

1715

67 20.425

71 17.089

477

461

Ashford

 

nbp11102.007

CTD

30

26

339.180

4

21

1354

e

4

21

1754

67 20.425

71 17.089

477

461

Ashford

 

nbp11102.008

Sonobuoy

18

26--27

-

4

21

1659

s

4

21

2059

67 28.72

70 49.22

611

120

Sirovic

 

nbp11102.009

Bird obs

-

26--27

-

4

21

1731

e

4

21

2131

67 30.266

70 44.196

668

-

Chapman

 

nbp11102.010

CTD

31

27

339.140

4

21

1920

s

4

21

2320

67 33.119

70 34.343

766

761

Ashford

 

nbp11102.011

CTD

31

27

339.140

4

21

2014

e

4

22

0014

67 33.119

70 34.343

766

761

Ashford

 

nbp11102.012

Surface tow

6

27

339.140

4

21

1830

s

4

21

2230

67 33.254

70 35.004

764

73

Chapman

 

nbp11102.013

Sonobuoy

18

-

-

4

21

1846

e

4

21

2264

-

-

-

-

Sirovic

 

nbp11102.014

Surface tow

6

27

339.140

4

21

1912

e

4

21

2312

67 33.152

70 34.152

761

73

Chapman

 

nbp11102.015

BMP II

10

27

339.140

4

21

2018

e

4

22

0018

67 33.00

70 34.23

780

250

Wiebe

 

nbp11202.001

CTD

32

28

339.100

4

22

0208

s

4

22

0608

67 43.699

69 56.759

458

453

Boyer

FRRF

nbp11202.002

CTD

32

28

339.100

4

22

0245

e

4

22

0645

67 43.699

69 56.759

458

453

Boyer

FRRF

nbp11202.003

MOC

8

28

339.100

4

22

0306

s

4

22

0706

67 45.87

69 47.00

319

260

Ashjian

 

nbp11202.004

MOC

8

28

339.100

4

22

0429

e

4

22

0829

67 44.2

69 43.34

319

260

Ashjian

 

nbp11202.005

Drogue

3

28--29

-

4

22

0532

s

4

22

0932

67 40.454

69 35.498

378

-

Limeburner

 

nbp11202.006

CTD

33

29

366.098

4

22

0717

s

4

22

1117

67 35.23

69 23.05

168

155

Boyer

FRRF

nbp11202.007

CTD

33

29

366.098

4

22

0736

e

4

22

1136

67 35.23

69 23.05

168

155

Boyer

FRRF

nbp11202.008

Surface tow

7

29

366.098

4

22

0815

s/e

4

22

1215

67 34.819

69 23.598

172

54

Chapman

 

nbp11202.009

Reeve Net

6

29

366.098

4

22

0752

s

4

22

1152

67 35.204

69 23.225

170

165

Chu

 

nbp11202.010

Reeve Net

6

29

366.098

4

22

0825

e

4

22

1325

67 34.598

69 24.161

192

-

Chu

 

nbp11202.011

BMP II

11

29--30

-

4

22

0930

s

4

22

1333

67 35.756

69 22.88

163

 

Wiebe

 

nbp11202.012

CTD

34

30

347.084

4

22

1255

s

4

22

1655

67 47.92

69 22.95

188

183

Ashford

FRRF

nbp11202.013

CTD

34

30

347.084

4

22

1320

e

4

22

1720

67 47.92

69 22.95

188

183

Ashford

FRRF

nbp11202.014

BMP II

11

30

347.084

4

22

1235

e

4

22

1635

67 47.91

69 22.79

126

 

Ashjian

 

nbp11202.015

Bird obs

-

29--30

-

4

22

0932

s

4

22

1332

67 35.756

69 22.88

172

-

Chapman

 

nbp11202.016

Whale obs

-

29--30

-

4

22

0815

s

4

22

1215

-

-

176

-

Glasgow

 

nbp11202.017

Sonobuoy

19

29--30

-

4

22

1334

s

4

22

1734

67 47.860

69 21.901

160

30

Sirovic

 

nbp11202.018

CTD

35

31

350.071

4

22

1518

s

4

22

1918

67 50.77

69 04.876

191

186

Ashford

FRRF

nbp11202.019

CTD

35

31

350.071

4

22

1539

e

4

22

1939

67 50.77

69 04.876

191

186

Ashford

FRRF

nbp11202.020

Sonobuoy

19

31

350.071

4

22

1427

e

4

22

1827

-

-

-

-

Sirovic

 

nbp11202.021

BMP II

12

31

350.071

4

22

1603

s

4

22

2002

67 50.385

69 03.128

170

 

Wiebe

 

nbp11202.022

Bird obs

-

31-33

-

4

22

1648

e

4

22

2048

67 50.548

68 54.184

148

-

Chapman

 

nbp11202.023

Whale obs

-

31--33

-

4

22

1725

e

4

22

2125

67 52.028

68 48.735

136

-

Glasgow

 

nbp11202.024

Sonobuoy

20

31--33

-

4

22

1821

s

4

22

2221

67 57.103

68 48.796

210

120

Sirovic

 

nbp11202.025

CTD

36

33

343.052

4

22

1943

s

4

22

2343

67 59.72

68 47.85

204

198

Ashford

FRRF

nbp11202.026

CTD

36

33

343.052

4

22

2008

e

4

23

0008

67 59.72

68 47.85

204

198

Ashford

FRRF

nbp11202.027

Surface tow

8

33

343.052

4

22

2015

s

4

23

0015

67 59.424

68 46.247

139

7

Chapman

 

nbp11202.028

Sonobuoy

20

31--33

-

4

22

1931

e

4

22

2331

-

-

-

-

Sirovic

 

nbp11202.029

BMP II

12

33

343.052

4

22

1940

e

4

22

2340

67 59.71

68 47.84

194

 

Wiebe

 

nbp11202.030

Surface tow

8

33

343.052

4

22

2047

e

4

23

0047

67 59.424

68 46.247

139

7

Chapman

 

nbp11202.031

Drogue

4

33

343.052

4

22

2048

s

4

23

0048

67 59.424

68 46.247

175

-

Klinck

 

nbp11202.032

CTD

37

34

356.046

4

22

2238

s

4

23

0238

67 55.68

68 31.17

662

657

Ashford

 

nbp11202.033

CTD

37

34

356.046

4

22

2334

e

4

23

0334

67 55.68

68 31.17

662

657

Ashford

 

nbp11202.034

Reeve Net

7

34

356.046

4

22

2344

s

4

23

0344

67 55.754

68 31.391

713

150

Chu

 

nbp11202.035

Reeve Net

7

34

356.046

4

23

0014

e

4

23

0414

67 55.391

68 32.348

595

150

Chu

 

nbp11302.001

MOC

9

34

356.046

4

23

0035

s

4

23

0435

67 55.3

68 30.13

850

800

Ashjian

 

nbp11302.002

MOC

9

34

356.046

4

23

0242

e

4

23

0642

67 55.03

68 18.3

850

800

Ashjian

 

nbp11302.003

CTD

38

35

366.036

4

23

0600

s

4

23

1000

67 54.53

68 11.27

672

658

Boyer

 

nbp11302.004

CTD

38

35

366.036

4

23

0644

e

4

23

1044

67 54.53

68 11.27

672

658

Boyer

 

nbp11302.005

Bird obs

-

35--36

-

4

23

0801

s

4

23

1201

67 51.660

67 59.459

368

-

Chapman

 

nbp11302.006

CTD

39

36

379.020

4

23

1103

s

4

23

1503

67 53.66

67 41.67

310

287

Boyer

FRRF

nbp11302.007

CTD

39

36

379.020

4

23

1134

e

4

23

1534

67 53.66

67 41.67

310

287

Boyer

FRRF

nbp11302.008

APOP

5

36

379.020

4

23

1139

s

4

23

1539

67 53.440

67 41.739

307

205

Chu

 

nbp11302.009

APOP

5

36

379.020

4

23

1253

e

4

23

1653

67 53.332

67 41.459

322

205

Chu

 

nbp11302.010

Whale obs

-

to 36

-

4

23

0800

s

4

23

1200

67 51.660

67 59.459

368

-

Glasgow

 

nbp11302.011

BMP II

13

35

366.036

4

23

0412

s

4

23

0812

67 56.56

68 18.23

699

200

Wiebe

in water end 34

nbp11302.012

BMP II

13

36

379.020

4

23

1042

e

4

23

1442

67 53.633

67 41.916

560

200

Wiebe

 

nbp11302.013

Sonobuoy

21

36--37

-

4

23

1307

s

4

23

1707

67 54.932

67 43.790

210

120

Sirovic

 

nbp11302.014

Ice sample

1

37

339.020

4

23

1645

s/e

4

23

2045

68 10.993

68 14.398

498

-

Vernet

 

nbp11302.015

CTD

40

37

339.020

4

23

1732

s

4

23

2132

68 10.67

68 14.68

521

109

Ashford

 

nbp11302.016

CTD

40

37

339.020

4

23

1749

e

4

23

2149

68 10.67

68 14.68

521

109

Ashford

 

nbp11302.017

Bird obs

-

37

339.020

4

23

1653

e

4

23

2053

68 10.747

68 14.398

529

-

Chapman

 

nbp11302.018

Whale obs

-

37

339.020

4

23

1653

e

4

23

2053

68 10.747

68 14.398

529

-

Glasgow

 

nbp11302.019

CTD

41

37

339.020

4

23

1801

s

4

23

2201

68 10.67

68 14.68

523

518

Ashford

 

nbp11302.020

CTD

41

37

339.020

4

23

1840

e

4

23

2240

68 10.67

68 14.68

523

518

Ashford

 

nbp11302.021

Surface tow

9

37

339.020

4

23

1830

s

4

23

2230

68 10.688

68 14.654

529

97

Chapman

 

nbp11302.022

Surface tow

9

37

339.020

4

23

1920

e

4

23

2320

68 10.982

68 13.311

524

97

Chapman

 

nbp11302.023

Sonobuoy

21

36--37

-

4

23

1458

e

4

23

1858

-

-

-

-

Sirovic

 

nbp11302.024

Sonobuoy

22

37--38

-

4

23

1944

s

4

23

2344

68 12.453

68 10.676

 

 

Sirovic

 

nbp11302.025

Bird night survey

-

37--38

-

4

23

2005

s

4

24

0005

68 13.772

68 08.113

286

-

Chapman

 

nbp11302.026

BMP II

14

37

339.020

4

23

1925

s

4

23

2325

68 11.19

68 12.35

318

75

Wiebe

 

nbp11302.027

Bird night survey

-

37--38

-

4

23

2044

e

4

24

0044

68 16.229

68 03.689

312

-

Chapman

 

nbp11302.028

Sonobuoy

22

37--38

-

4

23

2124

e

4

24

0124

-

-

-

-

Sirovic

 

nbp11402.001

CTD

42

38

339.-020

4

24

0038

s

4

24

0438

68 23.39

67 26.76

203

188

Boyer

FRRF

nbp11402.002

CTD

42

38

339.-020

4

24

0101

s

4

24

0501

68 23.39

67 26.76

203

188

Boyer

FRRF

nbp11402.003

CTD

43

39

449.-020

4

24

0602

s

4

24

1002

68 41.06

67 26.76

424

405

Boyer

FRRF

nbp11402.004

CTD

43

39

449.-020

4

24

0634

e

4

24

1034

68 41.06

67 26.76

424

405

Boyer

FRRF

nbp11402.005

Bird obs

-

39--40

-

4

24

0815

s

4

24

1215

68 36.682

68 14.155

230

-

Chapman

 

nbp11402.006

Whale obs

-

39--40

-

4

24

0819

s

4

24

1219

68 36.682

68 14.155

230

-

Glasgow

 

nbp11402.007

Sonobuoy

23

39--40

-

4

24

1020

s

4

24

1420

68 31.457

68 34.445

308

120

Sirovic

 

nbp11402.008

CTD

44

40

299.020

4

24

1236

s

4

24

1636

68 28.76

68 48.33

640

635

Ashford

 

nbp11402.009

CTD

44

40

299.020

4

24

1320

e

4

24

1720

68 28.76

68 48.33

640

635

Ashford

 

nbp11402.010

Sonobuoy

23

-

-

4

24

1117

e

4

24

1517

-

-

-

-

Sirovic

 

nbp11402.011

BMP II

14

40

299.020

4

24

1140

e

4

24

1540

68 28.800

68 48.186

Variable

100

Wiebe

 

nbp11402.012

Ice sample

2

40

299.020

4

24

1202

s/e

4

24

1602

68 28.796

68 48.227

-

-

Vernet

 

nbp11402.013

MOC1

10

40

299.020

4

24

1340

s

4

24

1740

68 28.8

68 47.2

650

580

Ashjian

 

nbp11402.014

MOC1

10

40

299.020

4

24

1543

e

4

24

1943

68 30.35

68 37.7

650

580

Ashjian

 

nbp11402.015

BMP II

15

40

299.020

4

24

1622

s

4

24

2022

68 29.87

68 39.8

640

 

Wiebe

 

nbp11402.016

Bird obs

-

40--41

-

4

24

1720

e

4

24

2120

68 27.609

68 49.7

484

-

Chapman

 

nbp11402.017

Whale obs

-

40--41

-

4

24

1720

e

4

24

2120

68 27.609

68 49.700

484

-

Glasgow

 

nbp11402.018

Sonobuoy

-

40--41

-

4

24

1712

s

4

24

2312

68 23.329

69 05.785

615

120

Sirovic

 

nbp11402.019

Bird night survey

-

40--41

-

4

24

1712

s

4

24

2312

68 23.329

69 05.785

615

-

Chapman

 

nbp11402.020

Bird night survey

-

40-41

-

4

24

2025

e

4

25

0025

68 23.329

69 18.96

945

-

Chapman

 

nbp11402.021

Sonobuoy

24

40--41

-

4

24

2043

e

4

25

0043

-

-

-

-

Sirovic

 

nbp11402.022

BMP II

15

40--41

-

4

24

2159

e

4

25

0159

68 16.478

68 34.91

676

~100

Wiebe

 

nbp11402.023

APOP

6

41

299.060

4

24

2224

s

4

25

0224

68 16.250

69 35.539

755

205

Chu

 

nbp11402.024

APOP

6

41

299.060

4

24

2344

e

4

25

0344

68 16.272

69 35.452

781

-

Chu

 

nbp11402.025

Bird capture

-

40--41

-

4

24

2212

s/e

4

25

0212

68 16.261

69 35.525

753

-

Chapman

 

nbp11502.001

CTD

45

41

299.060

4

25

0001

s

4

25

0401

68 16.27

69 35.18

755

750

Boyer

 

nbp11502.002

CTD

45

41

299.060

4

25

0050

e

4

25

0450

68 16.27

69 35.18

755

750

Boyer

 

nbp11502.003

BMP II

16

41--42

-

4

25

0150

s

4

25

0530

68 13.3

69 42.44

-

30

Ashjian

 

nbp11502.004

BMP II

16

41--42

-

4

25

0159

e

4

25

0539

68 13.13

69 47.83

678

30

Ashjian

 

nbp11502.005

CTD

46

42

299.100

4

25

0534

s

4

25

0934

68 03.66

70 21.45

871

865

Boyer

 

nbp11502.006

CTD

46

42

299.100

4

25

0607

e

4

25

1007

68 03.66

70 21.45

871

865

Boyer

 

nbp11502.007

Bird obs

-

42--43

-

4

25

0835

s

4

25

1235

67 56.720

70 44.798

690

-

Chapman

 

nbp11502.008

Whale obs

-

42--43

-

4

25

0835

s

4

25

1235

67 56.720

70 44.798

690

-

Glasgow

 

nbp11502.010

CTD

47

43

299.140

4

25

1047

s

4

25

1447

67 50.52

71 07.37

413

395

Boyer

 

nbp11502.011

CTD

47

43

299.140

4

25

1121

e

4

25

1521

67 50.52

71 07.37

413

395

Boyer

 

nbp11502.012

MOC

11

43

299.140

4

25

1145

s

4

25

1545

67 50.43

71 07.667

407

350

Ashjian

 

nbp11502.013

MOC

11

43

299.140

4

25

1326

e

4

25

1726

67 47.48

71 09.644

425

400

Ashjian

 

nbp11502.014

BMP II

17

43

299.140

4

25

1400

s

4

25

1800

67 46.3

71 11.5

444

250

Wiebe

 

nbp11502.015

Sonobuoy

25

43--44

-

4

25

1410

s

4

25

1810

67 46.110

71 12.842

461

120

Sirovic

 

nbp11502.016

Sonobuoy

25

43--44

-

4

25

1551

e

4

25

1951

-

-

-

-

Sirovic

 

nbp11502.017

Bird obs

-

43--44

-

4

25

1653

e

4

25

2053

67 40.263

71 42.027

424

-

Chapman

 

nbp11502.018

Whale obs

-

43--44

-

4

25

1718

e

4

25

2118

67 38.980

71 45.902

415

-

Glasgow

 

nbp11502.019

Sonobuoy

26

43--44

-

4

25

1642

s

4

25

2042

67 40.789

71 40.486

421

120

Sirovic

 

nbp11502.020

Sonobuoy

26

43--44

-

4

25

1649

e

4

25

2049

-

-

-

-

Sirovic

 

nbp11502.021

Reeve Net

8

44

299.180

4

25

1800

s

4

25

2200

67 27.461

71 52.514

406

60

Chu

 

nbp11502.022

Reeve Net

8

44

299.180

4

25

1835

e

4

25

2235

67 37.390

71 54.544

407

60

Chu

 

nbp11502.023

Surface tow

10

44

299.180

4

25

1840

s

4

25

2240

67 37.426

71 53.565

409

-

Chapman

 

nbp11502.024

Surface tow

10

44

299.180

4

25

1855

e

4

25

2255

67 37.426

71 53.565

409

-

Chapman

 

nbp11502.025

CTD

48

44

299.180

4

25

1926

s

4

25

2326

67 37.43

71 51.77

395

390

Ashford

 

nbp11502.026

CTD

48

44

299.180

4

25

2003

e

4

26

0003

67 37.43

71 51.77

395

390

Ashford

 

nbp11602.001

XCTD

1

45

299.220

4

26

0435

s/e

4

26

0835

67 24.40

72 35.09

2036

360

Boyer

BAD below 360?

nbp11602.002

Bucket samp.

1

45

299.220

4

26

0035

s/e

4

26

0435

67 24.171

72 36.021

380

Surf

Vernet

 

nbp11602.003

BMP II

17

46

299.265

4

26

0850

e

4

26

1250

67 08.768

73 23.40

2045

200

Wiebe

 

nbp11602.004

CTD

49

46

299.265

4

26

0915

s

4

26

1315

67 08.74

73 24.43

2036

100

Boyer

FRRF

nbp11602.005

CTD

49

46

299.265

4

26

0925

e

4

26

1325

67 08.74

73 24.43

2036

100

Boyer

FRRF

nbp11602.006

CTD

50

46

299.265

4

26

0938

s

4

26

1338

67 08.77

73 24.51

2086

2081

Boyer

 

nbp11602.007

CTD

50

46

299.265

4

26

1123

e

4

26

1523

67 08.77

73 24.51

2086

2081

Boyer

 

nbp11602.008

Surface tow

11

46

299.265

4

26

1125

s

4

26

1525

67 08.669

73 24.494

2053

-

Chapman

 

nbp11602.009

Surface tow

11

46

299.265

4

26

1149

e

4

26

1549

67 08.669

73 24.494

2053

-

Chapman

 

nbp11602.010

Bird obs

-

46--47

-

4

26

1149

s

4

26

1549

67 08.016

73 23.119

2079

-

Chapman

 

nbp11602.011

Whale obs

-

46--47

-

4

26

1155

s

4

26

1555

67 08.086

73 23.119

2079

-

Glasgow

 

nbp11602.012

BMP II

18

46--47

-

4

26

1208

s

4

26

1608

67 07.68

73 22.55

2080

250

Wiebe

 

nbp11602.013

Sonobouy

27

46--47

-

4

26

1619

s

4

26

2019

67 14.843

74 12.185

3064

120

Sirovic

 

nbp11602.014

Bird obs

-

46--47

-

4

26

1645

e

4

26

2045

67 14.653

74 17.574

2998

-

Chapman

 

nbp11602.015

Whale obs

-

46--47

-

4

26

1719

e

4

26

2119

67 14.689

74 24.381

2945

-

Glasgow

 

nbp11602.016

CTD

51

47

259.295

4

26

1936

s

4

26

2336

67 14.651

74 31.825

2850

2840

Sepulveda

 

nbp11602.017

CTD

51

47

259.295

4

26

2114

e

4

27

0114

67 14.651

74 31.825

2850

2840

Sepulveda

 

nbp11602.018

Sonobouy

27

-

-

4

26

1825

e

4

26

2225

-

-

-

-

Sirovic

 

nbp11602.019

BMP II

18

47

259.295

4

26

1757

e

4

26

2157

67 14.81

74 31.89

2850

250

Wiebe

 

nbp11602.020

MOC

12

47

259.295

4

26

2133

s

4

27

0133

67 14.3

74 31.63

2851

2000

Ashjian

 

nbp11702.001

APOP

7

47

259.295

4

27

0051

s

4

27

0451

67 10.909

74 19.745

3095

205

Chu

 

nbp11702.002

APOP

7

47

259.295

4

27

0228

e

4

27

0628

67 10.774

74 19.596

3055

205

Chu

 

nbp11702.003

BMP II

19

47

259.295

4

27

0301

e

4

27

0701

67 11.61

74 17.808

3095

250

Kuku

 

nbp11702.004

CTD

52

48

259.255

4

27

0752

s

4

27

1152

67 28.59

73 49.33

411

406

Boyer

 

nbp11702.005

CTD

52

48

259.255

4

27

0823

e

4

27

1223

67 28.59

73 49.33

411

406

Boyer

 

nbp11702.006

Surface tow

12

48

259.255

4

27

0838

s

4

27

1238

67 28.599

73 49.224

416

-

Chapman

 

nbp11702.007

Surface tow

12

48

259.255

4

27

0849

e

4

27

1249

67 27.980

73 48.140

410

-

Chapman

 

nbp11702.008

Bird obs

-

48--49

-

4

27

0849

s

4

27

1249

67 27.980

73 48.140

410

-

Chapman

 

nbp11702.009

Sonobouy

28

-

-

4

27

1028

s

4

27

1428

67 32.354

73 30.425

428

120

Sirovic

 

nbp11702.010

Sonobouy

28

-

-

4

27

1115

e

4

27

1515

-

-

-

-

Sirovic

 

nbp11702.011

MOC

12

47

259.295

4

27

0031

e

4

27

0431

67 11.21

74 20.6

2880

1000

Ashjian

 

nbp11702.012

BMP II

19

48

259.295

4

27

1235

s

4

27

1635

67 40.9

73 11.6

 

250

Ashjian

 

nbp11702.013

CTD

53

49

259.220

4

27

1253

s

4

27

1653

67 40.597

73 11.560

484

480

Sepulveda

FRRF

nbp11702.014

CTD

53

48

259.220

4

27

1343

e

4

27

1743

67 40.597

73 11.560

484

480

Sepulveda

FRRF

nbp11702.015

Sonobuoy

29

-

-

4

27

1526

s

4

27

1926

67 47.333

72 50.049

466

120

Sirovic

 

nbp11702.016

Sonobuoy

29

-

-

4

27

1608

e

4

27

2008

-

-

-

-

Sirovic

 

nbp11702.017

Bird obs

-

to 50

-

4

27

1632

e

4

27

2032

67 51.188

72 32.710

438

-

Chapman

 

nbp11702.018

CTD

54

50

259.180

4

27

1740

s

4

27

2140

67 54.197

72 27.457

390

382

Sepulveda

FRRF

nbp11702.019

Whale obs

-

-

-

4

27

1730

e

4

27

2130

67 54.131

72 27.547

394

-

Glasgow

 

nbp11702.020

CTD

54

50

259.180

4

27

1831

e

4

27

2231

67 54.197

72 27.457

390

382

Sepulveda

FRRF

nbp11702.021

MOC

13

50

259.180

4

27

1848

s

4

27

2248

67 53.93

72 27.61

360

384

Alatalo

cas > dep?

nbp11702.022

MOC

13

50

259.180

4

27

2020

e

4

28

0020

67 51.19

72 25.75

360

384

Alatalo

 

nbp11702.023

Reeve Net

9

50

259.180

4

27

2036

s

4

28

0036

67 50.807

72 25.970

375

360

Chu

 

nbp11702.024

Reeve Net

9

50

259.180

4

27

2150

e

4

28

0150

67 50.176

72 28.339

402

360

Chu

 

nbp11702.025

BMP II

19

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

nbp11702.026

XBT

45

50A

-

4

27

2215

s/e

4

28

0215

67 49.435

72 27.235

428

-

Klinck

T-4, Failed

nbp11702.027

XBT

46

50A

-

4

27

2222

s/e

4

28

0222

67 49.435

72 27.235

428

428

Klinck

T-4

nbp11702.028

XBT

47

50B

-

4

27

2324

s/e

4

28

0324

67 51.332

72 24.352

306

306

Klinck

T-4

nbp11702.029

XBT

48

50C

-

4

27

2358

s/e

4

28

0358

67 54.405

72 23.516

306

306

Klinck

T-4

nbp11802.001

XBT

49

50D

-

4

28

0030

s/e

4

28

0430

67 56.54

72 17.85

314

314

Boyer

T-4

nbp11802.002

XBT

50

50E

-

4

28

0054

s/e

4

28

0454

67 58.24

72 17.26

328

328

Boyer

T-4

nbp11802.003

XBT

51

50F

-

4

28

0119

s/e

4

28

0519

67 59.58

72 06.37

398

398

Boyer

T-4 Bad

nbp11802.004

XBT

52

50G

-

4

28

0129

s/e

4

28

0529

67 59.78

72 05.69

408

408

Boyer

T-4

nbp11802.005

XBT

53

50H

-

4

28

0150

s/e

4

28

0550

68 01.03

72 01.62

418

418

Boyer

T-4 Failed

nbp11802.006

XBT

54

50I

-

4

28

0154

s/e

4

28

0554

68 01.24

72 00.95

419

419

Boyer

T-4

nbp11802.007

XBT

55

50J

-

4

28

0220

s/e

4

28

0620

68 02.78

71 55.98

429

429

Boyer

T-4

nbp11802.008

XBT

56

50K

-

4

28

0222

s/e

4

28

0622

68 02.94

71 55.45

439

439

Boyer

T-4

nbp11802.009

XBT

57

50L

-

4

28

0248

s/e

4

28

0648

68 04.52

71 50.65

549

450

Boyer

T-4 Bad

nbp11802.010

XBT

58

50M

-

4

28

0250

s/e

4

28

0650

68 04.69

71 50.21

549

450

Boyer

T-4

nbp11802.011

CTD

55

51

259.140

4

28

0343

s

4

28

0743

68 07.52

71 42.44

552

547

Boyer

 

nbp11802.012

CTD

55

51

259.140

4

28

0424

e

4

28

0824

68 07.52

71 42.44

552

547

Boyer

 

nbp11802.013

BMP II

20

51

259.140

4

28

0445

s

4

28

0845

68 07.52

71 42.44

550

 

Wiebe

 

nbp11802.014

BMP II

20

51

259.140

4

28

0515

e

4

28

0915

68 07.79

71 39.65

550

 

Wiebe

 

nbp11802.015

BMP II

21

51-52

-

4

28

0818

s

4

28

1218

68 15.276

71 09.947

580

 

Wiebe

 

nbp11802.016

Bird obs

-

51-52

-

4

28

0917

s

4

28

1317

68 18.231

71 03.506

427

-

Chapman

 

nbp11802.017

Whale obs

-

51-52

-

4

28

0917

s

4

28

1317

68 18.231

71 03.506

427

-

Glasgow

 

nbp11802.018

BMP II

21

52

259.100

4

28

1000

e

4

28

1400

68 20.396

70 57.25

557

 

Wiebe

 

nbp11802.019

CTD

56

52

259.100

4

28

1021

s

4

28

1421

68 20.67

70 56.43

517

512

Boyer

 

nbp11802.020

CTD

56

52

259.100

4

28

1100

e

4

28

1500

68 20.67

70 56.43

517

512

Boyer

 

nbp11802.021

BMP II

22

52

259.100

4

28

1115

s

4

28

1515

68 20.6

70 53.8

517

250

Wiebe

 

nbp11802.022

Sonobuoy

30

52--53

-

4

28

1243

s

4

28

1643

68 26.147

70 43.230

810

120

Sirovic

 

nbp11802.023

CTD

57

53

254.080

4

28

1359

s

4

28

1759

68 29.35

70 37.75

778

762

Sepulveda

 

nbp11802.024

Sonobuoy

30

52--53

-

4

28

1312

e

4

28

1712

-

-

-

-

Sirovic

 

nbp11802.025

BMP II

22

53

254.080

4

28

1350

e

4

28

1750

68 29.3

70 37.8

778

250

Ashjian

 

nbp11802.026

CTD

57

53

254.080

4

28

1502

e

4

28

1902

68 29.35

70 37.75

778

762

Sepulveda

 

nbp11802.027

Sonobuoy

31

53--54

-

4

28

1519

s

4

28

1919

68 29.586

70 33.728

563

120

Sirovic

 

nbp11802.028

Bird obs

-

53--54

-

4

28

1634

e

4

28

2034

68 30.379

70 13.815

190

-

Chapman

 

nbp11802.029

Whale obs

-

53--54

-

4

28

1659

e

4

28

2059

68 30.715

70 07.629

1036

-

Glasgow

 

nbp11802.030

APOP

8

54

266.057

4

28

1728

s

4

28

2128

68 31.563

70 00.709

1237

205

Chu

 

nbp11802.031

APOP

8

54

266.057

4

28

1919

e

4

28

2319

68 31.600

70 00.150

1100

205

Chu

 

nbp11802.032

Bird capture

-

54

-

4

28

1918

s/e

4

28

2318

68 31.591

70 00.168

1166

-

Chapman

 

nbp11802.033

CTD

58

54

266.057

4

28

1933

s

4

28

2333

68 31.576

70 00.228

1183

1178

Sepulveda

 

nbp11802.034

MOC

14

54

266.057

4

28

2118

s

4

29

0118

68 31.32

70 00.68

1218

1000

Wiebe

 

nbp11802.035

MOC

14

54

266.057

4

29

0018

e

4

29

0418

68 25.8

70 03.5

1218

1000

Wiebe

 

nbp11802.036

Sonobuoy

31

53--54

-

4

28

1545

e

4

28

1945

-

-

-

-

Sirovic

 

nbp11802.037

BMP II

23

54

266.057

4

29

0107

s

4

29

0507

68 24.1

70 02.8

1156

250

Ashjian

 

nbp11802.038

CTD

58

54

266.057

4

28

2056

e

4

29

0056

68 31.58

70 00.23

1183

1178

Sepulveda

Unsealed bottles

nbp11902.001

Bird obs

-

54--55

-

4

29

0843

s

4

29

1243

68 50.048

69 03.079

362

-

Chapman

 

nbp11902.002

Whale obs

-

54--55

-

4

29

0908

s

4

29

1308

68 51.273

69 00.851

507

-

Glasgow

 

nbp11902.003

BMP II

23

54--55

-

4

29

0938

e

4

29

1338

68 52.734

68 58.171

variable

100

Wiebe

 

nbp11902.004

CTD

59

55

259.000

4

29

1115

s

4

29

1515

68 53.10

68 58.55

507

495

Boyer

FRRF

nbp11902.005

CTD

59

55

259.000

4

29

1154

e

4

29

1554

68 53.10

68 58.55

507

495

Boyer

FRRF

nbp11902.006

Ice sample

3

55

259.000

4

29

0905

s/e

4

29

1305

68 53.106

68 58.550

510

-

Vernet

 

nbp11902.007

Sonobuoy

32

-

-

4

29

1448

s/e

4

29

1848

-

-

-

-

Sirovic

 

nbp11902.008

Bird obs

-

55--56

-

4

29

1656

e

4

29

2056

69 08.030

69 11.974

667

-

Chapman

 

nbp11902.009

Whale obs

-

55--56

-

4

29

1704

e

4

29

2104

69 08 320

69 12.142

629

-

Glasgow

 

nbp11902.010

BMP II

24

55--56

-

4

29

1810

e

4

29

2210

69 09.31

69 12.72

630

30

Wiebe

 

nbp11902.011

ROV

1

56

214.015

4

29

2100

s

4

30

0100

69 09.56

69 14.02

613

25

Girard

 

nbp11902.012

ROV

1

56

214.015

4

29

2232

e

4

30

0232

69 09.56

69 14.02

613

25

Girard

 

nbp11902.013

APOP

9

56

214.015

4

29

2235

s

4

30

0235

69 09.562

69 13.970

609

205

Chu

 

nbp11902.014

APOP

9

56

214.015

4

29

2352

e

4

30

0352

69 09.562

69 13.970

609

205

Chu

 

nbp11902.015

CTD

60

56

214.015

4

29

2358

s

4

30

0358

69 09.55

69 13.97

615

597

Boyer

 

nbp11902.016

BMP II

24

55

259.000

4

29

1225

s

4

29

1625

68 55.3

68 59.3

509

250

Wiebe

 

nbp12002.001

CTD

60

56

214.015

4

30

0046

e

4

30

0446

69 09.55

69 13.97

615

597

Boyer

 

nbp12002.002

BMP II

25

56--57

-

4

30

0537

s

4

30

0937

68 58.95

69 10.04

223

 

Dennett

 

nbp12002.003

BMP II

25

56--57

-

4

30

0733

e

4

30

1133

69 00.063

69 25.084

variable

400

Wiebe

 

nbp12002.004

Ice sample

4

~57

229.010

4

30

0815

s/e

4

30

1215

68 59.898

69 25.729

461

-

Vernet

 

nbp12002.005

CTD

61

57

229.010

4

30

0937

s

4

30

1337

68 59.90

69 25.74

512

500

Boyer

 

nbp12002.006

CTD

61

57

229.010

4

30

1018

e

4

30

1418

68 59.90

69 25.74

512

500

Boyer

 

nbp12002.007

Whale obs

-

57--58

-

4

30

1040

s

4

30

1440

68 59.806

69 24.188

541

-

Glasgow

 

nbp12002.008

Bird obs

-

57--58

-

4

30

1040

s

4

30

1440

68 59.806

69 24.188

541

-

Chapman

 

nbp12002.009

MOC

15

57--58

-

4

30

1215

s

4

30

1615

68 55.694

69 29.666

505

 

Ashjian

 

nbp12002.010

MOC

15

57--58

-

4

30

1355

e

4

30

1755

68 54.15

69 35.22

530

378

Ashjian

 

nbp12002.011

BMP II

26

57--58

-

4

30

1417

s

4

30

1817

68 54.1

69 35.8

530

225

Ashjian

 

nbp12002.012

Sonobuoy

33

-

-

4

30

1453

s

4

30

1853

68 54.013

69 42.139

572

120

Sirovic

 

nbp12002.013

Sonobuoy

33

-

-

4

30

1529

e

4

30

1929

-

-

-

-

Sirovic

 

nbp12002.014

BMP II

26

58

235.030

4

30

1600

e

4

30

2000

68 53.0

69 54.8

>1000

225

Ashjian

 

nbp12002.015

CTD

62

58

235.030

4

30

1625

s

4

30

2025

68 53.45

69 57.78

1287

1250

Sepulveda

 

nbp12002.016

Whale obs

-

58

235.030

4

30

1618

e

4

30

2018

68 53.484

69 55.767

1258

-

Glasgow

 

nbp12002.017

Bird obs

-

58

235.030

4

30

1618

e

4

30

2018

68 53.484

69 55.767

1258

-

Chapman

 

nbp12002.018

CTD

62

58

235.030

4

30

1800

e

4

30

2200

68 53.45

69 55.78

1287

1250

Sepulveda

 

nbp12002.019

ROV

2

58

235.030

4

30

1840

s

4

30

2240

68 53.43

69 55.79

1250

18

Girard

 

nbp12002.020

ROV

2

58

235.030

4

30

1949

e

4

30

2349

68 53.43

69 55.79

1250

18

Girard

 

nbp12002.021

BMP II

27

58--59

-

4

30

2325

s

5

1

0325

68 50.341

69 56.56

1409

 

Wiebe

 

nbp12102.001

BMP II

27

59

238.055

5

1

0251

e

5

1

0651

68 43.2

70 22.6

325

 

Wiebe

 

nbp12102.002

CTD

63

59

238.057

5

1

0328

s

5

1

0728

68 43.28

70 24.65

380

376

Boyer

 

nbp12102.003

CTD

63

59

238.057

5

1

0417

e

5

1

0817

68 43.28

70 24.65

380

376

Boyer

 

nbp12102.004

BMP II

28

59--60

-

5

1

0430

s

5

1

0830

68 42.44

70 25.48

380

150

Wiebe

 

nbp12102.005

Ice sample

5

59--60

-

5

1

0445

s/e

5

1

0845

68 41.624

70 27.737

 

0

Vernet

 

nbp12102.006

BMP II

28

60

219.075

5

1

0808

e

5

1

1208

68 45.71

71 03.56

295

50

Wiebe

 

nbp12102.007

CTD

64

60

219.075

5

1

0827

s

5

1

1227

68 45.64

71 04.10

313

306

Boyer

 

nbp12102.008

CTD

64

60

219.075

5

1

0857

e

5

1

1257

68 45.64

71 04.10

313

306

Boyer

 

nbp12102.009

Bird night survey

-

59--60

-

5

1

0726

s

5

1

1126

68 44.508

71 57.042

197

-

Chapman

 

nbp12102.010

Bird night survey

-

59--60

-

5

1

0756

e

5

1

1156

68 45.645

71 03.090

278

-

Chapman

 

nbp12102.011

Surface tow

12.5

60

219.075

5

1

0844

s

5

1

1244

68 45.526

71 04.091

359

-

Chapman

 

nbp12102.012

Surface tow

12.5

60

219.075

5

1

0929

e

5

1

1329

68 45.087

71 05.50

323

-

Chapman

 

nbp12102.013

Whale obs

-

60--61

-

5

1

0900

s

5

1

1300

68 45.518

71 06.148

320

-

Glasgow

 

nbp12102.014

Bird obs

-

60--61

-

5

1

0929

s

5

1

1329

68 45.087

71 05.509

323

-

Chapman

 

nbp12102.015

BMP II

29

60--61

-

5

1

0940

s

5

1

1340

68 44.905

71 06.102

321

 

Wiebe

 

nbp12102.016

Sonobuoy

34

60--61

-

5

1

1133

s

5

1

1533

68 40.053

71 15.662

252

30

Sirovic

 

nbp12102.017

BMP II

29

61

219.100

5

1

1255

e

5

1

1655

68 37.659

71 31.447

149

 

Wiebe

 

nbp12102.018

CTD

68

61

219.100

5

1

1311

s

5

1

1711

68 37.19

71 32.68

169

155

Sepulveda

FRRF

nbp12102.019

CTD

68

61

219.100

5

1

1352

e

5

1

1752

68 37.19

71 32.68

169

155

Sepulveda

FRRF

nbp12102.020

Sonobuoy

34

61

219.100

5

1

1301

e

5

1

1701

-

-

-

-

Sirovic

 

nbp12102.021

BMP II

30

61

219.100

5

1

1415

s

5

1

1815

68 36.2

71 34.0

145

250

Ashjian

 

nbp12102.022

Sonobuoy

35

-

-

5

1

1605

s

5

1

2005

68 31.044

71 51.322

770

120

Sirovic

 

nbp12102.023

Bird obs

-

61--62

-

5

1

1623

e

5

1

2023

68 30.297

71 54.818

605

-

Chapman

 

nbp12102.024

Whale obs

-

61--62

-

5

1

1650

e

5

1

2050

68 28 862

71 59.566

413

-

Glasgow

 

nbp12102.025

APOP

10

62

219.140

5

1

1919

s

5

1

2319

68 24.316

72 18.457

398

205

Chu

 

nbp12102.026

APOP

10

62

219.140

5

1

2054

e

5

2

0054

68 24.284

72 18.593

398

205

Chu

 

nbp12102.027

CTD

66

62

219.140

5

1

2101

s

5

2

0101

68 24.28

72 18.51

405

400

Sepulveda

FRRF

nbp12102.028

CTD

66

62

219.140

5

1

2157

e

5

2

0157

68 24.28

72 18.51

405

400

Sepulveda

FRRF

nbp12102.029

Sonobuoy

35

61-62

-

5

1

1742

e

5

1

2142

-

-

-

-

Sirovic

 

nbp12102.030

MOC

16

62

219.140

5

1

2200

s

5

2

0200

68 24.239

72 18.239

440

400

Ashjian

 

nbp12102.031

MOC

16

62

219.140

5

1

2349

e

5

2

0349

68 25.951

72 10.35

440

400

Ashjian

 

nbp12102.032

BMP II

30

62

219.140

5

1

1842

e

5

1

2242

68 24.02

72 17.96

449

 

Wiebe

 

nbp12202.001

BMP II

31

62--63

-

5

2

0033

s

5

2

0433

68 26.33

72 06.85

350

 

Wiebe

 

nbp12202.002

BMP II

31

63

219.180

5

2

0600

e

5

2

1000

68 10.51

73 04.00

323

 

Wiebe

 

nbp12202.003

CTD

67

63

219.180

5

2

0627

s

5

2

1027

68 10.52

73 04.02

323

318

Boyer

 

nbp12202.004

CTD

67

63

219.180

5

2

0657

e

5

2

1057

68 10.52

73 04.02

323

318

Boyer

 

nbp12202.005

Surface tow

13

63

219.180

5

2

0712

s

5

2

1112

68 10.278

73 04.688

327

-

Chapman

 

nbp12202.006

Surface tow

13

63

219.180

5

2

0736

e

5

2

1136

68 09.875

73 06.111

331

-

Chapman

 

nbp12202.007

BMP II

32

63--64

-

5

2

0744

s

5

2

1144

68 09.61

73 07.21

549

-

Wiebe

 

nbp12202.008

Whale obs

-

63--64

-

5

2

0855

s

5

2

1255

68 06.104

73 18.375

348

-

Glasgow

 

nbp12202.009

Bird obs

-

63--64

-

5

2

0918

s

5

2

1318

68 04.820

73 22.491

334

-

Chapman

 

nbp12202.010

Sonobuoy

35

63--64

-

5

2

1027

s

5

2

1427

68 01.356

73 33.475

470

120

Sirovic

 

nbp12202.011

BMP II

32

63--64

-

5

2

1154

e

5

2

1554

67 57.366

73 47.24

443

250

Wiebe

 

nbp12202.012

CTD

68

64

219.220

5

2

1209

s

5

2

1609

67 57.17

73 47.85

432

427

Sepulveda

FRRF

nbp12202.013

CTD

68

64

219.220

5

2

1308

e

5

2

1708

67 57.17

73 47.85

432

427

Sepulveda

FRRF

nbp12202.014

Sonobuoy

35

63--64

-

5

2

1154

e

5

2

1554

-

-

-

-

Sirovic

 

nbp12202.015

BMP II

33

64--65

-

5

2

1331

s

5

2

1731

67 57.12

73 49.722

445

250

Wiebe

 

nbp12202.016

CTD

69

65

219.230

5

2

1449

s

5

2

1849

67 53.71

73 58.66

427

421

Sepulveda

FRRF

nbp12202.017

CTD

69

65

219.230

5

2

1540

e

5

2

1940

67 53.71

73 58.66

427

421

Sepulveda

FRRF

nbp12202.018

BMP II

33

65

219.230

5

2

1427

e

5

2

1827

67 53.9

73 57.6

427

256

Wiebe

 

nbp12202.019

BMP II

34

65--66

-

5

2

1600

s

5

2

2000

67 53.5

74 00.4

434

250

Wiebe

 

nbp12202.020

Sonobuoy

37

65--66

-

5

2

1610

s

5

2

2010

67 52.992

74 02.193

427

120

Sirovic

 

nbp12202.021

Bird obs

-

65--66

-

5

2

1623

e

5

2

2023

67 52.403

74 03.464

414

-

Chapman

 

nbp12202.022

Whale obs

-

65--66

-

5

2

1658

e

5

2

2058

67 50.861

74 09.336

683

-

Glasgow

 

nbp12202.023

CTD

70

66

218.242

5

2

1826

s

5

2

2226

67 49.87

74 12.78

1150

1145

Sepulveda

 

nbp12202.024

CTD

70

66

218.242

5

2

1957

e

5

2

2357

67 49.87

74 12.78

1150

1145

Sepulveda

 

nbp12202.025

BMP II

34

66

218.242

5

2

1725

e

5

2

2125

67 49.94

74 12.64

1130

250

Wiebe

 

nbp12202.026

Sonobuoy

37

-

-

5

2

1725

e

5

2

2125

-

-

-

-

Sirovic

 

nbp12202.027

APOP

11

66

218.242

5

2

1920

s

5

2

2320

67 49.870

74 13.377

1215

205

Chu

 

nbp12202.028

APOP

11

66

218.242

5

2

2056

e

5

3

0056

67 49.800

74 13.350

1215

205

Chu

 

nbp12202.029

Surface tow

14

66

218.242

5

2

2100

s

5

3

0100

67 50.471

74 12.472

1009

-

Chapman

 

nbp12202.030

Surface tow

14

66

218.242

5

2

2135

e

5

3

0135

67 50.471

74 12.472

1009

-

Chapman

 

nbp12202.031

BMP II

35

66--67

-

5

2

2140

s

5

3

0140

67 50.266

74 12.880

1301

200

Wiebe

 

nbp12202.032

XCTD

2

67

219.250

5

2

2248

s/e

5

3

0248

67 46.499

74 21.092

2482

-

Sepulveda

Not loading

nbp12202.033

XBT

59

67

219.250

5

2

2258

s/e

5

3

0258

67 46.499

74 21.092

2484

-

Sepulveda

T5 BAD below 500

nbp12202.034

XBT

60

67

219.250

5

2

2301

s/e

5

3

0301

67 46.335

74 21.596

2500

-

Sepulveda

T5 BAD Below 500

nbp12302.001

BMP II

35

68

219.365

5

3

0025

e

5

3

0425

67 41.84

74 35.34

2499

200

Wiebe

 

nbp12302.002

CTD

71

68

219.365

5

3

0047

s

5

3

0447

67 41.45

74 36.48

2499

2494

Boyer

 

nbp12302.003

CTD

71

68

219.365

5

3

0254

e

5

3

0654

67 41.45

74 36.48

2499

2494

Boyer

 

nbp12302.004

BMP II

36

68

219.365

5

3

0310

s

5

3

0710

67 40.72

74 38.14

2453

250

Wiebe

 

nbp12302.005

XCTD

3

69

219.280

5

3

0444

s/e

5

3

0844

67 41.43

74 36.39

2774

1692

Boyer

 

nbp12302.006

BMP II

36

70

219.295

5

3

0622

e

5

3

1022

67 30.61

75 08.15

2903

250

Wiebe

 

nbp12302.007

Surface tow

15

70

219.295

5

3

0645

s

5

3

1045

67 30.61

75 08.15

2903

80

Chapman

 

nbp12302.008

Surface tow

15

70

219.295

5

3

0700

e

5

3

1100

67 30.61

75 08.15

2903

80

Chapman

 

nbp12302.009

CTD

72

70

219.295

5

3

0703

s

5

3

1103

67 30.96

75 08.31

2941

100

Boyer

FRRF

nbp12302.010

CTD

72

70

219.295

5

3

0713

e

5

3

0713

67 30.96

75 08.31

2941

100

Boyer

FRRF

nbp12302.011

CTD

72

70

219.295

5

3

0727

s

5

3

1127

67 30.95

75 08.28

2969

2964

Boyer

 

nbp12302.012

CTD

72

70

219.295

5

3

0956

e

5

3

1356

67 30.95

75 08.28

2969

2964

Boyer

 

nbp12302.013

Bird obs

-

70--71

-

5

3

0955

s

5

3

1355

67 31.365

75 08.091

2908

-

Chapman

 

nbp12302.014

BMP II

37

70--71

-

5

3

1011

s

5

3

1411

67 31.974

75 08.306

2908

~200

Wiebe

 

nbp12302.015

Whale obs

-

70--71

-

5

3

1015

s

5

3

1415

67 31.903

75 08.311

2976

-

Glasgow

 

nbp12302.016

Sonobuoy

38

70--71

-

5

3

1407

s

5

3

1807

67 49.298

75 03.753

3125

120

Sirovic

 

nbp12302.017

Bird obs

-

70--71

-

5

3

1605

e

5

3

2005

67 58.244

74 58.359

2755

-

Chapman

 

nbp12302.018

Sonobuoy

38

-

-

5

3

1518

e

5

3

1918

-

-

-

-

Sirovic

 

nbp12302.019

Whale obs

-

70--71

-

5

3

1645

e

5

3

2045

68 01.369

74 55.883

2560

-

Glasgow

 

nbp12302.020

APOP

12

71

179.241

5

3

1833

s

5

3

2233

68 05.995

74 47.750

414

205

Chu

 

nbp12302.021

APOP

12

71

179.241

5

3

2015

e

5

4

0015

68 06.060

74 47.797

417

205

Chu

 

nbp12302.022

BMP II

37

71

179.241

5

3

1818

e

5

3

2218

68 06.060

74 47.77

417

200

Wiebe

 

nbp12302.023

CTD

74

71

179.241

5

3

2023

s

5

4

0023

68 06.08

74 47.80

417

404

Sepulveda

FRRF

nbp12302.024

CTD

74

71

179.241

5

3

2112

e

5

4

0112

68 06.08

74 47.80

417

404

Sepulveda

FRRF

nbp12302.025

MOC

17

71

179.241

5

3

2121

s

5

4

0121

68 06.247

74 48.585

425

 

Wiebe

 

nbp12402.000

BMP II

38

71

179.241

5

4

0030

s

5

4

0430

68 10.334

75 00.633

488

225

Wiebe

 

nbp12402.001

BMP II

38

71

179.241

5

4

0240

e

5

4

0640

68 10.992

74 34.968

488

225

Wiebe

 

nbp12402.002

CTD

75

72

179.220

5

4

0340

s

5

4

0740

68 13.58

74 24.86

438

433

Boyer

FRRF

nbp12402.003

CTD

75

72

179.220

5

4

0418

e

5

4

0818

68 13.58

74 24.86

438

433

Boyer

FRRF

nbp12402.004

BMP II

39

72--73

-

5

4

0642

s

5

4

1042

68 22.03

73 58.08

600

250

Wiebe

 

nbp12402.005

BMP II

39

73

179.180

5

4

0836

e

5

4

1236

68 27.12

73 40.96

532

200

Wiebe

 

nbp12402.006

CTD

76

73

179.180

5

4

0859

s

5

4

1259

68 27.34

73 40.32

523

517

Boyer

 

nbp12402.007

CTD

76

73

179.180

5

4

0940

e

5

4

1340

68 27.34

73 40.32

523

517

Boyer

 

nbp12402.008

MOC

18

73

179.180

5

4

1000

s

5

4

1315

68 27.50

73 40.66

535

525

Wiebe

 

nbp12402.009

MOC

18

73

179.180

5

4

1215

e

5

4

1615

68 29.8

73 50.71

535

525

Ashjian

 

nbp12402.010

Whale obs

-

73--74

-

5

4

1200

s

5

4

1600

68 27.671

73 40.349

518

-

Glasgow

 

nbp12402.011

Bird obs

-

73--74

-

5

4

1209

s

5

4

1609

68 29.587

73 50.566

662

-

Chapman

 

nbp12402.012

BMP II

40

73--74

-

5

4

1420

s

5

4

1820

68 32.7

73 29.3

3158

 

Ashjian

 

nbp12402.013

Sonobuoy

39

to 74

-

5

4

1430

s/e

5

4

1830

68 32.400

73 27.171

549

120

Sirovic

 

nbp12402.014

Sonobuoy

40

to 74

-

5

4

1440

s

5

4

1840

68 32.780

73 25.661

581

120

Sirovic

 

nbp12402.015

Sonobuoy

40

to 74

-

5

4

1547

e

5

4

1947

-

-

-

-

Sirovic

 

nbp12402.016

Bird obs

-

to 74

-

5

4

1604

e

5

4

2004

68 36.935

73 10.970

729

-

Chapman

 

nbp12402.017

Whale obs

-

to 74

-

5

4

1655

e

5

4

2055

68 39.537

73 02.492

806

-

Glasgow

 

nbp12402.018

CTD

77

74

179.140

5

4

1751

s

5

4

2151

68 40.98

72 55.17

224

210

Cobb

 

nbp12402.019

CTD

77

74

179.140

5

4

1827

e

5

4

2227

68 40.98

72 55.17

224

210

Cobb

 

nbp12402.020

BMP II

40

74

179.140

5

4

1742

e

5

4

2142

68 40.99

72 55.22

232

25

Wiebe

 

nbp12402.021

APOP

13

74

179.140

5

4

1842

s

5

4

2242

68 40.931

72 54.889

227

205

Chu

 

nbp12402.022

APOP

13

74

179.140

5

4

2023

e

5

4

0023

68 40.883

72 54.864

218

205

Chu

 

nbp12402.023

Surface tow

16

74

179.140

5

4

2025

s

5

5

0025

68 40.879

72 54.886

218

-

Chapman

 

nbp12402.024

Surface tow

16

74

179.140

5

4

2100

e

5

5

0100

68 41.064

72 53.354

271

-

Chapman

 

nbp12402.025

BMP II

41

74-75

-

5

4

2110

s

5

5

0110

68 41.245

72 52.56

270

80

Wiebe

 

nbp12402.026

Bird obs

-

74

179.140

5

4

2139

s

5

5

0139

68 42.462

72 48.153

218

-

Chapman

 

nbp12402.027

Bird obs

-

74--75

-

5

4

2220

e

5

5

0220

68 44.190

72 42.533

288

-

Chapman

 

nbp12402.028

MOC

17

71

179.241

5

3

2349

e

5

4

0349

68 09.17

74 58.69

450

 

Wiebe

 

nbp12502.001

BMP II

41

75

179.100

5

5

0305

e

5

5

0705

68 54.6

72 08.89

170

70

Wiebe

 

nbp12502.002

CTD

78

75

179.100

5

5

0321

s

5

5

0721

68 54.54

72 08.87

165

162

Boyer

FRRF

nbp12502.003

CTD

78

75

179.100

5

5

0348

e

5

5

0748

68 54.54

72 08.87

165

162

Boyer

FRRF

nbp12502.004

BMP II

42

75

179.100

5

5

0420

s

5

5

0820

68 55.356

72 10.273

266

 

Wiebe

 

nbp12502.005

Bird night survey

-

to 76

-

5

5

0753

s

5

5

1153

69 06.325

72 35.425

117

-

Chapman

 

nbp12502.006

Bird night survey

-

to 76

-

5

5

0836

e

5

5

1236

69 08.460

72 40.392

136

-

Chapman

 

nbp12502.007

BMP II

42

76

139.100

5

5

0931

e

5

5

1331

69 11.032

72 41.032

138

75

Wiebe

 

nbp12502.008

ROV

3

76

139.100

5

5

1025

s

5

5

1425

69 11.170

72 46.379

168

 

Kukulya

 

nbp12502.009

ROV

3

76

139.100

5

5

1035

e

5

5

1435

69 10.776

72 45.688

168

 

Kukulya

 

nbp12502.010

Ice sample

6

76

139.100

5

5

1100

s/e

5

5

1500

69 10.252

72 45.231

170

-

Vernet

 

nbp12502.011

CTD

79

76

139.100

5

5

1208

s

5

5

1608

69 10.22

72 45.11

189

178

Cobb

FRRF

nbp12502.012

CTD

79

76

139.100

5

5

1243

e

5

5

1643

69 10.22

72 45.11

189

178

Cobb

FRRF

nbp12502.013

Whale obs

-

76--77

-

5

5

1325

s

5

5

1725

69 09552

72 42.540

167

-

Glasgow

 

nbp12502.014

Bird obs

-

76--77

-

5

5

1346

s

5

5

1746

69 08.884

72 41.183

150

-

Chapman

 

nbp12502.015

MOC

19

76

139.100

5

5

1303

s

5

5

1703

69 09.91

72 44.6

126

180

Ashjian

 

nbp12502.016

MOC

19

76

139.100

5

5

1352

e

5

5

1746

69 08.8

72 41.2

 

 

Ashjian

 

nbp12502.017

BMP II

43

76

139.100

5

5

1430

s

5

5

1830

69 09.711

72 45.9

 

70

Wiebe

 

nbp12502.018

Sonobuoy

41

76--77

-

5

5

1603

s

5

5

2003

69 06.911

72 59.121

230

120

Sirovic

 

nbp12502.019

Sonobuoy

41

76--77

-

5

5

1637

e

5

5

2037

-

-

-

-

Sirovic

 

nbp12502.020

Bird obs

-

76--77

-

5

5

1639

e

5

5

2039

69 05.135

73 03.556

913

-

Chapman

 

nbp12502.021

Whale obs

-

76--77

-

5

5

1645

e

5

5

2045

69 05.026

73 03.833

968

 

Glasgow

 

nbp12502.022

CTD

80

77

139.140

5

5

2012

s

5

6

0012

68 57.33

73 33.05

221

216

Sepulveda

FRRF

nbp12502.023

CTD

80

77

139.140

5

5

2054

e

5

6

0054

68 57.33

73 33.05

221

216

Sepulveda

FRRF

nbp12502.024

APOP

14

77

139.140

5

5

2123

s

5

6

0123

68 57.551

73 30.492

154

165

Chu

 

nbp12502.025

APOP

14

77

139.140

5

5

2243

e

5

6

0243

68 56.994

73 32.274

184

 

Chu

 

nbp12502.026

BMP II

43

77

139.140

5

5

2006

e

5

6

0006

68 57.34

73 33.00

199

20

Wiebe

 

nbp12502.027

Surface tow

17

77

139.140

5

5

2055

s/e

5

6

0055

68 57.33

73 33.05

221

 

Chapman

 

nbp12502.028

BMP II

44

77-78

-

5

5

2325

s

5

6

0325

68 57.188

73 31.68

192

 

Wiebe

 

nbp12602.001

BMP II

44

78

139.180

5

6

0430

e

5

6

0830

68 43.69

74 18.58

476

25

Wiebe

 

nbp12602.002

CTD

81

78

139.180

5

6

0439

s

5

6

0839

68 43.69

74 18.57

488

464

MacKay

 

nbp12602.003

CTD

81

78

139.180

5

6

0524

e

5

6

0924

68 43.69

74 18.57

488

464

MacKay

 

nbp12602.004

Ice sample

7

78

139.180

5

6

0530

s/e

5

6

0930

68 43.591

74 18.512

484

0

Vernet

 

nbp12602.005

BMP II

45

78--79

-

5

6

0548

s

5

6

0948

68 43.74

74 14.5

503

-

Wiebe

 

nbp12602.006

Whale obs

-

78--79

-

5

6

0853

s

5

6

1253

68 33.788

74 49.516

475

-

Glasgow

 

nbp12602.007

Bird obs

-

78--79

-

5

6

0904

s

5

6

1304

68 33.128

74 51.874

465

-

Chapman

 

nbp12602.008

BMP II

45

79

139.220

5

6

1005

e

5

6

1405

68 30.341

75 05.226

442

200

Wiebe

 

nbp12602.009

CTD

82

79

139.220

5

6

1031

s

5

6

1431

68 29.54

75 02.84

427

422

MacKay

 

nbp12602.010

CTD

82

79

139.220

5

6

1112

e

5

6

1512

68 29.54

75 02.84

427

422

MacKay

 

nbp12602.011

BMP II

46

79--80

-

5

6

1125

s

5

6

1525

68 29.48

75 03.397

440

200

Wiebe

 

nbp12602.012

Sonobuoy

42

-

-

5

6

1139

s

5

6

1539

68 28.971

75 15.851

431

120

Sirovic

 

nbp12602.013

Sonobuoy

42

-

-

5

6

1306

e

5

6

1706

-

-

-

-

Sirovic

 

nbp12602.014

Sonobuoy

43

-

-

5

6

1416

s

5

6

1816

68 20.147

75 32.007

446

120

Sirovic

 

nbp12602.015

CTD

83

80

139.255

5

6

1602

s

5

6

2002

68 17.21

75 41.37

2051

2049

Cobb

 

nbp12602.016

CTD

83

80

139.255

5

6

1750

e

5

6

2150

68 17.21

75 41.37

2051

2049

Cobb

 

nbp12602.017

BMP II

46

80

139.255

5

6

1515

e

5

6

1915

68 17.507

75 39.654

1420

230

Wiebe

 

nbp12602.018

Bird obs

-

80

139.255

5

6

1518

e

5

6

1918

68 17.104

75 41.500

2075

-

Chapman

 

nbp12602.019

Sonobuoy

43

80

139.255

5

6

1516

e

5

6

1916

-

-

-

-

Sirovic

 

nbp12602.020

Whale obs

-

80

139.255

5

6

1610

e

5

6

2010

68 17.248

75 41.291

1985

-

Glasgow

 

nbp12602.021

Surface tow

18

80

139.255

5

6

1749

s

5

6

2149

68 17.148

75 40.879

1939

-

Chapman

 

nbp12602.022

Surface tow

18

80

139.255

5

6

1820

e

5

6

2220

68 17.491

75 39.619

1488

-

Chapman

 

nbp12602.023

BMP II

47

80

139.255

5

6

1830

s

5

6

2230

68 18.10

75 40.88

1394

250

Wiebe

 

nbp12602.024

Bird obs

-

80--81

-

5

6

2050

s

5

6

2450

68 26.778

75 59.643

944

-

Chapman

 

nbp12602.025

Bird obs

-

80--81

-

5

6

2125

e

5

7

0125

68 28.916

76 05.432

694

-

Chapman

 

nbp12602.026

BMP II

47

80--81

-

5

6

2250

e

5

7

0250

68 32.988

76 18.20

1075

200

Wiebe

 

nbp12602.027

CTD

84

81

099.220

5

6

2309

s

5

7

0309

68 32.94

76 20.48

1176

1175

Cobb

 

nbp12702.001

CTD

84

81

099.220

5

7

0020

e

5

7

0420

68 32.94

76 20.48

1176

1175

Cobb

 

nbp12702.002

BMP II

48

81

099.220

5

7

0035

s

5

7

0435

68 33.65

76 17.66

650

250

Ashjian

 

nbp12702.003

BMP II

48

82

099.220

5

7

0424

e

5

7

0824

68 45.67

75 42.07

452

250

Wiebe

 

nbp12702.004

CTD

85

82

099.220

5

7

0435

s

5

7

0835

68 45.68

75 42.07

455

450

Boyer

FRRF

nbp12702.005

CTD

85

82

099.220

5

7

0515

e

5

7

0915

68 45.68

75 42.07

455

450

Boyer

FRRF

nbp12702.006

Surface tow

19

82

099.220

5

7

0525

s

5

7

0925

68 45.895

75 42.07

455

75

Chapman

 

nbp12702.007

Surface tow

19

82

099.220

5

7

0541

e

5

7

0941

68 45.895

75 41.478

457

75

Chapman

 

nbp12702.008

Reeve net

10

82

99.220

5

7

0545

s

5

7

0945

68 45.980

75 41.241

457

434

Chu

 

nbp12702.009

Reeve net

10

82

99.220

5

7

0652

e

5

7

1052

68 45.860

75 39.150

470

434

Chu

 

nbp12702.010

BMP II

49

82

099.220

5

7

0655

s

5

7

1055

68 46.22

75 38.65

470

250

Wiebe

 

nbp12702.011

Bird obs

-

82--83

-

5

7

0850

s

5

7

1250

68 52.447

75 19.947

385

-

Chapman

 

nbp12702.012

Whale obs

-

82--83

-

5

7

0920

s

5

7

1320

68 54.175

75 14.431

430

-

Glasgow

 

nbp12702.013

Sonobuoy

44

82--83

-

5

7

1039

s/e

5

7

1439

68 58.423

75 02.618

438

120

Sirovic

Failed

nbp12702.014

BMP II

49

82--83

-

5

7

1105

e

5

7

1505

68 59.675

74 58.62

346

200

Wiebe

 

nbp12702.015

CTD

86

83

099.180

5

7

1134

s

5

7

1534

69 00.19

74 57.42

337

332

Boyer

FRRF

nbp12702.016

CTD

86

83

099.180

5

7

1208

e

5

7

1608

69 00.19

74 57.42

337

332

Boyer

FRRF

nbp12702.017

MOC

20

83

099.180

5

7

1240

s

5

7

1640

69 03.7

74 56.1

365

329

Ashjian

 

nbp12702.018

MOC

20

83

099.180

5

7

1418

e

5

7

1818

69 01.2

75 04.6

374

-

Ashjian

 

nbp12702.019

BMP II

50

83

099.180

5

7

1500

s

5

7

1900

69 2.45

74 57.83

387

 

Wiebe

 

nbp12702.020

Bird obs

-

83--84

-

5

7

1622

e

5

7

2022

69 03.748

74 45.144

363

-

Chapman

 

nbp12702.021

Whale obs

-

83--84

-

5

7

1642

e

5

7

2042

69 04.619

74 42.148

383

 

Glasgow

 

nbp12702.022

Sonobuoy

45

83--84

-

5

7

1658

s

5

7

2058

69 05.371

74 40.041

420

120

Sirovic

 

nbp12702.023

Sonobuoy

45

83--84

-

5

7

1810

e

5

7

2210

-

-

-

-

Sirovic

 

nbp12702.024

BMP II

50

84

099.140

5

7

2000

e

5

8

0000

69 14.00

74 11.81

634

25

Wiebe

 

nbp12702.027

Ice sample

8

84

099.140

5

7

2055

s/e

5

8

0055

69 14.001

74 11.788

641

-

Vernet

 

nbp12702.028

CTD

87

84

099.140

5

7

2105

s

5

8

0105

69 13.98

74 11.70

638

100

Cobb

FRRF

nbp12702.029

CTD

87

84

099.140

5

7

2121

e

5

8

0121

69 13.98

74 11.70

638

100

Cobb

FRRF

nbp12702.030

CTD

88

84

099.140

5

7

2131

s

5

8

0131

69 13.99

74 11.82

638

635

Cobb

 

nbp12702.031

CTD

88

84

099.140

5

7

2220

e

5

8

0220

69 13.99

74 11.82

638

635

Cobb

 

nbp12702.032

APOP

15

84

099.140

5

7

2232

s

5

8

0232

69 14.010

74 11.628

652

205

Chu

 

nbp12802.001

APOP

15

84

099.140

5

8

0013

e

5

8

0413

69 14.213

74 12.192

606

205

Chu

 

nbp12802.002

BMP II

51

84

099.140

5

8

0015

s

5

8

0415

69 14.120

74 11.849

638

250

Wiebe

 

nbp12802.003

BMP II

51

84

099.140

5

8

0505

e

5

8

0905

69 31.21

74 25.75

203

200

Wiebe

 

nbp12802.004

ROV

5

85

061.122

5

8

0628

s

5

8

1028

69 32.719

74 025.648

180

10

Girard

 

nbp12802.005

ROV

5

85

061.122

5

8

0750

e

5

8

1150

69 32.719

74 025.648

180

10

Girard

 

nbp12802.006

Ice sample

9

85

061.122

5

8

0835

s/e

5

8

1235

69 32.922

74 25.842

184

-

Vernet

 

nbp12802.007

CTD

89

85

061.122

5

8

0926

s

5

8

1326

69 32.93

74 25.82

175

170

MacKay

 

nbp12802.008

CTD

89

85

061.122

5

8

0957

e

5

8

1357

69 32.93

74 25.82

175

170

MacKay

 

nbp12802.009

Bird obs

-

to 86

-

5

8

0955

s

5

8

1355

69 32.954

74 25.812

166

-

Chapman

 

nbp12802.010

Whale obs

-

to 86

-

5

8

0955

s

5

8

1355

69 32.954

74 25.812

166

-

Glasgow

 

nbp12802.011

BMP II

52

85-86

-

5

8

1139

s

5

8

1539

69 28.584

74 30.74

289

 

Wiebe

 

nbp12802.012

BMP II

52

to86

-

5

8

1420

e

5

8

1820

69 29.26

74 49.58

280

 

Ashjian

 

nbp12802.013

CTD

90

86

059.140

5

8

1424

s

5

8

1824

69 29.30

74 49.57

260

252

Cobb

FRRF

nbp12802.014

CTD

90

86

059.140

5

8

1502

e

5

8

1902

69 29.30

74 49.57

260

252

Cobb

FRRF

nbp12802.015

BMP II

53

86

059.140

5

8

1520

s

5

8

1920

69 28.64

74 52.39

312

 

Ashjian

 

nbp12802.016

Sonobuoy

46

86--87

-

5

8

1542

s

5

8

1942

69 27.919

74 55.174

261

120

Sirovic

 

nbp12802.017

Sonobuoy

46

86--87

-

5

8

1626

e

5

8

2026

-

-

-

-

Sirovic

 

nbp12802.018

Bird obs

-

86--87

-

5

8

1652

e

5

8

2052

69 24.327

75 07.659

300

-

Chapman

 

nbp12802.019

Whale obs

-

86--87

-

5

8

1655

e

5

8

2055

69 24.219

75 08.157

248

 

Glasgow

 

nbp12802.020

BMP II

53

86--87

-

5

8

2005

e

5

9

0005

69 16.041

75 36.37

400

200

Wiebe

 

nbp12802.021

Surface tow

20

87

059.180

5

8

2025

s

5

9

0025

69 15.917

75 37.722

409

-

Chapman

 

nbp12802.022

Surface tow

20

87

059.180

5

8

2038

e

5

9

0038

69 15.79

75 38.02

438

-

Chapman

 

nbp12802.023

CTD

91

87

059.180

5

8

2109

s

5

9

0109

69 15.79

75 38.02

438

433

Sepulveda

FRRF

nbp12802.024

CTD

91

87

059.180

5

8

2201

e

5

9

0201

69 15.79

75 38.02

438

433

Sepulveda

FRRF

nbp12802.025

BMP II

54

87--88

-

5

8

2221

s

5

9

0221

69 15.006

75 39.386

490

200

Wiebe

 

nbp12802.026

Sonobuoy

47

87--88

-

5

8

2234

s

5

9

0234

69 14.536

75 41.211

450

120

Sirovic

 

nbp12802.027

Sonobuoy

47

87--88

-

5

8

2328

e

5

9

0328

-

-

-

-

Sirovic

 

nbp12902.001

BMP II

54

88

059.220

5

9

0310

e

5

9

0710

69 01.29

76 22.20

429

200

Ashjian

 

nbp12902.002

CTD

92

88

059.220

5

9

0325

s

5

9

0725

69 01.33

76 22.18

430

425

Boyer

FRRF

nbp12902.003

CTD

92

88

059.220

5

9

0400

e

5

9

0800

69 01.33

76 22.18

430

425

Boyer

FRRF

nbp12902.004

ROV

6

88

059.220

5

9

0430

s

5

9

0830

69 00.62

76 21.99

410

10

Girard

 

nbp12902.005

ROV

6

88

059.220

5

9

0555

e

5

9

0955

68 59.76

76 21.88

410

10

Girard

 

nbp12902.006

Reeve net

11

88

059.220

5

9

0605

s

5

9

1005

68 59.782

76 21.865

421

375

Chu

 

nbp12902.007

Reeve net

11

88

059.220

5

9

0655

e

5

9

1055

68 59.421

76 22.083

420

375

Chu

 

nbp12902.008

BMP II

55

88

059.220

5

9

0710

s

5

9

1110

68 59.75

76 23.15

420

 

Wiebe

 

nbp12902.009

Bird obs

-

88-89

-

5

9

0844

s

5

9

1244

68 55.890

76 40.125

318

-

Chapman

 

nbp12902.010

Whale obs

-

88-89

-

5

9

0920

s

5

9

1320

68 52.880

76 45.770

400

-

Glasgow

 

nbp12902.011

Sonobuoy

48

88-89

-

5

9

0948

s

5

9

1348

68 52.491

76 49.714

393

120

Sirovic

 

nbp12902.012

Sonobuoy

48

88-89

-

6

9

1021

e

5

9

1421

-

-

-

-

Sirovic

 

nbp12902.013

BMP II

55

88-89

-

5

9

1053

e

5

9

1453

68 49.13

76 59.60

447

200

Wiebe

 

nbp12902.014

CTD

93

89

059.255

5

9

1113

s

5

9

1513

68 48.62

76 59.45

423

436

MacKay

 

nbp12902.015

MOC

21

89

059.255

5

9

1237

s

5

9

1637

68 48.4

76 58.5

412

390

Ashjian

 

nbp12902.016

MOC

21

89

059.255

5

9

1413

e

5

9

1813

68 54.7

77 04.9

417

390

Ashjian

 

nbp12902.017

BMP II

56

89

059.255

5

9

1445

s

5

9

1845

68 52.57

77 10.10

417

 

Wiebe

 

nbp12902.018

Sonobuoy

49

89--90

-

5

9

1519

s

5

9

1919

68 53.866

77 14.410

260

120

Sirovic

 

nbp12902.019

Sonobuoy

49

89--90

-

5

9

1529

e

5

9

1929

-

-

-

-

Sirovic

 

nbp12902.020

Bird obs

-

89--90

-

5

9

1658

e

5

9

2058

68 58.815

77 31.647

413

-

Chapman

 

nbp12902.021

Whale obs

-

89--90

-

5

9

1705

e

5

9

2105

68 59.240

77 33.205

216

-

Glasgow

 

nbp12902.022

BMP II

56

90

019.260

5

9

1840

e

5

9

2240

69 02.45

77 46.49

408

25

Wiebe

 

nbp12902.023

CTD

94

90

019.260

5

9

1843

s

5

9

2243

69 02.46

77 46.47

408

401

Cobb

FRRF

nbp12902.024

CTD

94

90

019.260

5

9

1925

e

5

9

2325

69 02.46

77 46.47

408

401

Cobb

FRRF

nbp12902.025

Surface tow

21

90

019.260

5

9

1922

s

5

9

2322

69 02.47

77 46.533

406

100

Chapman

 

nbp12902.026

Surface tow

21

90

019.260

5

9

2012

e

5

10

0012

69 02.536

77 45.910

406

100

Chapman

 

nbp12902.027

BMP II

57

90

019.260

5

9

2016

s

5

10

0016

69 2.65

77 45.62

 

 

Wiebe

 

nbp12902.028

CTD

93

89

059.255

5

9

1152

e

5

9

1552

68 48.62

76 59.45

423

436

MacKay

 

nbp13002.001

BMP II

57

91

019.220

5

10

0117

e

5

10

0517

69 17.400

77 03.320

407

225

Wiebe

 

nbp13002.002

CTD

95

91

019.220

5

10

0118

s

5

10

0518

69 17.40

77 03.31

406

391

MacKay

 

nbp13002.003

CTD

95

91

019.220

5

10

0154

e

5

10

0554

69 17.40

77 03.31

406

391

MacKay

 

nbp13002.004

BMP II

58

91

019.220

5

10

0210

s

5

10

0610

69 17.40

77 03.31

406

220

Wiebe

 

nbp13002.005

BMP II

58

92

019.180

5

10

0725

e

5

10

1125

69 31.97

76 19.12

424

25

Wiebe

 

nbp13002.006

Ice sample

10

92

019.180

5

10

0800

s/e

5

10

1200

69 31.785

76 19.388

428

-

Vernet

 

nbp13002.007

ROV

6

92

019.180

5

10

1005

s

5

10

1405

69 31.785

76 19.388

435

-

Girard

 

nbp13002.008

ROV

6

92

019.180

5

10

1105

e

5

10

1505

69 31.785

76 19.388

434

-

Girard

 

nbp13002.009

CTD

96

92

019.180

5

10

1141

s

5

10

1541

69 31.99

76 18.41

418

406

MacKay

FRRF

nbp13002.010

CTD

96

92

019.180

5

10

1225

e

5

10

1625

69 31.99

76 18.41

418

406

Cobb

FRRF

nbp13002.011

Whale obs

-

92

019.180

5

10

1255

s

5

10

1655

69 32.029

76 16.976

478

-

Glasgow

 

nbp13002.012

MOC

22

92

019.180

5

10

1254

s

5

10

1654

69 31.99

76 17.3

470

282

Ashjian

 

nbp13002.013

MOC

22

92

019.180

5

10

1415

e

5

10

1815

69 34.3

76 19.3

330

282

Ashjian

 

nbp13002.014

Bird obs

-

92--51

-

5

10

1413

s

5

10

1813

69 34.370

76 19.359

382

-

Chapman

 

nbp13002.015

Sonobuoy

50

92--51

-

5

10

1618

s

5

10

2018

69 27.307

75 58.962

352

120

Sirovic

 

nbp13002.016

Whale obs

-

92--51

-

5

10

1627

e

5

10

2027

69 26.884

75 57.339

309

-

Glasgow

 

nbp13002.017

Sonobuoy

50

92--51

-

5

10

1815

e

5

10

2215

-

-

-

-

Sirovic

 

nbp13002.018

Bird obs

-

92--51

-

5

10

1627

e

5

10

2027

69 26.884

75 57.339

309

-

Chapman

 

nbp13102.001

Whale obs

-

92--51

-

5

11

0940

s

5

11

1340

68 46.577

72 30.411

139

-

Glasgow

 

nbp13102.002

Bird obs

-

92--51

-

5

11

0953

s

5

11

1353

68 45.826

72 28.570

137

-

Chapman

 

nbp13102.003

Sonobuoy

51

92--51

-

5

11

1428

s/e

5

11

1828

68 19.698

72 52.465

593

120

Sirovic

 

nbp13102.004

Bird obs

-

92--51

-

5

11

1604

e

5

11

2004

68 09.459

71 45.061

343

-

Chapman

 

nbp13102.005

Whale obs

-

92--51

-

5

11

1620

e

5

11

2020

68 08.252

71 42.713

403

-

Glasgow

 

nbp13102.006

BMP II

59

51

259.140

5

11

1653

s

5

11

2053

68 07.00

71 42.75

546

 

Wiebe

 

nbp13102.007

BMP II

59

50

259.180

5

11

2132

e

5

12

0132

67 54.27

72 27.01

368

 

Wiebe

 

nbp13202.001

BMP II

60

43

 

 

12

0312

s

5

12

0712

67 51.52

71 04.499

 

 

Wiebe

 

nbp13203.002

Whale obs

-

43--41

-

5

12

0925

s

5

12

1325

68 09.937

70 01.163

892

-

Glasgow

 

nbp13203.003

Bird obs

-

43--41

-

5

12

0945

s

5

12

1345

68 10.875

69 57.704

599

-

Chapman

 

nbp13202.004

Sonobuoy

52

43--41

-

5

12

1051

s

5

12

1451

68 13.857

69 46.042

460

120

Sirovic

 

nbp13202.005

BMP II

60

41

 

5

12

1200

e

5

12

1600

68 14.53

69 34.29

426

 

Wiebe

 

nbp13202.006

CTD

97

MBCTD

314.020

5

12

1435

s

5

12

1835

68 15.71

68 59.81

272

100

Ashford

FRRF Experiment

nbp13202.007

CTD

97

MBCTD

314.020

5

12

1457

e

5

12

1857

68 15.71

68 59.81

272

100

Ashford

FRRF Experiment

nbp13202.008

CTD

98

MBCTD

314.020

5

12

1501

s

5

12

1901

68 15.71

68 59.81

272

100

Ashford

FRRF Experiment

nbp13202.009

CTD

98

MBCTD

314.020

5

12

1506

e

5

12

1906

68 15.71

68 59.81

272

100

Ashford

FRRF Experiment

nbp13202.010

CTD

99

MBCTD

314.020

5

12

1511

s

5

12

1911

68 15.71

68 59.81

272

100

Ashford

FRRF Experiment

nbp13202.011

CTD

99

MBCTD

314.020

5

12

1515

e

5

12

1915

68 15.71

68 59.81

272

100

Ashford

FRRF Experiment

nbp13202.012

CTD

100

MBCTD

314.020

5

12

1519

s

5

12

1919

68 15.71

68 59.81

272

100

Ashford

FRRF Experiment

nbp13202.013

CTD

100

MBCTD

314.020

5

12

1522

e

5

12

1922

68 15.71

68 59.81

272

100

Ashford

FRRF Experiment

nbp13202.014

CTD

101

MBCTD

314.020

5

12

1528

s

5

12

1928

68 15.71

68 59.81

272

200

Ashford

FRRF & Nuts Experiment

nbp13202.015

CTD

101

MBCTD

314.020

5

12

1558

e

5

12

1958

68 15.71

68 59.81

272

200

Ashford

FRRF & Nuts Experiment

nbp13202.018

Bird obs

-

MBCTD

314.020

5

12

1439

e

5

12

1839

68 15.712

68 59.775

275

-

Chapman

 

nbp13202.019

APOP

16

MBCTD

314.020

5

12

1615

s

5

12

2015

68 15.787

68 59.534

227

205

Chu

 

nbp13202.020

APOP

16

MBCTD

314.020

5

12

1752

e

5

12

2152

68 15.862

68 58.909

234

205

Chu

 

nbp13202.021

Whale obs

-

MBCTD

314.020

5

12

1439

e

5

12

1839

68 15.712

68 59.775

275

-

Glasgow

 

nbp13202.022

Sonobuoy

52

-

-

5

12

1209

e

5

12

1609

-

-

-

-

Sirovic

 

nbp13202.023

Sonobuoy

53

-

-

5

12

2047

s

5

13

0047

67 57.770

69 30.325

625

120

Sirovic

 

nbp13202.024

ROV

7

28

 

5

12

2253

s

5

13

0253

67 45.896

69 48.489

620

10

Girard

 

nbp13202.025

ROV

7

28

 

5

12

2346

e

5

13

0346

67 45.656

69 47.438

620

10

Girard

 

nbp13202.026

Sonobuoy

53

 

 

5

12

2152

e

5

13

0152

-

-

-

-

Sirovic

 

nbp13302.001

BMP II

61

28--27

-

5

13

0012

s

5

13

0412

67 45.437

69 48.203

625

250

Wiebe

 

nbp13302.002

BMP II

61

27

339.100

5

13

0445

e

5

13

0845

67 31.33

70 34.33

647

25

Wiebe

 

nbp13302.003

MOC

23

26

339.180

5

13

0741

s

5

13

1141

67 20.71

71 17.41

460

447

Alatalo

 

nbp13302.004

MOC

23

26

339.180

5

13

0926

e

5

13

1326

67 22.16

71 24.60

457

447

Alatalo

 

nbp13302.005

Whale obs

-

26

-

5

13

0945

s

5

13

1345

67 21.335

71 21.733

458

-

Glasgow

 

nbp13302.006

bird obs

-

 to MT1

-

5

13

0953

s

5

13

1353

67 21.202

71 19.519

459

-

Chapman

 

nbp13302.007

Sonobuoy

54

to MT1

-

5

13

1127

s

5

13

1527

67 20.233

70 50.286

506

120

Sirovic

 

nbp13302.008

CTD

102

MT1

364.148

5

13

1306

s

5

13

1706

67 20.11

70 21.34

631

623

Cobb

 

nbp13302.009

CTD

102

MT1

364.148

5

13

1357

e

5

13

1757

67 20.11

70 21.34

631

623

Cobb

 

nbp13302.010

Sonobuoy

54

to MT1

-

5

13

1251

e

5

13

1651

-

-

-

-

Sirovic

 

nbp12202.011

Sonobuoy

55

to MT2

-

5

13

1512

s

5

13

1912

67 12.979

70 17.024

641

120

Sirovic

 

nbp13302.012

CTD

103

MT2

387.160

5

13

1606

s

5

13

2006

67 06.05

70 16.13

642

641

Cobb

 

nbp13302.013

CTD

103

MT2

387.160

5

13

1653

e

5

13

2053

67 06.05

70 16.13

642

641

Cobb

 

nbp13302.014

Sonobuoy

55

to MT2

-

5

13

1559

e

5

13

1959

-

-

-

-

Sirovic

 

nbp13302.015

Whale obs

-

MT2

387.160

5

13

1613

e

5

13

2013

67 06.095

70 16.260

643

-

Glasgow

 

nbp13302.016

bird obs

-

MT2

-

5

13

1613

e

5

13

2013

67 06.095

70 16.260

643

-

Chapman

 

nbp13302.017

CTD

104

MT3

402.178

5

13

1846

s

5

13

2246

66 54.02

70 22.98

638

634

Cobb

 

nbp13302.018

CTD

104

MT3

402.178

5

13

1931

e

5

13

2331

66 54.02

70 22.98

638

634

Cobb

 

nbp13302.019

Sonobuoy

56

to MT4

-

5

13

2052

s

5

14

0052

66 48.595

70 42.880

532

120

Sirovic

 

nbp13302.020

Sonobuoy

56

to MT4

-

5

13

2154

e

5

14

0154

-

-

-

-

Sirovic

 

nbp13402.001

CTD

105

MT4

423.196

5

14

0035

s

5

14

0434

66 39.086

70 24.751

613

597

MacKay

 

nbp13402.002

CTD

105

MT4

423.196

5

14

0122

e

5

14

0522

66 39.086

70 24.751

613

597

MacKay

 

nbp13402.003

CTD

106

MT5

433.217

5

14

0311

s

5

14

0711

66 28.05

70 39.96

606

588

MacKay

 

nbp13402.004

CTD

106

MT5

433.217

5

14

0358

e

5

14

0758

66 28.05

70 39.96

606

588

MacKay

 

nbp13402.005

BMP II

62

10

 

5

14

0558

s

5

14

0958

66 16.46

70 22.13

476

247

Wiebe

 

nbp13402.006

Whale obs

-

to 8

-

5

14

0925

s

5

14

1325

66 27.117

69 48.605

474

-

Glasgow

 

nbp13402.007

XBT

61

near 9

 

5

14

0945

s/e

5

14

1345

66 27.88

69 45.50

494

460

Klinck

T-4

nbp13402.008

Bird obs

-

to 8

-

5

14

0940

s

5

14

1340

66 27.699

69 46.052

482

-

Chapman

 

nbp13402.009

Sonobuoy

57

to 8

-

5

14

0954

s

5

14

1354

66 28.741

69 43.478

507

120

Sirovic

 

nbp13402.010

XBT

62

nearer 9

-

5

14

1013

s/e

5

14

1413

66 29.3118

69 41.00

490

460

Klinck

T-4

nbp13402.011

XBT

63

jimi

-

5

14

1043

s/e

5

14

1443

66 30.932

69 36.364

489

460

Klinck

T-4

nbp13402.012

XBT

64

janis

-

5

14

1118

s/e

5

14

1518

66 32.422

69 30.877

476

460

Klinck

T-4

nbp13402.013

XBT

65

bonham

-

5

14

1147

s/e

5

14

1547

66 33.938

69 25.926

460

460

Klinck

T-4

nbp13402.014

XBT

66

rotten

-

5

14

1214

s/e

5

14

1614

66 35.347

69 20.742

413

413

Klinck

T-4

nbp13402.015

BMP II

62

 

-

5

14

1445

e

5

14

1845

66 41.068

68 54.609

314

225

Wiebe

 

nbp13402.016

Whale obs

-

to Crystal Sound

-

5

14

1600

e

5

14

2000

66 36.111

68 35.212

590

-

Glasgow

 

nbp13402.017

Sonobuoy

57

to Crystal Sound

-

5

14

1248

e

5

14

1648

-

-

-

-

Sirovic

 

nbp13402.018

Bird obs

-

to Crystal Sound

-

5

14

1636

e

5

14

2036

66 34.741

68 23.900

417

-

Chapman

 

nbp13402.019

BMP II

63

6

499.120

5

14

1758

s

5

14

2158

66 29.17

67 56.49

415

125

Wiebe

 

nbp13402.20

BMP II

63

Crystal Sound

-

5

14

2238

e

5

15

0238

66 40.094

67 40.094

 

 

Wiebe

 

nbp13502.001

Reeve Net

12

krill patch

-

5

15

0022

s

5

15

0422

66 31.401

67 36.531

276

100

Chu

 

nbp13502.002

Reeve Net

12

krill patch

-

5

15

0124

e

5

15

0524

66 32.164

67 34.974

296

120

Chu

 

nbp13502.003

APOP

17

krill patch

-

5

15

0208

s

5

15

0608

66 32.042

67 35.099

282

205

Chu

 

nbp13502.004

APOP

17

krill patch

-

5

15

0345

e

5

15

0745

66 31.719

67 33.814

363

 

Chu

 

nbp13502.005

MOC

24

Crystal Sound

-

5

15

 

s

5

15

 

 

 

 

 

 

 

nbp13502.006

MOC

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

nbp13502.007

CTD

107

CS1

504.108

5

15

0543

s

5

15

0943

66 30.92

67 44.37

360

356

Boyer

 

nbp13502.008

CTD

107

CS1

504.108

5

15

0619

e

5

15

1019

66 30.92

67 44.37

360

356

Boyer

 

nbp13502.009

ROV

8

CS2

 

5

15

0715

s

5

15

1115

66 31.180

67 40.692

360

15

Girard

 

nbp13502.010

ROV

8

CS2

 

5

15

0759

e

5

15

1159

66 31.180

67 40.692

360

15

Girard

 

nbp13502.011

Whale obs

-

-

-

5

15

0850

s

5

15

1250

66 30.735

67 30.622

614

-

Glasgow

 

nbp13502.012

Sonobuoy

58

-

-

5

15

0927

s

5

15

1327

66 31.59

67 19.17

518

120

Sirovic

 

nbp13502.013

Sonobuoy

58

-

-

5

15

1014

e

5

15

1414

-

-

-

-

Sirovic

 

nbp13502.014

Adelie Diet Sample

-

Barcroft Islands

-

5

15

1130

s

5

15

1530

66 25.00

67 10.00

-

-

Chapman

 

nbp13502.015

Sonobuoy

59

-

-

5

15

1157

s

5

15

1557

66 28.038

66 57.433

513

400

Sirovic

 

nbp13502.016

BMP II

64

CS3

-

5

15

1306

s

5

15

1706

66 28.76

67 02.63

305

2

Wiebe

Calibration

nbp13502.017

BMP II

64

CS3

-

5

15

1615

e

5

15

2015

66 28.93

67 02.36

390

2

Wiebe

Calibration

nbp13502.018

APOP

18

CS3

-

5

15

1625

s

5

15

2025

66 28.834

67 02.405

411

210

Chu

 

nbp13502.019

APOP

18

CS3

-

5

15

1804

e

5

15

2204

66 29.016

67 02.427

387

210

Chu

 

nbp13502.020

Sonobuoy

59

-

-

5

15

1406

e

5

15

1806

-

-

-

-

Sirovic

 

nbp13502.021

Whale obs

-

-

-

5

15

1530

e

5

15

1930

66 28.93

67 02.36

390

-

Glasgow

 

nbp13502.022

Adelie Diet Sample

-

Barcroft Islands

-

5

15

1600

e

5

15

2000

66 25.00

67 10.00

-

-

Chapman

 

nbp13602.001

Palmer Sta

-

-

-

5

16

1130

s

5

16

1530

64 46.0

64 02.5

-

-

Sepulveda

 

nbp13702.001

Palmer Sta

-

-

-

5

17

0012

e

5

17

0412

64 46.0

64 02.5

-

-

Klinck

 

nbp13702.002

Whale obs

-

-

-

5

17

0847

s

5

17

1247

64 58.474

63 27.808

380

-

Glasgow

 

nbp13702.003

Sonobuoy

60

-

-

5

17

1052

s

5

17

1452

64 42.294

63 00.667

307

120

Sirovic

 

nbp13702.004

Sonobuoy

60

-

-

5

17

1434

e

5

17

1834

-

-

-

-

Sirovic

 

nbp13702.005

Whale obs

-

-

-

5

17

1555

e

5

17

1955

64 19.366

61 57.507

1045

-

Glasgow

 

nbp13802.001

XCTD

4

DN1

-

5

18

0325

s/e

5

18

0725

62 25.47

62 27.228

1605

1585

Klinck

 

nbp13802.002

XBT

61

DN2

-

5

18

0425

s/e

5

18

0825

62 15.874

62 31.271

2527

760

Klinck

T7 bad

nbp12380.003

XBT

62

DN2

-

5

18

0427

s/e

5

18

0827

62 15.381

62 31.415

2784

760

Klinck

T7

nbp13802.004

XBT

63

DN3

-

5

18

0522

s/e

5

18

0922

62 6.287

62 34.953

4774

-

Boyer

T5 bad

nbp13802.005

XBT

64

DN3

-

5

18

0525

s/e

5

18

0925

62 6.01

62 34.969

4756

1360

Boyer

T5

nbp13802.006

XBT

65

DN4

-

5

18

0616

s/e

5

18

1016

61 56.749

62 38.695

4219

760

Klinck

T7

nbp13802.007

XBT

66

DN5

-

5

18

0714

s/e

5

18

1114

61 46.593

62 42.457

3559

950

Klinck

T5

nbp13802.008

XBT

67

DN6

-

5

18

0815

s/e

5

18

1215

61 36.576

62 46.253

3454

760

Boyer

T7

nbp13802.009

XBT

68

DN7

-

5

18

0904

s/e

5

18

1304

61 27.288

62 49.451

3462

1800

Klinck

T5

nbp13802.010

XBT

69

DN8

-

5

18

1005

s/e

5

18

1405

61 16.619

62 53.334

3587

760

Klinck

T7

nbp13802.011

XBT

70

DN9

-

5

18

1100

s/e

5

18

1500

61 7.05

62 59.974

3521

800

Klinck

T5

nbp13802.012

XCTD

5

DN10

-

5

18

1157

s/e

5

18

1557

60 57.255

63 00.496

3229

1000

Klinck

 

nbp13802.013

XBT

71

DN11

-

5

18

1340

s/e

5

18

1740

60 47.453

63 20.691

3796

760

Sepulveda

T7

nbp13802.014

XBT

72

DN12

-

5

18

1429

s/e

5

18

1829

60 37.423

63 23.315

3727

-

Ashford

T5 BAD

nbp13802.015

XBT

73

DN12

-

5

18

1432

s/e

5

18

1832

60 37.423

63 23.315

3719

1000

Ashford

T5 BAD @ 1000

nbp13802.016

XBT

74

DN12

-

5

18

1438

s/e

5

18

1838

60 36.945

63 23.33

3678

1500

Ashford

T5 BAD @ 1500

nbp13802.017

XBT

75

DN13

-

5

18

1536

s/e

5

18

1936

60 27.964

63 26.412

3527

760

Sepulveda

T7

nbp13802.018

XBT

76

DN14

-

5

18

1636

s/e

5

18

2026

60 18.704

63 29.495

3791

1850

Ashford

T5

nbp13802.019

Sonobuoy

62

-

-

5

18

1520

s

5

18

1920

60 29.776

63 25.618

3559

120

Sirovic

 

nbp13802.020

Sonobuoy

62

-

-

5

18

1640

e

5

18

2040

-

-

-

-

Sirovic

 

nbp13802.021

XBT

77

DN15

-

5

18

1730

s/e

5

18

2130

60 08.467

63 32.922

3788

760

Sepulveda

T7

nbp13802.022

XBT

78

DN16

-

5

18

1825

s/e

5

18

2225

59 58.335

63 35.753

3790

-

Ashford

T5 Failed

nbp13802.023

XBT

79

DN16

-

5

18

1830

s/e

5

18

2230

59 58.335

63 35.753

3790

1850

Ashford

T5

nbp13802.024

XBT

80

DN17

-

5

18

1923

s/e

5

18

2323

59 48.607

63 39.067

3482

760

Ashford

T7

nbp13802.025

XBT

81

DN18

-

5

18

2016

s/e

5

19

0016

59 39.207

63 43.909

3564

1850

Sepulveda

T5

nbp13802.026

XBT

82

DN19

-

5

18

2122

s/e

5

19

0122

59 29.65

63 48.948

3600

760

Ashford

T7

nbp13802.027

XBT

83

DN20

-

5

18

2208

s/e

5

19

0208

59 19.942

63 50.878

4222

2000

Ashford

Deep XCTD

nbp14102.001

Arrival

-

-

-

5

21

0713

e

5

21

1113

53 10.212

70 54.396

-

-

Klinck

 

 


Appendix 2. Summary of CTD casts made during the third SO GLOBEC survey cruise, NBP02-02. C or F in the final column indicates that CMiPS or FRRF were attached during the cast.

 

Column labels in the appendix are event number, cast, consecutive station, grid location, latitude (deg S), longitude (degree W), total depth, cast depth, CMiPS or FRRF (MRC=MRCTD)

 

nbp10302.011      1           0             691.305               64 8.082              68 55.359            3270      500        CF

nbp10402.001      2            1            505.271               65 39.855            70 39.440            3064      100        F

nbp10402.003      3            1            505.271               65 39.855            70 39.440            3064      3098  

nbp10402.008      4           2             498.251               65 49.297            70 23.989            653        653  

nbp10402.015      5            3            499.220               65 56.839            69 57.223            350        341        CF

nbp10502.001      6            4            499.180               66 11.474            69 7.485              361        348        CF

nbp10502.010      7            5            499.140               66 23.75              68 23.91              720        684        C

nbp10502.013      8            6            499.120               66 29.942            68 01.456            418        413        CF

nbp10502.020      9            7            458.115               66 49.238            68 28.387            149        145        CF

nbp10602.001      10          8            459.140               66 41.301            68 55.540            316        301        CF

nbp10602.003      11          9            459.180               66 28.770            69 39.101            507        500        CF

nbp10602.017      12          10          459.220               66 16.051            70 22.006            471        465        CF

nbp10602.024      13          11          458.250               66 06.763            70 54.783            907        900        C

nbp10702.006      14          12          457.265               66 05.250            71 14.509            3107      100        F

nbp10702.008      15          12          457.265               66 02.295            71 11.302            3107      3102  

nbp10702.019      16          13          418.247               66 24.900            71 24.300            779        774        C

nbp10702.023      17          14          419.225               66 31.563            70 59.719            535        528        C

nbp10802.003      18          15          419.180               66 44.458            70 11.265            546        524        C

nbp10802.009      19          16          419.145               66 53.649            68 42.564            515        498        CF

nbp10802.013      20          17          419.125               67 03.595            69 10.049            434        422        CF

nbp10902.001      21          18          317.110               67 24.142            69 32.495            379        365        CF

nbp10902.003      22          19          379.150               67 15.701            70 05.105            632        615        C

nbp10902.010      23          20          379.180               67 03.288            70 43.884            490        484        CF

nbp10902.016      24          21          379.220               66 50.113            71 27.752            472        467        CF

nbp11002.001      25          22          379.264               66 37.471            72 11.875            3327      100        F

nbp11002.003      26          22          379.364               66 37.471            72 11.975            3326      3332  

nbp11002.012      27          23          339.295               66 41.845            73 20.991            3675      3679  

nbp11102.001      28          24          339.253               66 55.781            72 37.243            452        443        CF

nbp11102.003      29          25          339.220               67 07.159            72 01.159            423        408        C

nbp11102.006      30          26          339.180               67 20.425            71 17.089            477        461        C

nbp11102.010      31          27          339.140               67 33.119            70 34.343            766        761        C

nbp11202.001      32          28          339.100               67 43.699            69 56.759            458        453        CF

nbp11202.006      33          29          366.098               67 35.23              69 23.05              168        155        CF

nbp11202.012      34          30          347.084               67 47.92              69 22.95              188        183        CF

nbp11202.018      35          31          350.071               67 50.77              69 04.876            191        186        CF

nbp11202.025      36          33          343.052               67 59.72              68 47.85              204        198        CF

nbp11202.032      37          34          356.046               67 55.68              68 31.17              662        657        C

nbp11302.003      38          35          366.036               67 54.53              68 11.27              672        658        C

nbp11302.006      39          36          379.020               67 53.66              67 41.67              310        287        CF

nbp11302.015      40          37          339.020               68 10.67              68 14.68              521        109        CF

nbp11302.019      41          37          339.020               68 10.67              68 14.68              523        518        C

nbp11402.001      42          38          339.-020              68 23.39              67 26.76              203        188        CF

nbp11402.003      43          39          449.-020              68 41.06              67 26.76              424        405        CF

nbp11402.008      44          40          299.020               68 28.76              68 48.33              640        635        C

nbp11502.001      45          41          299.060               68 16.27              69 35.18              755        750        C

nbp11502.005      46          42          299.100               68 03.66              70 21.45              871        865        C

nbp11502.010      47          43          299.140               67 50.52              71 07.37              413        395        CF

nbp11502.025      48          44          299.180               67 37.43              71 51.77              395        390        CF

nbp11602.004      49          46          299.265               67 08.74              73 24.43              2036      100        CF

nbp11602.006      50          46          299.265               67 08.77              73 24.51              2086      2081      C

nbp11602.016      51          47          259.295               67 14.651            74 31.825            2850      2840  

nbp11702.004      52          48          259.255               67 28.59              73 49.33              411        406        CF

nbp11702.013      53          49          259.220               67 40.597            73 11.560            484        480        CF

nbp11702.018      54          50          259.180               67 54.197            72 27.457            390        382        CF

nbp11802.011      55          51          259.140               68 07.52              71 42.44              552        547        C

nbp11802.019      56          52          259.100               68 20.67              70 56.43              517        512        C

nbp11802.023      57          53          254.080               68 29.35              70 37.75              778        762        C

nbp11802.033      58          54          266.057               68 31.576            70 00.228            1183      1178      C

nbp11902.004      59          55          259.000               68 53.10              68 58.55              507        495        F

nbp11902.015      60          56          214.015               69 09.55              69 13.97              615        597        C

nbp12002.005      61          57          229.010               68 59.90              69 25.74              512        500        CF

nbp12002.015      62          58          235.030               68 53.45              69 57.78              1287      1250      C

nbp12102.002      63          59          238.057               68 43.28              70 24.65              380        376        CF

nbp12102.007      64          60          219.075               68 45.64              71 04.10              313        306        CF

nbp12102.018      68          61          219.100               68 37.19              71 32.68              169        155        CF

nbp12102.027      66          62          219.140               68 24.28              72 18.51              405        400        CF

nbp12202.003      67          63          219.180               68 10.52              73 04.02              323        318        CF

nbp12202.012      68          64          219.220               67 57.17              73 47.85              432        427        CF

nbp12202.016      69          65          219.230               67 53.71              73 58.66              427        421        CF

nbp12202.023      70          66          218.242               67 49.87              74 12.78              1150      1145      C

nbp12302.002      71          68          219.365               67 41.45              74 36.48              2499      2494  

nbp12302.009      72          70          219.295               67 30.96              75 08.31              2941      100        F

nbp12302.011      72          70          219.295               67 30.95              75 08.28              2969      2964  

nbp12302.023      74          71          179.241               68 06.08              74 47.80              417        404        CF

nbp12402.002      75          72          179.220               68 13.58              74 24.86              438        433        CF

nbp12402.006      76          73          179.180               68 27.34              73 40.32              523        517        C

nbp12402.018      77          74          179.140               68 40.98              72 55.17              224        210        CF

nbp12502.002      78          75          179.100               65 54.54              72 08.87              165        162        CF

nbp12502.011      79          76          139.100               68 10.22              72 45.11              189        178        CF

nbp12502.022      80          77          139.140               68 57.33              73 33.05              221        216        CF

nbp12602.002      81          78          139.180               68 43.69              74 18.57              488        464        CF

nbp12602.009      82          79          139.220               68 29.54              75 02.84              427        422        CF

nbp12602.015      83          80          139.255               68 17.21              75 41.37              2051      2049      C

nbp12602.027      84          81          099.220               68 32.94              76 20.48              1176      1175      C

nbp12702.004      85          82          099.220               68 45.68              75 42.07              455        450        F

nbp12702.015      86          83          099.180               69 00.19              74 57.42              337        332        CF

nbp12702.028      87          84          099.140               69 13.98              74 11.70              638        100        CF

nbp12702.030      88          84          099.140               69 13.99              74 11.82              638        635        CF

nbp12802.007      89          85          061.122               69 32.93              74 25.82              175        170        CF

nbp12802.013      90          86          059.140               69 29.30              74 49.57              260        252        CF

nbp12802.023      91          87          059.180               69 15.79              75 38.02              438        433        CF

nbp12902.002      92          88          059.220               69 01.33              76 22.18              430        425        CF

nbp12902.014      93          89          059.255               68 48.62              76 59.45              423        436        CF

nbp12902.023      94          90          019.260               69 02.46              77 46.47              408        401        CF

nbp13002.002      95          91          019.220               69 17.40              77 03.31              406        391        CF

nbp13002.009      96          92          019.180               69 31.99              76 18.41              418        406        CF

nbp13202.006      97         MBC     314.020                68 15.71              68 59.81              272        100        CF

nbp13202.008      98         MBC      314.020               68 15.71              68 59.81              272        100        CF

nbp13202.010      99         MBC      314.020               68 15.71              68 59.81              272        100        CF

nbp13202.012      100        MBC     314.020               68 15.71              68 59.81              272        100        CF

nbp13202.014      101        MBC     314.020               68 15.71              68 59.81              272        200        CF

nbp13302.008      102        MT1      364.148               67 20.11              70 21.34              631        623        C

nbp13302.012      103        MT2      387.160               67 06.05              70 16.13              642        641        C

nbp13302.017      104        MT3      402.178               66 54.02              70 22.98              638        634        C

nbp13402.001      105        MT4      423.196               66 39.086            70 24.751            613        597        C

nbp13402.003      106        MT5      433.217               66 28.05              70 39.96              606        588        C

nbp13502.007      107        CS1       504.108               66 30.92              67 44.37              360        356        CF

 

Column labels in the appendix are event number, cast, consecutive station, grid location, latitude (deg S), longitude (degree W), total depth, cast depth, CMiPS or FRRF (MRC=MRCTD)

 


Appendix 3. Summary of water samples taken during the third SO GLOBEC survey cruise, NBP02-02. A label line precedes each group of water sample entries, including cast, consecutive station, date, time (GMT), latitude (degree S), longitude (degree W). For each bottle closing, values of depth (m), salinity (no units), temperature (deg C), dissolved oxygen (ml/l), PAR (microE/cm2), transmission (percent) and fluorescence (mg/l).

 

1 0 Apr 13 2002 12:46:49 64 08.08 068 55.31

bottle depth Salinity Temp Oxygen PAR Trans Fluor

    1 499 34.70 1.94 4.045 0.06 91.8 0.048

    2 499 34.70 1.94 4.044 0.06 91.8 0.041

    3 499 34.70 1.94 4.043 0.06 91.8 0.041

    4 500 34.70 1.94 4.042 0.06 91.8 0.037

    5 499 34.70 1.94 4.042 0.06 91.8 0.041

    6 499 34.70 1.94 4.040 0.06 91.8 0.027

    7 499 34.70 1.94 4.042 0.06 91.8 0.018

    8 499 34.70 1.94 4.040 0.06 91.8 0.018

    9 499 34.70 1.94 4.038 0.06 91.8 0.016

   10 499 34.70 1.94 4.038 0.06 91.8 0.009

   11 499 34.70 1.94 4.037 0.06 91.8 0.009

   12 498 34.70 1.94 4.036 0.06 91.8 0.020

   13 499 34.70 1.94 4.036 0.06 91.8 0.022

   14 499 34.70 1.94 4.036 0.06 91.8 0.020

   15 499 34.70 1.94 4.034 0.06 91.8 0.018

   16 498 34.70 1.94 4.033 0.06 91.8 0.023

   17 498 34.70 1.94 4.033 0.06 91.8 0.020

   18 499 34.70 1.94 4.034 0.06 91.8 0.021

   19 499 34.70 1.94 4.033 0.06 91.8 0.019

   20 498 34.70 1.94 4.033 0.06 91.7 0.017

   21 498 34.70 1.94 4.033 0.06 91.7 0.009

   22 499 34.70 1.94 4.030 0.06 91.8 0.015

   23 497 34.70 1.94 4.031 0.06 91.7 0.014

   24 498 34.70 1.94 4.033 0.06 91.7 0.011

 3 1 Apr 14 2002 08:37:28 65 39.86 070 39.45

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 3098 34.71 0.40 4.509 0.05 -0.0 0.032

    2 3000 34.71 0.40 4.502 0.05 -0.0 0.029

    3 2753 34.71 0.43 4.486 0.05 -0.0 0.008

    4 2499 34.71 0.47 4.461 0.05 -0.0 0.011

    5 2250 34.71 0.52 4.442 0.05 -0.0 0.009

    6 1999 34.71 0.62 4.411 0.05 -0.0 0.012

    7 1749 34.71 0.74 4.375 0.05 -0.0 0.008

    8 1503 34.72 0.88 4.331 0.05 -0.0 0.043

    9 1251 34.72 1.02 4.283 0.05 -0.0 0.006

   10 1001 34.73 1.19 4.229 0.05 -0.0 0.016

   11 802 34.73 1.35 4.160 0.05 -0.0 0.030

   12 601 34.72 1.56 4.000 0.05 -0.0 0.017

   13 400 34.70 1.71 3.869 0.05 -0.0 0.019

   14 252 34.62 1.66 3.822 0.05 -0.0 0.059

   15 150 34.36 0.17 4.593 0.05 -0.0 0.079

   16 100 34.08 -0.66 5.725 0.05 -0.0 0.277

   17 49 33.81 -0.10 7.158 0.05 -0.0 0.380

   18 30 33.80 -0.15 7.210 0.05 -0.0 0.321

   19 21 33.80 -0.16 7.224 0.05 -0.0 0.301

   20 16 33.80 -0.17 7.218 0.05 -0.0 0.356

   21 11 33.80 -0.17 7.213 0.05 -0.0 0.353

   22 6 33.80 -0.15 7.213 0.05 -0.0 0.314

   23 5 33.80 -0.13 7.215 0.05 -0.0 0.294

   24 2 33.80 -0.16 7.224 0.05 -0.0 0.277

 4 2 Apr 14 2002 15:06:11 65 49.35 070 23.78

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 655 34.73 1.48 4.194 0.06 91.3 0.012


    2 657 34.73 1.48 4.190 0.06 91.3 0.012

    3 658 34.73 1.48 4.191 0.06 91.3 0.012

    4 599 34.73 1.55 4.158 0.06 91.4 0.006

    5 601 34.73 1.55 4.159 0.06 91.4 0.015

    6 551 34.73 1.58 4.139 0.06 91.4 0.024

    7 501 34.73 1.63 4.106 0.06 91.5 0.038

    8 451 34.73 1.66 4.087 0.06 91.5 0.019

    9 401 34.72 1.70 4.039 0.06 91.5 0.033

   10 352 34.71 1.74 4.001 0.06 91.4 0.028

   11 301 34.71 1.81 3.966 0.06 91.4 0.019

   12 252 34.70 1.82 3.933 0.06 91.3 0.064

   13 181 34.63 1.65 3.882 0.06 90.8 0.051

   14 101 34.31 -0.21 4.739 0.07 90.3 0.118

   15 81 34.11 -0.50 5.505 0.10 88.5 0.333

   16 50 33.82 -0.02 7.159 0.48 87.5 0.482

   17 31 33.82 -0.01 7.176 1.93 87.6 0.419

   18 22 33.82 -0.01 7.182 4.70 87.5 0.415

   19 22 33.81 -0.00 7.178 4.49 87.6 0.422

   20 15 33.82 -0.00 7.174 7.78 87.4 0.409

   21 11 33.82 -0.00 7.182 13.92 87.5 0.380

   22 7 33.81 -0.00 7.181 21.31 87.5 0.431

   23 5 33.81 0.00 7.187 27.06 87.1 0.419

   24 5 33.81 0.00 7.187 29.80 87.4 0.399

 5 3 Apr 14 2002 22:13:28 65 58.73 069 50.52

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 341 34.72 1.51 3.749 0.06 88.9 0.048

    2 341 34.72 1.51 3.750 0.06 88.8 0.045

    3 341 34.72 1.51 3.747 0.06 88.9 0.051

    4 340 34.72 1.51 3.747 0.06 88.8 0.049

    5 300 34.71 1.54 3.773 0.06 90.6 0.060

    6 250 34.69 1.54 3.870 0.06 91.0 0.055

    7 250 34.69 1.54 3.869 0.06 91.0 0.057

    8 202 34.65 1.42 3.854 0.06 91.0 0.027

    9 202 34.65 1.42 3.856 0.06 91.0 0.027

   10 149 34.56 1.05 3.933 0.06 91.0 0.032

   11 151 34.56 1.07 3.932 0.06 91.0 0.022

   12 101 34.40 0.22 4.448 0.06 90.6 0.047

   13 101 34.40 0.22 4.451 0.06 90.6 0.052

   14 75 34.24 -0.36 5.027 0.06 89.8 0.130

   15 51 33.82 -0.03 7.031 0.06 88.2 0.356

   16 32 33.81 -0.03 7.154 0.06 88.1 0.330

   17 21 33.80 -0.03 7.180 0.08 88.0 0.366

   18 16 33.80 -0.03 7.185 0.11 88.0 0.342

   19 10 33.80 -0.03 7.179 0.20 88.0 0.339

   20 10 33.80 -0.03 7.180 0.20 87.9 0.322

   21 6 33.80 -0.04 7.194 0.37 87.9 0.356

   22 4 33.80 -0.03 7.193 0.68 87.9 0.382

   23 4 33.80 -0.03 7.194 0.60 87.9 0.381

   24 4 33.80 -0.03 7.193 0.61 87.9 0.378

 6 4 Apr 15 2002 05:14:02 66 11.47 069 07.45

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 349 34.72 1.38 4.048 0.06 90.8 0.044

    2 349 34.72 1.38 4.049 0.06 90.7 0.051

    3 348 34.72 1.38 4.048 0.06 90.8 0.052

    4 347 34.72 1.38 4.049 0.06 90.9 0.044

    5 301 34.71 1.49 4.038 0.06 91.2 0.015

    6 250 34.70 1.58 3.996 0.06 91.2 0.040

    7 198 34.67 1.53 3.920 0.06 91.1 0.012

    8 150 34.60 1.22 3.906 0.06 91.1 0.059

    9 100 34.36 0.09 4.537 0.06 90.5 0.043

   10 101 34.35 0.04 4.549 0.06 90.5 0.042

   11 51 33.69 -0.06 6.638 0.06 88.8 0.229

   12 51 33.69 -0.07 6.684 0.06 88.9 0.225

   13 30 33.54 -0.32 7.296 0.06 87.8 0.330

   14 31 33.53 -0.34 7.307 0.06 87.8 0.347

   15 21 33.48 -0.46 7.375 0.08 87.4 0.406

   16 21 33.48 -0.47 7.380 0.08 87.3 0.395

   17 16 33.46 -0.52 7.398 0.11 87.3 0.372

   18 15 33.46 -0.52 7.392 0.11 87.3 0.362

   19 11 33.46 -0.53 7.406 0.19 87.3 0.373

   20 10 33.46 -0.53 7.405 0.21 87.3 0.361

   21 5 33.44 -0.61 7.404 0.47 87.3 0.362

   22 5 33.44 -0.61 7.406 0.52 87.4 0.384

   23 3 33.44 -0.61 7.406 0.88 87.4 0.366

   24 2 33.44 -0.61 7.400 0.94 87.3 0.376

 7 5 Apr 15 2002 15:25:44 66 23.75 068 23.91

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 686 34.72 1.26 4.084 0.06 90.7 0.015

    2 684 34.72 1.26 4.082 0.06 90.7 0.018

    3 600 34.72 1.31 4.034 0.06 90.8 0.017

    4 498 34.72 1.37 4.011 0.06 91.0 0.015

    5 398 34.71 1.41 3.911 0.06 91.0 0.024

    6 300 34.68 1.50 3.856 0.06 91.0 0.039

    7 251 34.65 1.41 3.844 0.06 91.0 0.042

    8 200 34.59 1.23 3.910 0.06 91.0 0.058

    9 150 34.37 0.08 4.489 0.06 90.8 0.059

   10 100 34.09 -0.12 4.830 0.09 90.0 0.069

   11 74 33.68 -0.17 6.535 0.18 89.0 0.153

   12 50 33.44 -0.47 7.267 0.68 88.4 0.225

   13 30 33.27 -1.34 7.079 2.43 88.0 0.232

   14 30 33.27 -1.34 7.086 2.48 88.0 0.240

   15 21 33.26 -1.36 7.100 5.35 88.0 0.222

   16 19 33.26 -1.36 7.099 6.36 88.0 0.203

   17 15 33.26 -1.36 7.096 9.49 88.0 0.199

   18 15 33.26 -1.36 7.099 9.09 88.0 0.197

   19 10 33.26 -1.36 7.113 15.17 88.0 0.255

   20 10 33.26 -1.36 7.113 15.52 88.0 0.255

   21 5 33.26 -1.36 7.118 25.61 88.0 0.209

   22 5 33.26 -1.36 7.124 25.06 88.0 0.212

   23 2 33.26 -1.36 7.111 37.23 88.0 0.217

   24 3 33.26 -1.36 7.110 33.42 88.0 0.214

 8 6 Apr 15 2002 19:12:39 66 29.93 068 01.45

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 413 34.72 1.31 4.077 0.06 90.6 0.022

    2 413 34.72 1.31 4.077 0.06 90.6 0.023

    3 413 34.72 1.31 4.078 0.06 90.6 0.021

    4 400 34.72 1.31 4.066 0.06 90.6 0.027

    5 347 34.71 1.32 4.028 0.06 90.6 0.025

    6 300 34.69 1.31 3.979 0.06 90.7 0.033

    7 247 34.65 1.21 3.948 0.06 90.7 0.060

    8 200 34.56 0.96 3.848 0.06 90.4 0.027

    9 149 34.43 0.60 3.969 0.06 90.1 0.035

   10 99 33.95 0.10 5.830 0.07 89.9 0.121

   11 75 33.64 0.05 7.067 0.10 89.2 0.191

   12 50 33.40 -0.78 7.192 0.31 88.2 0.238

   13 29 33.35 -1.11 7.039 1.14 88.4 0.206


   14 20 33.28 -1.24 7.091 2.26 88.3 0.221

   15 16 33.27 -1.27 7.152 3.23 88.2 0.221

   16 10 33.27 -1.27 7.152 5.18 88.2 0.202

   17 5 33.27 -1.27 7.165 9.31 88.2 0.239

   18 5 33.27 -1.27 7.164 9.91 88.2 0.233

   19 2 33.27 -1.27 7.155 15.33 88.2 0.241

   20 2 33.27 -1.27 7.157 13.60 88.2 0.251

   21 2 33.27 -1.27 7.160 15.79 88.2 0.264

   22 1 33.27 -1.27 7.160 16.80 88.2 0.255

   23 2 33.27 -1.27 7.160 14.81 88.2 0.249

   24 2 33.27 -1.27 7.160 15.18 88.2 0.244

 9 7 Apr 16 2002 01:19:47 66 49.24 068 28.37

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 134 34.31 0.37 4.590 0.06 88.2 0.037

    2 134 34.32 0.38 4.591 0.06 88.2 0.035

    3 133 34.32 0.38 4.592 0.06 88.2 0.041

    4 102 34.12 0.03 5.160 0.06 89.4 0.043

    5 102 34.12 0.02 5.166 0.06 89.4 0.037

    6 51 33.81 -0.25 6.206 0.06 89.1 0.109

    7 51 33.81 -0.26 6.225 0.06 89.0 0.102

    8 30 33.43 -1.04 6.886 0.06 88.5 0.129

    9 30 33.44 -0.99 6.852 0.06 88.5 0.130

   10 20 33.34 -1.22 7.110 0.08 87.9 0.160

   11 21 33.36 -1.19 7.106 0.08 88.0 0.160

   12 21 33.35 -1.20 7.111 0.08 88.0 0.151

   13 15 33.25 -1.39 7.245 0.11 87.1 0.206

   14 15 33.25 -1.40 7.246 0.11 87.1 0.208

   15 15 33.25 -1.41 7.248 0.11 87.0 0.195

   16 11 33.22 -1.45 7.274 0.19 86.8 0.169

   17 10 33.22 -1.45 7.271 0.20 86.8 0.172

   18 10 33.22 -1.45 7.268 0.20 86.8 0.167

   19 5 33.22 -1.46 7.278 0.50 86.7 0.217

   20 4 33.22 -1.46 7.278 0.54 86.7 0.214

   21 5 33.22 -1.46 7.279 0.47 86.7 0.210

   22 3 33.22 -1.46 7.274 0.78 86.7 0.170

   23 2 33.22 -1.46 7.272 0.77 86.7 0.174

   24 3 33.22 -1.46 7.277 0.80 86.7 0.180

 10 8 Apr 16 2002 06:57:25 66 41.29 068 55.54

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 304 34.69 1.38 3.991 0.06 88.2 0.057

    2 304 34.69 1.38 3.992 0.06 88.2 0.056

    3 304 34.69 1.38 3.984 0.06 88.0 0.066

    4 251 34.69 1.38 3.944 0.06 89.7 0.054

    5 200 34.63 1.20 3.964 0.06 90.6 0.032

    6 149 34.53 0.87 4.042 0.06 90.8 0.073

    7 100 34.32 0.01 4.685 0.06 90.1 0.064

    8 100 34.32 0.01 4.701 0.06 90.1 0.063

    9 50 33.79 0.01 6.763 0.06 89.6 0.126

   10 50 33.79 0.01 6.796 0.06 89.5 0.118

   11 30 33.62 -0.37 7.266 0.06 88.6 0.239

   12 29 33.62 -0.37 7.269 0.06 88.6 0.225

   13 19 33.59 -0.37 7.299 0.09 88.5 0.248

   14 20 33.59 -0.37 7.300 0.08 88.5 0.253

   15 15 33.59 -0.37 7.297 0.11 88.5 0.222

   16 14 33.59 -0.37 7.296 0.11 88.5 0.221

   17 10 33.58 -0.38 7.296 0.20 88.5 0.223

   18 10 33.57 -0.38 7.298 0.20 88.5 0.221

   19 6 33.57 -0.37 7.304 0.43 88.4 0.262

   20 4 33.57 -0.37 7.303 0.53 88.4 0.275

   21 2 33.58 -0.38 7.268 1.25 88.5 0.220

   22 0 33.58 -0.38 7.268 1.40 88.5 0.226

   23 1 33.58 -0.38 7.272 1.09 88.5 0.236

   24 2 33.58 -0.38 7.268 0.99 88.5 0.230

 11 9 Apr 16 2002 12:18:52 66 28.80 069 39.10

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 498 34.72 1.11 4.319 0.06 90.2 0.068

    2 499 34.72 1.11 4.318 0.06 90.3 0.071

    3 399 34.71 1.38 3.928 0.06 90.9 0.051

    4 349 34.69 1.39 3.906 0.06 90.9 0.025

    5 272 34.69 1.69 3.905 0.06 91.0 0.045

    6 224 34.68 1.79 3.871 0.06 90.9 0.019

    7 125 34.36 0.09 4.513 0.06 90.4 0.052

    8 101 34.20 -0.56 5.059 0.06 90.2 0.053

    9 50 33.71 -0.39 7.116 0.12 89.1 0.180

   10 30 33.67 -0.46 7.251 0.39 88.6 0.213

   11 29 33.67 -0.45 7.247 0.39 88.6 0.185

   12 29 33.67 -0.45 7.252 0.40 88.7 0.222

   13 20 33.63 -0.49 7.280 0.97 88.4 0.257

   14 14 33.60 -0.52 7.298 1.66 88.4 0.244

   15 13 33.60 -0.53 7.303 1.87 88.5 0.232

   16 10 33.60 -0.53 7.310 2.63 88.4 0.256

   17 10 33.60 -0.53 7.308 2.58 88.4 0.274

   18 6 33.60 -0.52 7.312 4.28 88.4 0.265

   19 5 33.60 -0.52 7.312 4.51 88.4 0.291

   20 3 33.61 -0.52 7.304 7.11 88.4 0.309

   21 2 33.61 -0.52 7.303 8.49 88.4 0.308

   22 2 33.61 -0.52 7.303 8.12 88.4 0.297

   23 3 33.60 -0.52 7.301 7.05 88.4 0.290

   24 3 33.61 -0.52 7.297 6.63 88.4 0.287

 12 10 Apr 16 2002 20:49:13 66 16.05 070 22.01

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 469 34.72 1.48 3.889 0.06 84.9 0.166

    2 470 34.72 1.48 3.890 0.06 84.5 0.203

    3 399 34.71 1.58 3.861 0.06 90.8 0.050

    4 400 34.71 1.58 3.862 0.06 90.8 0.056

    5 351 34.72 1.64 3.931 0.06 90.9 0.061

    6 300 34.70 1.68 3.915 0.06 91.1 0.052

    7 275 34.70 1.70 3.896 0.06 91.0 0.031

    8 276 34.70 1.70 3.898 0.06 91.0 0.032

    9 250 34.67 1.57 3.875 0.06 91.0 0.025

   10 201 34.61 1.33 3.889 0.06 90.8 0.031

   11 151 34.50 0.78 4.120 0.06 90.6 0.037

   12 100 34.23 -0.54 5.337 0.06 90.5 0.037

   13 101 34.23 -0.55 5.346 0.06 90.5 0.041

   14 76 33.86 -0.38 6.533 0.06 89.2 0.203

   15 51 33.77 -0.19 7.141 0.06 88.7 0.178

   16 31 33.74 -0.28 7.232 0.09 88.6 0.212

   17 21 33.71 -0.35 7.278 0.13 88.6 0.186

   18 15 33.67 -0.41 7.319 0.19 88.5 0.232

   19 12 33.68 -0.40 7.330 0.25 88.5 0.263

   20 6 33.68 -0.39 7.320 0.58 88.5 0.243

   21 2 33.68 -0.39 7.329 1.05 88.5 0.229

   22 2 33.68 -0.39 7.330 1.08 88.5 0.208

   23 2 33.68 -0.39 7.327 1.08 88.5 0.252

   24 2 33.68 -0.39 7.327 1.16 88.5 0.249

 13 11 Apr 17 2002 01:43:14 66 06.74 070 54.76

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 902 34.72 1.03 4.331 0.06 91.3 0.042

    2 902 34.72 1.00 4.337 0.06 91.3 0.029

    3 801 34.72 1.11 4.291 0.06 90.7 0.045

    4 752 34.73 1.16 4.265 0.06 89.4 0.045

    5 699 34.72 1.47 3.977 0.06 85.7 0.205


    6 650 34.72 1.48 3.960 0.06 87.1 0.163

    7 600 34.72 1.60 3.885 0.06 90.5 0.053

    8 501 34.71 1.66 3.916 0.06 90.8 0.044

    9 450 34.70 1.70 3.899 0.06 90.9 0.030

   10 449 34.70 1.70 3.899 0.06 90.9 0.035

   11 401 34.69 1.69 3.866 0.06 90.9 0.072

   12 399 34.69 1.69 3.867 0.06 90.8 0.063

   13 301 34.61 1.44 3.881 0.06 91.1 0.027

   14 199 34.44 0.50 4.439 0.06 90.9 0.029

   15 150 34.29 -0.23 5.097 0.06 90.6 0.045

   16 100 34.16 -0.92 5.846 0.06 90.0 0.126

   17 50 33.82 -0.30 7.100 0.06 88.0 0.490

   18 31 33.60 -0.57 7.375 0.06 86.2 0.622

   19 20 33.57 -0.61 7.425 0.08 86.0 0.651

   20 15 33.57 -0.62 7.434 0.11 86.0 0.657

   21 11 33.57 -0.62 7.427 0.16 86.1 0.619

   22 5 33.57 -0.60 7.437 0.43 86.0 0.610

   23 2 33.57 -0.62 7.443 0.97 86.0 0.616

   24 2 33.57 -0.62 7.439 0.92 86.0 0.605

 15 12 Apr 17 2002 09:22:23 66 02.29 071 11.36

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 3101 34.71 0.39 4.510 0.05 -0.0 0.054

    2 3103 34.71 0.39 4.511 0.05 -0.0 0.056

    3 2750 34.71 0.43 4.488 0.05 -0.0 0.017

    4 2500 34.71 0.48 4.461 0.05 -0.0 0.040

    5 2250 34.71 0.57 4.427 0.05 -0.0 0.004

    6 2001 34.71 0.70 4.385 0.05 -0.0 0.005

    7 1751 34.71 0.84 4.343 0.05 -0.0 0.040

    8 1499 34.72 1.00 4.293 0.05 -0.0 0.022

    9 1250 34.73 1.16 4.237 0.05 -0.0 0.028

   10 1000 34.73 1.36 4.179 0.05 -0.0 0.007

   11 750 34.73 1.61 4.065 0.05 -0.0 0.014

   12 500 34.72 1.89 3.957 0.05 -0.0 0.015

   13 251 34.65 2.06 3.808 0.05 -0.0 0.046

   14 150 34.57 1.95 3.875 0.05 -0.0 0.012

   15 100 34.41 1.35 4.452 0.05 -0.0 0.055

   16 50 33.83 -0.41 6.828 0.05 -0.0 0.340

   17 49 33.83 -0.41 6.892 0.05 -0.0 0.362

   18 30 33.79 -0.32 7.216 0.05 -0.0 0.283

   19 20 33.76 -0.36 7.263 0.05 -0.0 0.316

   20 15 33.71 -0.49 7.322 0.05 -0.0 0.544

   21 10 33.72 -0.48 7.327 0.05 -0.0 0.587

   22 6 33.71 -0.42 7.327 0.05 -0.0 0.603

   23 3 33.71 -0.44 7.336 0.05 -0.0 0.562

   24 3 33.72 -0.47 7.341 0.05 -0.0 0.579

 16 13 Apr 17 2002 20:40:31 66 24.76 071 24.10

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 777 34.73 1.41 4.173 0.06 90.8 0.033

    2 778 34.73 1.41 4.173 0.06 90.8 0.034

    3 701 34.73 1.40 4.170 0.06 90.9 0.048

    4 596 34.73 1.62 4.133 0.06 91.0 0.038

    5 505 34.73 1.70 4.034 0.06 91.0 0.048

    6 400 34.72 1.86 3.993 0.06 91.1 0.015

    7 299 34.70 1.96 3.885 0.06 91.0 0.019

    8 251 34.67 1.97 3.820 0.06 91.0 0.024

    9 226 34.65 1.91 3.791 0.06 90.9 0.030

   10 202 34.62 1.88 3.789 0.06 90.8 0.024

   11 150 34.56 1.81 3.891 0.06 90.8 0.018

   12 148 34.56 1.81 3.891 0.06 90.8 0.015

   13 102 34.42 1.15 4.420 0.06 90.6 0.025

   14 50 33.90 -0.67 6.298 0.06 89.0 0.158

   15 51 33.90 -0.65 6.304 0.06 89.2 0.122

   16 29 33.58 -0.63 7.398 0.06 85.5 0.695

   17 20 33.58 -0.63 7.417 0.10 85.6 0.651

   18 15 33.58 -0.63 7.425 0.13 85.5 0.693

   19 15 33.58 -0.62 7.420 0.12 85.5 0.820

   20 10 33.58 -0.63 7.428 0.22 85.5 0.829

   21 6 33.58 -0.63 7.428 0.53 85.6 0.685

   22 2 33.58 -0.63 7.424 1.04 85.2 0.743

   23 2 33.58 -0.63 7.425 0.92 85.4 0.743

   24 2 33.58 -0.63 7.421 1.03 85.5 0.733

 17 14 Apr 18 2002 00:49:15 66 31.51 070 59.79

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 529 34.73 1.24 4.227 0.06 87.8 0.040

    2 528 34.73 1.24 4.224 0.06 87.7 0.048

    3 500 34.73 1.27 4.212 0.06 90.2 0.043

    4 449 34.71 1.37 3.831 0.06 89.8 0.022

    5 400 34.70 1.40 3.874 0.06 90.2 0.025

    6 349 34.69 1.37 3.897 0.06 90.4 0.060

    7 299 34.67 1.35 3.849 0.06 90.4 0.020

    8 251 34.62 1.19 3.864 0.06 90.5 0.026

    9 200 34.53 0.81 3.966 0.06 90.3 0.038

   10 150 34.36 0.08 4.458 0.06 90.0 0.058

   11 125 34.23 -0.49 5.057 0.06 89.6 0.076

   12 125 34.23 -0.50 5.065 0.06 89.7 0.069

   13 101 34.08 -0.70 5.458 0.06 89.4 0.092

   14 99 34.07 -0.71 5.503 0.06 89.5 0.072

   15 51 33.56 -0.64 7.344 0.06 86.1 0.653

   16 50 33.56 -0.64 7.357 0.06 86.1 0.681

   17 30 33.56 -0.64 7.412 0.06 86.2 0.649

   18 31 33.56 -0.64 7.412 0.06 86.1 0.592

   19 20 33.56 -0.64 7.409 0.07 86.1 0.524

   20 16 33.56 -0.64 7.416 0.10 86.1 0.545

   21 11 33.56 -0.64 7.415 0.18 86.1 0.564

   22 5 33.56 -0.64 7.418 0.49 86.1 0.524

   23 4 33.56 -0.63 7.429 0.73 86.1 0.566

   24 3 33.56 -0.63 7.424 0.76 86.1 0.579

 18 15 Apr 18 2002 08:02:23 66 46.09 070 10.92

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 531 34.73 1.25 4.114 0.06 87.7 0.118

    2 531 34.73 1.25 4.113 0.06 87.7 0.106

    3 502 34.73 1.25 4.106 0.06 89.0 0.092

    4 450 34.71 1.34 3.852 0.06 90.2 0.024

    5 402 34.71 1.35 3.906 0.06 90.5 0.030

    6 351 34.70 1.36 3.896 0.06 90.6 0.029

    7 299 34.69 1.40 3.893 0.06 90.6 0.017

    8 249 34.67 1.39 3.854 0.06 90.6 0.038

    9 200 34.63 1.29 3.843 0.06 90.5 0.068

   10 150 34.54 0.89 3.987 0.06 90.4 0.039

   11 100 34.41 0.29 4.343 0.06 90.1 0.039

   12 49 33.90 -0.60 5.998 0.06 89.4 0.098

   13 29 33.64 -0.55 7.186 0.06 88.1 0.237

   14 30 33.63 -0.54 7.199 0.06 88.1 0.238

   15 19 33.57 -0.69 7.304 0.08 87.0 0.373

   16 19 33.56 -0.70 7.304 0.08 87.2 0.386

   17 14 33.52 -0.80 7.347 0.11 86.7 0.428

   18 14 33.52 -0.80 7.352 0.11 86.6 0.439

   19 10 33.52 -0.79 7.343 0.18 86.5 0.469

   20 10 33.52 -0.80 7.347 0.19 86.6 0.487

   21 5 33.52 -0.80 7.365 0.43 86.4 0.532

   22 6 33.52 -0.80 7.362 0.40 86.5 0.498

   23 2 33.52 -0.80 7.367 0.80 86.5 0.457


   24 2 33.52 -0.80 7.367 0.81 86.5 0.436

 19 16 Apr 18 2002 15:04:25 66 57.30 069 32.47

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 498 34.72 1.30 3.989 0.06 89.0 0.049

    2 499 34.72 1.30 3.989 0.06 89.1 0.045

    3 451 34.72 1.31 3.983 0.06 90.0 0.029

    4 400 34.71 1.37 3.909 0.06 90.5 0.033

    5 352 34.70 1.40 3.901 0.06 90.5 0.046

    6 300 34.69 1.39 3.901 0.06 90.6 0.068

    7 275 34.68 1.36 3.877 0.06 90.6 0.061

    8 250 34.66 1.36 3.866 0.06 90.5 0.058

    9 225 34.64 1.32 3.857 0.06 90.5 0.075

   10 200 34.62 1.27 3.855 0.06 90.4 0.059

   11 175 34.58 1.13 3.907 0.06 90.4 0.041

   12 150 34.50 0.69 4.051 0.07 90.4 0.038

   13 125 34.44 0.43 4.280 0.08 90.3 0.038

   14 100 34.31 -0.17 4.687 0.12 90.1 0.047

   15 75 34.06 -0.77 5.726 0.25 89.9 0.066

   16 49 33.65 -0.42 7.044 0.94 88.8 0.174

   17 30 33.61 -0.48 7.252 3.40 88.6 0.162

   18 20 33.56 -0.58 7.282 8.96 88.2 0.174

   19 14 33.39 -0.94 7.344 16.05 87.7 0.206

   20 10 33.43 -0.84 7.332 27.21 87.8 0.226

   21 5 33.36 -0.99 7.370 49.09 87.6 0.268

   22 3 33.35 -1.02 7.368 66.14 87.6 0.230

   23 2 33.35 -1.02 7.366 67.40 87.5 0.229

   24 1 33.35 -1.03 7.370 90.34 87.5 0.217

 20 17 Apr 18 2002 18:47:04 67 03.58 069 10.04

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 424 34.71 1.38 3.983 0.06 89.5 0.068

    2 423 34.71 1.38 3.983 0.06 89.5 0.061

    3 399 34.71 1.38 3.955 0.06 89.7 0.035

    4 351 34.70 1.40 3.938 0.06 90.2 0.024

    5 300 34.69 1.42 3.921 0.06 90.4 0.041

    6 250 34.67 1.36 3.896 0.06 90.4 0.021

    7 199 34.62 1.21 3.904 0.06 90.4 0.024

    8 146 34.52 0.81 4.087 0.06 90.2 0.065

    9 146 34.51 0.80 4.089 0.06 90.2 0.062

   10 125 34.45 0.53 4.261 0.07 89.7 0.042

   11 124 34.45 0.52 4.268 0.07 89.8 0.035

   12 99 34.29 -0.21 4.826 0.08 89.9 0.048

   13 76 34.06 -0.56 5.875 0.14 89.7 0.086

   14 49 33.72 -0.32 7.073 0.49 89.1 0.124

   15 50 33.72 -0.32 7.081 0.46 89.1 0.120

   16 30 33.61 -0.34 7.260 1.65 88.2 0.243

   17 30 33.61 -0.34 7.254 1.50 88.1 0.253

   18 20 33.56 -0.54 7.320 3.32 88.0 0.205

   19 15 33.55 -0.58 7.338 5.18 87.9 0.219

   20 10 33.54 -0.60 7.350 9.14 87.9 0.221

   21 5 33.52 -0.66 7.362 16.54 87.8 0.246

   22 5 33.51 -0.68 7.362 16.04 87.8 0.244

   23 3 33.48 -0.77 7.360 24.67 87.6 0.274

   24 3 33.48 -0.77 7.356 25.06 87.6 0.281

 21 18 Apr 19 2002 05:21:22 67 29.14 069 32.48

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 365 34.69 1.35 3.900 0.06 89.9 0.050

    2 365 34.69 1.35 3.899 0.06 89.8 0.047

    3 299 34.67 1.31 3.892 0.06 90.0 0.060

    4 272 34.66 1.29 3.891 0.06 90.0 0.031

    5 250 34.66 1.27 3.888 0.06 90.0 0.020

    6 251 34.66 1.27 3.889 0.06 90.0 0.017

    7 200 34.61 1.12 3.927 0.06 89.8 0.019

    8 199 34.61 1.12 3.931 0.06 89.8 0.026

    9 149 34.51 0.74 4.111 0.06 90.0 0.031

   10 150 34.51 0.75 4.122 0.06 90.0 0.037

   11 126 34.40 0.29 4.467 0.06 89.9 0.033

   12 125 34.40 0.29 4.472 0.06 89.9 0.031

   13 98 34.28 -0.04 4.925 0.06 89.6 0.048

   14 98 34.28 -0.04 4.952 0.06 89.6 0.049

   15 75 33.98 -0.04 5.955 0.06 89.3 0.075

   16 50 33.50 -0.67 7.248 0.06 88.3 0.166

   17 30 33.43 -0.82 7.307 0.06 88.2 0.172

   18 20 33.42 -0.84 7.309 0.08 88.3 0.183

   19 15 33.40 -0.93 7.309 0.11 88.3 0.180

   20 10 33.31 -1.21 7.362 0.19 88.1 0.203

   21 5 33.26 -1.39 7.382 0.48 88.0 0.173

   22 4 33.25 -1.40 7.391 0.57 88.0 0.170

   23 1 33.25 -1.41 7.390 1.20 88.0 0.163

   24 1 33.25 -1.41 7.388 1.24 88.0 0.168

 22 19 Apr 19 2002 11:10:17 67 13.02 070 10.67

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 615 34.72 1.22 4.080 0.06 87.9 0.086

    2 614 34.72 1.22 4.079 0.06 87.9 0.072

    3 600 34.72 1.22 4.076 0.06 87.8 0.070

    4 548 34.72 1.25 4.121 0.06 89.9 0.064

    5 499 34.72 1.32 4.065 0.06 90.3 0.031

    6 450 34.72 1.36 3.928 0.06 90.3 0.021

    7 401 34.71 1.37 3.900 0.06 90.5 0.032

    8 351 34.70 1.38 3.903 0.06 90.5 0.054

    9 300 34.71 1.53 3.950 0.06 90.7 0.032

   10 251 34.68 1.41 3.899 0.06 90.6 0.022

   11 201 34.63 1.29 3.863 0.06 90.4 0.026

   12 150 34.56 1.01 3.944 0.06 90.3 0.041

   13 125 34.48 0.66 4.125 0.06 90.2 0.061

   14 99 34.33 -0.15 4.709 0.06 90.1 0.070

   15 75 34.22 -0.39 5.068 0.06 90.1 0.069

   16 51 33.72 -0.48 7.034 0.06 88.5 0.191

   17 52 33.72 -0.48 7.094 0.06 88.4 0.200

   18 30 33.70 -0.51 7.232 0.08 88.5 0.240

   19 20 33.70 -0.51 7.241 0.11 88.4 0.208

   20 15 33.70 -0.50 7.242 0.16 88.5 0.199

   21 11 33.70 -0.50 7.250 0.25 88.5 0.246

   22 6 33.70 -0.48 7.249 0.60 88.5 0.245

   23 0 33.70 -0.50 7.242 3.70 88.5 0.206

   24 0 33.70 -0.50 7.244 4.09 88.5 0.189

 23 20 Apr 19 2002 16:08:00 67 03.27 070 43.87

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 483 34.72 1.28 4.031 0.06 89.0 0.067

    2 484 34.72 1.28 4.032 0.06 89.1 0.073

    3 485 34.72 1.28 4.028 0.06 88.7 0.086

    4 449 34.71 1.32 3.973 0.06 90.4 0.026

    5 449 34.71 1.32 3.971 0.06 90.4 0.025

    6 400 34.71 1.34 3.952 0.06 90.5 0.018

    7 351 34.70 1.35 3.943 0.06 90.5 0.068

    8 301 34.70 1.35 3.921 0.06 90.5 0.015

    9 250 34.68 1.36 3.892 0.06 90.6 0.034

   10 200 34.66 1.34 3.869 0.06 90.6 0.071

   11 152 34.56 0.96 3.955 0.06 90.5 0.030

   12 99 34.36 0.14 4.402 0.06 90.4 0.029

   13 75 34.20 -0.34 4.796 0.07 90.3 0.033

   14 75 34.21 -0.32 4.805 0.07 90.3 0.029

   15 49 33.81 -0.79 5.782 0.14 87.8 0.349


   16 50 33.79 -0.80 5.903 0.14 87.4 0.380

   17 30 33.45 -1.16 7.271 0.71 85.8 0.508

   18 20 33.44 -1.19 7.330 2.21 85.7 0.451

   19 15 33.44 -1.20 7.324 3.57 85.7 0.499

   20 9 33.44 -1.20 7.332 8.40 85.7 0.425

   21 5 33.44 -1.20 7.340 16.28 85.7 0.455

   22 2 33.44 -1.20 7.334 29.12 85.6 0.497

   23 2 33.44 -1.20 7.337 32.02 85.7 0.549

   24 2 33.44 -1.20 7.338 28.95 85.8 0.518

 24 21 Apr 19 2002 21:56:43 66 50.11 071 27.72

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 467 34.72 1.29 3.951 0.06 88.3 0.050

    2 466 34.72 1.29 3.954 0.06 88.3 0.061

    3 450 34.72 1.30 3.910 0.06 89.2 0.062

    4 423 34.72 1.34 3.762 0.06 89.8 0.021

    5 401 34.71 1.36 3.722 0.06 90.0 0.031

    6 376 34.71 1.37 3.786 0.06 90.3 0.032

    7 350 34.70 1.38 3.841 0.06 90.4 0.056

    8 351 34.70 1.39 3.842 0.06 90.4 0.050

    9 301 34.69 1.39 3.868 0.06 90.5 0.024

   10 250 34.64 1.27 3.863 0.06 90.3 0.020

   11 200 34.57 0.98 3.940 0.06 90.4 0.054

   12 150 34.42 0.35 4.299 0.06 90.1 0.032

   13 100 34.15 -0.46 5.312 0.06 90.0 0.037

   14 49 33.54 -0.69 7.153 0.06 87.4 0.346

   15 30 33.51 -0.75 7.346 0.06 87.3 0.317

   16 20 33.51 -0.77 7.371 0.08 87.1 0.308

   17 16 33.50 -0.79 7.379 0.10 87.0 0.347

   18 16 33.50 -0.79 7.377 0.10 87.0 0.334

   19 10 33.49 -0.82 7.384 0.19 87.0 0.358

   20 5 33.49 -0.83 7.394 0.55 86.8 0.378

   21 5 33.49 -0.83 7.397 0.53 86.8 0.413

   22 1 33.49 -0.84 7.393 1.24 86.8 0.367

   23 2 33.49 -0.84 7.389 1.10 86.8 0.354

   24 2 33.49 -0.84 7.387 1.06 86.8 0.349

 26 22 Apr 20 2002 08:08:07 66 35.64 072 14.35

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 3332 34.71 0.44 4.503 0.06 -0.0 0.024

    2 3330 34.71 0.44 4.504 0.06 -0.0 0.025

    3 3000 34.71 0.47 4.476 0.06 -0.0 0.007

    4 2500 34.71 0.60 4.423 0.06 -0.0 0.050

    5 1999 34.71 0.85 4.337 0.06 -0.0 0.038

    6 1500 34.72 1.10 4.245 0.05 -0.0 0.023

    7 999 34.73 1.48 4.136 0.05 -0.0 0.028

    8 800 34.73 1.65 4.084 0.05 -0.0 0.034

    9 699 34.73 1.73 4.056 0.05 -0.0 0.017

   10 601 34.72 1.82 4.001 0.05 -0.0 0.039

   11 500 34.71 1.88 3.905 0.05 -0.0 0.012

   12 401 34.70 1.99 3.889 0.05 -0.0 0.060

   13 300 34.66 1.97 3.770 0.05 -0.0 0.022

   14 201 34.59 1.88 3.823 0.06 -0.0 0.051

   15 101 34.26 -0.19 5.353 0.10 -0.0 0.044

   16 50 33.78 -0.75 7.123 0.12 -0.0 0.651

   17 30 33.76 -0.77 7.352 0.17 -0.0 0.914

   18 30 33.76 -0.77 7.361 0.18 -0.0 0.854

   19 20 33.76 -0.78 7.373 0.25 -0.0 0.854

   20 15 33.76 -0.78 7.370 0.29 -0.0 0.979

   21 11 33.75 -0.77 7.380 0.34 -0.0 0.806

   22 5 33.76 -0.78 7.374 0.39 -0.0 0.836

   23 1 33.76 -0.79 7.384 0.43 -0.0 0.826

   24 1 33.76 -0.79 7.387 0.44 -0.0 0.869

 27 23 Apr 20 2002 17:58:27 66 41.85 073 20.89

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 3670 34.70 0.35 4.515 0.05 -0.0 0.013

    2 3671 34.70 0.35 4.515 0.05 -0.0 0.010

    3 3000 34.71 0.42 4.471 0.05 -0.0 0.045

    4 2502 34.71 0.58 4.407 0.05 -0.0 0.045

    5 2000 34.71 0.81 4.331 0.05 -0.0 0.011

    6 1500 34.72 1.07 4.250 0.05 -0.0 0.009

    7 1000 34.73 1.39 4.142 0.05 -0.0 0.018

    8 799 34.73 1.55 4.075 0.05 -0.0 0.021

    9 700 34.73 1.62 4.025 0.05 -0.0 0.017

   10 601 34.72 1.72 3.967 0.05 -0.0 0.022

   11 500 34.72 1.81 3.910 0.05 -0.0 0.028

   12 400 34.70 1.87 3.843 0.05 -0.0 0.016

   13 300 34.67 1.82 3.774 0.05 -0.0 0.054

   14 200 34.59 1.56 3.840 0.05 -0.0 0.023

   15 100 34.28 -0.41 5.239 0.06 -0.0 0.061

   16 50 33.80 -0.65 7.259 0.06 -0.0 0.582

   17 30 33.80 -0.49 7.263 0.06 -0.0 0.509

   18 31 33.80 -0.48 7.263 0.06 -0.0 0.477

   19 21 33.79 -0.47 7.297 0.07 -0.0 0.564

   20 14 33.78 -0.49 7.323 0.07 -0.0 0.577

   21 10 33.78 -0.49 7.328 0.07 -0.0 0.597

   22 5 33.78 -0.48 7.333 0.07 -0.0 0.563

   23 2 33.78 -0.45 7.333 0.08 -0.0 0.579

   24 2 33.78 -0.45 7.334 0.08 -0.0 0.545

 28 24 Apr 21 2002 06:49:37 66 56.25 072 36.96

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 443 34.72 1.39 4.140 0.06 90.5 0.023

    2 444 34.72 1.38 4.144 0.06 90.5 0.025

    3 401 34.70 1.48 3.964 0.06 90.3 0.025

    4 350 34.68 1.41 3.926 0.06 90.3 0.051

    5 301 34.65 1.32 3.940 0.06 90.3 0.023

    6 250 34.59 1.06 3.985 0.06 90.3 0.021

    7 201 34.48 0.57 4.170 0.06 90.2 0.057

    8 151 34.37 0.07 4.494 0.06 90.1 0.025

    9 101 34.12 -0.99 5.563 0.06 89.7 0.080

   10 75 33.86 -0.66 6.772 0.06 87.9 0.391

   11 50 33.81 -0.58 7.241 0.06 87.3 0.518

   12 31 33.76 -0.60 7.300 0.06 86.8 0.545

   13 30 33.76 -0.59 7.316 0.06 86.8 0.527

   14 20 33.67 -0.72 7.376 0.07 86.1 0.616

   15 20 33.68 -0.72 7.392 0.07 86.2 0.650

   16 15 33.67 -0.73 7.410 0.09 86.1 0.595

   17 15 33.67 -0.73 7.416 0.09 86.1 0.599

   18 10 33.67 -0.73 7.415 0.18 86.1 0.605

   19 10 33.67 -0.72 7.416 0.15 86.2 0.578

   20 5 33.67 -0.72 7.418 0.42 86.1 0.559

   21 1 33.67 -0.72 7.405 1.06 85.8 0.583

   22 2 33.67 -0.72 7.403 1.18 86.1 0.551

   23 0 33.67 -0.72 7.403 1.78 85.8 0.554

   24 0 33.67 -0.72 7.406 2.17 85.9 0.561

 29 25 Apr 21 2002 11:37:33 67 07.16 072 01.24

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 409 34.71 1.34 3.884 0.06 87.5 0.050

    2 408 34.71 1.34 3.883 0.06 87.7 0.042

    3 399 34.71 1.34 3.868 0.06 87.7 0.063

    4 350 34.71 1.38 3.881 0.06 90.1 0.025

    5 300 34.70 1.39 3.954 0.06 90.4 0.063

    6 251 34.67 1.34 3.921 0.06 90.5 0.022

    7 200 34.61 1.14 3.960 0.06 90.4 0.046


    8 149 34.50 0.68 4.102 0.06 90.1 0.035

    9 99 34.28 -0.26 4.817 0.06 89.7 0.052

   10 75 34.07 -0.79 5.596 0.06 89.5 0.064

   11 50 33.51 -0.73 6.937 0.06 86.7 0.420

   12 50 33.51 -0.72 7.187 0.06 86.7 0.462

   13 29 33.49 -0.76 7.432 0.06 86.7 0.433

   14 20 33.49 -0.76 7.437 0.07 86.7 0.393

   15 20 33.49 -0.76 7.440 0.08 86.7 0.371

   16 14 33.49 -0.73 7.433 0.10 86.7 0.392

   17 14 33.49 -0.74 7.431 0.12 86.8 0.374

   18 11 33.49 -0.74 7.438 0.17 86.7 0.366

   19 10 33.49 -0.74 7.437 0.17 86.7 0.383

   20 3 33.49 -0.74 7.429 0.78 86.2 0.382

   21 -1 7.87 -0.70 8.841 4.28 19.4 0.257

   22 -1 17.01 -0.73 8.433 5.69 38.4 0.091

   23 -1 11.93 -0.76 8.263 22.53 16.4 0.242

   24 -1 1.99 -0.75 9.084 14.79 58.9 0.178

 30 26 Apr 21 2002 17:17:13 67 20.45 071 16.94

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 461 34.71 1.33 3.912 0.06 88.8 0.037

    2 461 34.71 1.33 3.912 0.06 88.8 0.027

    3 400 34.71 1.36 3.834 0.06 89.4 0.035

    4 352 34.70 1.38 3.916 0.06 90.1 0.015

    5 352 34.70 1.38 3.917 0.06 90.1 0.030

    6 300 34.68 1.37 3.901 0.06 90.1 0.055

    7 300 34.68 1.37 3.901 0.06 90.1 0.048

    8 250 34.65 1.30 3.875 0.06 90.1 0.026

    9 200 34.59 1.08 3.904 0.06 90.0 0.059

   10 151 34.49 0.65 4.130 0.06 89.8 0.027

   11 100 34.24 -0.42 4.913 0.06 89.3 0.086

   12 100 34.24 -0.44 4.920 0.06 89.3 0.090

   13 75 34.06 -0.78 5.723 0.07 89.2 0.069

   14 75 34.05 -0.78 5.734 0.07 89.2 0.073

   15 50 33.53 -0.79 7.162 0.14 86.4 0.469

   16 50 33.53 -0.80 7.202 0.13 86.4 0.446

   17 31 33.52 -0.80 7.314 0.60 86.2 0.499

   18 19 33.52 -0.81 7.304 1.87 86.3 0.444

   19 20 33.52 -0.81 7.305 1.48 86.4 0.400

   20 15 33.52 -0.82 7.305 2.99 86.5 0.469

   21 9 33.52 -0.81 7.309 6.58 86.3 0.526

   22 3 33.52 -0.81 7.316 15.41 86.3 0.460

   23 1 33.52 -0.81 7.316 21.29 86.3 0.486

   24 -1 33.46 -0.81 7.316 65.79 67.2 0.443

 31 27 Apr 21 2002 23:18:07 67 33.16 070 34.18

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 763 34.72 1.25 4.026 0.06 88.9 0.032

    2 764 34.72 1.25 4.027 0.06 88.9 0.037

    3 750 34.72 1.26 4.023 0.06 88.7 0.030

    4 702 34.72 1.31 3.963 0.06 89.9 0.032

    5 653 34.72 1.32 3.950 0.06 90.0 0.049

    6 599 34.71 1.33 3.934 0.06 90.0 0.013

    7 550 34.71 1.34 3.921 0.06 90.0 0.023

    8 501 34.71 1.34 3.913 0.06 90.0 0.042

    9 450 34.70 1.34 3.907 0.06 89.9 0.053

   10 400 34.70 1.34 3.905 0.06 89.9 0.018

   11 350 34.69 1.33 3.896 0.06 90.0 0.023

   12 301 34.68 1.30 3.890 0.06 90.0 0.022

   13 250 34.65 1.25 3.887 0.06 90.0 0.031

   14 199 34.61 1.11 3.925 0.06 90.0 0.046

   15 150 34.54 0.83 4.023 0.06 90.0 0.067

   16 100 34.35 0.19 4.321 0.06 89.8 0.028

   17 50 33.64 -0.97 6.548 0.06 87.3 0.357

   18 30 33.47 -1.15 7.118 0.06 86.5 0.389

   19 19 33.47 -1.15 7.154 0.08 86.4 0.384

   20 15 33.47 -1.16 7.162 0.11 86.5 0.397

   21 10 33.47 -1.16 7.161 0.18 86.4 0.368

   22 10 33.47 -1.16 7.164 0.18 86.5 0.352

   23 2 33.47 -1.14 7.161 1.10 86.4 0.381

   24 0 33.47 -1.15 7.164 2.57 86.3 0.387

 32 28 Apr 22 2002 06:08:22 67 46.31 069 47.57

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 454 34.70 1.39 3.960 0.06 88.5 0.074

    2 454 34.70 1.39 3.960 0.06 88.5 0.086

    3 401 34.69 1.39 3.936 0.06 88.8 0.045

    4 350 34.69 1.38 3.917 0.06 88.9 0.046

    5 299 34.69 1.37 3.906 0.06 88.8 0.036

    6 250 34.68 1.34 3.887 0.06 89.4 0.070

    7 200 34.65 1.28 3.885 0.06 89.6 0.032

    8 151 34.58 1.06 3.941 0.06 89.9 0.052

    9 101 34.34 -0.01 4.584 0.06 89.7 0.047

   10 77 34.18 -0.54 5.220 0.06 89.6 0.065

   11 50 33.53 -0.95 6.993 0.06 86.6 0.370

   12 28 33.49 -1.21 7.270 0.06 85.5 0.508

   13 32 33.49 -1.19 7.271 0.06 85.5 0.526

   14 20 33.49 -1.21 7.292 0.08 85.5 0.497

   15 20 33.49 -1.21 7.294 0.08 85.5 0.472

   16 15 33.49 -1.21 7.293 0.10 85.6 0.504

   17 15 33.49 -1.21 7.296 0.10 85.5 0.482

   18 10 33.49 -1.21 7.288 0.18 85.5 0.470

   19 10 33.49 -1.21 7.288 0.16 85.5 0.497

   20 5 33.49 -1.21 7.291 0.47 85.4 0.451

   21 4 33.49 -1.21 7.293 0.53 85.5 0.491

   22 2 33.49 -1.21 7.291 1.01 85.5 0.487

   23 2 33.49 -1.21 7.289 0.82 85.5 0.473

   24 3 33.49 -1.21 7.285 0.80 85.6 0.467

 33 29 Apr 22 2002 11:16:45 67 35.22 069 23.05

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 154 34.21 0.13 5.387 0.06 85.7 0.055

    2 100 33.68 -0.45 7.210 0.06 88.8 0.105

    3 50 33.46 -0.85 7.426 0.06 88.3 0.160

    4 30 33.45 -0.85 7.429 0.07 88.2 0.149

    5 20 33.45 -0.86 7.425 0.09 88.0 0.149

    6 15 33.45 -0.87 7.423 0.12 88.1 0.164

    7 9 33.45 -0.87 7.414 0.22 88.0 0.155

    8 5 33.44 -0.88 7.389 0.52 87.9 0.191

    9 3 33.44 -0.89 7.388 0.91 88.0 0.190

   10 2 33.44 -0.89 7.388 1.10 88.0 0.190

 34 30 Apr 22 2002 16:54:51 67 47.90 069 22.88

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 182 34.44 0.70 4.527 0.06 87.8 0.043

    2 182 34.44 0.70 4.527 0.06 87.8 0.050

    3 152 34.31 0.40 4.880 0.06 88.0 0.052

    4 152 34.31 0.40 4.917 0.06 88.0 0.049

    5 100 33.72 -0.40 6.907 0.08 88.9 0.128

    6 49 33.49 -0.80 7.290 0.79 88.3 0.128

    7 30 33.46 -0.83 7.307 2.99 88.1 0.133

    8 20 33.46 -0.84 7.304 5.56 88.0 0.137

    9 15 33.42 -0.91 7.328 8.30 87.9 0.183

   10 11 33.37 -1.03 7.354 13.19 87.6 0.157

   11 4 33.32 -1.17 7.358 26.87 87.5 0.169

   12 2 33.31 -1.20 7.377 31.98 87.5 0.173

 35 31 Apr 22 2002 19:17:31 67 50.75 069 04.84


bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 186 34.45 0.70 4.430 0.06 87.5 0.041

    2 151 34.21 0.27 4.912 0.06 87.7 0.043

    3 100 33.71 -0.38 6.777 0.07 88.5 0.117

    4 50 33.36 -1.02 7.402 0.44 87.9 0.180

    5 31 33.32 -1.10 7.425 1.46 87.9 0.184

    6 21 33.31 -1.13 7.427 2.89 87.8 0.190

    7 14 33.30 -1.14 7.432 4.78 87.7 0.187

    8 10 33.30 -1.14 7.436 6.74 87.7 0.166

    9 4 33.30 -1.15 7.434 14.08 87.7 0.156

   10 3 33.30 -1.15 7.427 16.14 87.7 0.153

   11 2 33.30 -1.15 7.413 17.45 87.7 0.157

 36 33 Apr 22 2002 23:42:58 67 59.72 068 47.88

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 199 34.44 0.63 3.986 0.06 88.8 0.046

    2 199 34.44 0.63 3.986 0.06 88.9 0.058

    3 149 34.30 0.34 4.342 0.06 88.9 0.035

    4 100 34.09 0.00 5.082 0.06 88.5 0.054

    5 49 33.59 -0.74 6.573 0.06 88.2 0.152

    6 30 33.42 -0.96 7.109 0.06 87.8 0.143

    7 20 33.41 -0.99 7.295 0.08 87.7 0.156

    8 15 33.41 -0.98 7.300 0.12 87.8 0.135

    9 10 33.41 -0.98 7.292 0.23 87.8 0.150

   10 5 33.41 -0.98 7.262 0.48 87.8 0.150

   11 2 33.41 -0.98 7.259 1.06 87.8 0.154

 37 34 Apr 23 2002 02:38:28 67 55.63 068 31.19

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 658 34.67 1.30 3.720 0.06 88.8 0.023

    2 658 34.67 1.30 3.719 0.06 88.8 0.021

    3 600 34.67 1.29 3.726 0.06 89.0 0.056

    4 550 34.66 1.28 3.715 0.06 89.2 0.032

    5 499 34.66 1.27 3.701 0.06 89.3 0.018

    6 499 34.66 1.27 3.700 0.06 89.3 0.023

    7 449 34.66 1.25 3.701 0.06 89.4 0.045

    8 400 34.65 1.23 3.665 0.06 89.6 0.042

    9 349 34.64 1.19 3.670 0.06 89.5 0.034

   10 300 34.62 1.14 3.659 0.06 89.6 0.023

   11 248 34.60 1.07 3.627 0.06 89.8 0.031

   12 200 34.53 0.87 3.744 0.06 89.6 0.058

   13 150 34.32 0.29 3.790 0.06 89.4 0.071

   14 100 33.91 -0.89 4.600 0.06 89.4 0.070

   15 75 33.73 -1.23 5.245 0.06 89.0 0.060

   16 74 33.73 -1.23 5.270 0.06 89.0 0.060

   17 50 33.33 -1.13 6.417 0.06 87.5 0.147

   18 29 33.30 -1.21 7.311 0.06 87.3 0.168

   19 19 33.28 -1.24 7.340 0.09 87.3 0.176

   20 15 33.28 -1.23 7.349 0.12 87.4 0.148

   21 10 33.28 -1.23 7.353 0.20 87.4 0.158

   22 5 33.28 -1.24 7.359 0.47 87.3 0.162

   23 2 33.28 -1.24 7.361 1.16 87.4 0.143

   24 2 33.28 -1.24 7.361 0.99 87.4 0.148

 38 35 Apr 23 2002 09:57:51 67 54.53 068 11.25

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 659 34.67 1.30 3.714 0.06 88.9 0.025

    2 659 34.67 1.30 3.714 0.06 89.0 0.023

    3 600 34.67 1.29 3.710 0.06 89.1 0.030

    4 549 34.67 1.29 3.707 0.06 89.2 0.032

    5 500 34.66 1.27 3.688 0.06 89.3 0.051

    6 449 34.66 1.26 3.667 0.06 89.5 0.017

    7 400 34.65 1.25 3.650 0.06 89.6 0.079

    8 349 34.64 1.22 3.620 0.06 89.7 0.030

    9 300 34.63 1.17 3.602 0.06 89.8 0.065

   10 249 34.61 1.09 3.592 0.06 89.8 0.024

   11 200 34.55 0.93 3.568 0.06 89.5 0.036

   12 149 34.39 0.47 3.769 0.06 88.9 0.073

   13 100 34.02 -0.51 4.374 0.06 88.6 0.047

   14 75 33.72 -0.65 5.358 0.06 88.3 0.067

   15 50 33.38 -1.05 6.829 0.06 87.5 0.100

   16 30 33.31 -1.34 7.025 0.06 87.4 0.127

   17 20 33.31 -1.35 7.039 0.07 87.5 0.110

   18 14 33.30 -1.35 7.052 0.12 87.4 0.140

   19 10 33.27 -1.42 7.149 0.20 87.1 0.129

   20 10 33.27 -1.42 7.161 0.21 87.2 0.121

   21 5 33.23 -1.50 7.246 0.47 86.7 0.127

   22 4 33.23 -1.50 7.245 0.53 87.1 0.133

   23 2 33.25 -1.47 7.233 1.05 87.1 0.133

   24 2 33.25 -1.46 7.227 1.08 87.1 0.126

 39 36 Apr 23 2002 15:03:30 67 53.64 067 41.72

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 287 34.61 1.12 3.487 0.06 88.6 0.044

    2 287 34.61 1.12 3.485 0.06 88.6 0.043

    3 250 34.60 1.07 3.471 0.06 88.8 0.033

    4 250 34.60 1.07 3.472 0.06 88.9 0.034

    5 200 34.53 0.87 3.442 0.06 88.7 0.034

    6 200 34.53 0.86 3.442 0.06 88.6 0.033

    7 150 34.33 0.33 3.551 0.06 87.9 0.083

    8 100 33.94 -0.73 4.294 0.06 88.1 0.074

    9 100 33.94 -0.71 4.438 0.06 88.1 0.077

   10 100 33.94 -0.70 4.477 0.06 88.1 0.084

   11 75 33.63 -0.87 5.385 0.07 87.8 0.069

   12 50 33.34 -1.28 6.866 0.16 86.4 0.122

   13 30 33.27 -1.29 7.102 0.78 86.8 0.134

   14 30 33.28 -1.27 7.100 0.77 86.9 0.126

   15 30 33.28 -1.26 7.097 0.77 86.9 0.123

   16 20 33.17 -1.65 7.175 2.05 85.9 0.161

   17 16 33.16 -1.68 7.209 3.57 85.8 0.146

   18 10 33.16 -1.69 7.224 7.86 85.7 0.173

   19 5 33.16 -1.69 7.221 18.59 85.7 0.172

   20 0 33.16 -1.69 7.222 172.34 85.7 0.124

   21 0 33.16 -1.69 7.225 121.94 85.7 0.122

   22 0 33.16 -1.69 7.225 175.18 85.7 0.126

   23 -0 33.15 -1.69 7.225 212.38 85.6 0.128

   24 0 33.15 -1.69 7.225 114.80 85.7 0.127

 41 37 Apr 23 2002 22:00:19 68 10.69 068 14.78

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 518 34.68 1.32 3.870 0.06 89.0 0.026

    2 518 34.68 1.32 3.869 0.06 89.0 0.026

    3 450 34.68 1.30 3.877 0.06 89.4 0.040

    4 450 34.68 1.30 3.878 0.06 89.4 0.049

    5 400 34.67 1.28 3.802 0.06 89.0 0.027

    6 400 34.67 1.28 3.802 0.06 89.0 0.024

    7 349 34.66 1.25 3.720 0.06 89.1 0.065

    8 300 34.64 1.20 3.649 0.06 89.5 0.028

    9 250 34.61 1.10 3.597 0.06 89.8 0.077

   10 200 34.57 0.99 3.577 0.06 89.6 0.030

   11 150 34.37 0.42 3.675 0.06 89.2 0.065

   12 100 34.20 -0.05 4.085 0.06 89.6 0.025

   13 100 34.18 -0.11 4.091 0.06 89.7 0.021

   14 75 33.93 -0.83 4.588 0.06 89.4 0.043

   15 75 33.93 -0.83 4.622 0.06 89.4 0.045

   16 50 33.67 -1.09 5.355 0.06 88.4 0.059

   17 30 33.40 -1.14 6.804 0.06 87.2 0.137


   18 30 33.38 -1.22 6.778 0.06 87.3 0.151

   19 20 33.27 -1.38 7.037 0.08 87.3 0.125

   20 15 33.26 -1.40 7.224 0.11 87.3 0.123

   21 10 33.22 -1.59 7.222 0.19 87.1 0.141

   22 5 33.22 -1.63 7.195 0.46 86.9 0.186

   23 1 33.22 -1.62 7.196 1.14 87.0 0.167

   24 1 33.22 -1.61 7.195 1.50 87.0 0.158

 42 38 Apr 24 2002 04:38:13 68 23.38 067 26.79

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 188 34.41 0.56 3.764 0.06 88.4 0.035

    2 188 34.42 0.57 3.760 0.06 88.4 0.035

    3 150 34.25 0.08 4.222 0.06 88.0 0.047

    4 100 33.88 -0.97 4.765 0.06 89.4 0.063

    5 75 33.64 -1.37 5.338 0.06 89.0 0.077

    6 50 33.33 -1.40 6.577 0.06 86.2 0.343

    7 30 33.09 -1.72 7.112 0.06 84.8 0.475

    8 20 33.07 -1.77 7.137 0.07 84.8 0.473

    9 15 33.07 -1.78 7.143 0.08 85.0 0.423

   10 10 33.07 -1.78 7.138 0.15 84.9 0.415

   11 5 33.07 -1.78 7.121 0.48 85.1 0.431

   12 1 33.06 -1.78 7.105 1.37 85.1 0.418

   13 1 33.06 -1.79 7.104 1.51 85.1 0.386

 43 39 Apr 24 2002 10:01:49 68 41.07 067 59.43

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 406 34.66 1.26 3.854 0.06 87.8 0.058

    2 406 34.66 1.26 3.854 0.06 87.8 0.046

    3 400 34.66 1.26 3.841 0.06 87.9 0.031

    4 400 34.66 1.26 3.842 0.06 87.9 0.024

    5 350 34.65 1.23 3.781 0.06 88.8 0.033

    6 350 34.65 1.22 3.777 0.06 88.9 0.032

    7 300 34.63 1.15 3.717 0.06 88.7 0.028

    8 300 34.62 1.14 3.720 0.06 88.7 0.024

    9 250 34.58 1.02 3.744 0.06 89.1 0.045

   10 250 34.58 1.01 3.747 0.06 89.1 0.052

   11 200 34.43 0.57 3.866 0.06 89.4 0.041

   12 200 34.42 0.56 3.869 0.06 89.3 0.034

   13 150 34.11 -0.30 4.154 0.06 89.1 0.031

   14 100 33.78 -1.24 4.973 0.06 89.5 0.078

   15 75 33.60 -1.29 5.851 0.06 88.9 0.073

   16 50 33.23 -1.55 6.535 0.06 86.5 0.272

   17 30 33.04 -1.78 6.954 0.06 85.9 0.392

   18 20 33.01 -1.76 7.049 0.07 85.2 0.474

   19 15 32.99 -1.78 7.094 0.08 84.9 0.474

   20 10 32.98 -1.78 7.114 0.16 84.8 0.554

   21 5 32.98 -1.78 7.104 0.45 84.8 0.534

   22 1 32.98 -1.78 7.076 1.40 84.9 0.489

   23 1 32.98 -1.78 7.073 1.34 84.9 0.486

   24 1 32.98 -1.78 7.070 1.36 85.0 0.510

 44 40 Apr 24 2002 16:36:30 68 28.76 068 48.33 40

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 635 34.68 1.31 3.850 0.06 88.4 0.027

    2 635 34.68 1.31 3.851 0.06 88.4 0.030

    3 600 34.68 1.30 3.844 0.06 88.6 0.025

    4 549 34.68 1.30 3.843 0.06 88.6 0.028

    5 501 34.68 1.30 3.842 0.06 88.7 0.030

    6 501 34.68 1.30 3.840 0.06 88.7 0.025

    7 450 34.67 1.29 3.839 0.06 88.7 0.028

    8 400 34.67 1.28 3.832 0.06 88.8 0.049

    9 350 34.66 1.26 3.816 0.06 88.9 0.019

   10 300 34.64 1.18 3.763 0.06 89.0 0.024

   11 250 34.56 0.95 3.771 0.06 89.4 0.028

   12 200 34.40 0.51 3.899 0.06 89.3 0.026

   13 149 34.19 -0.04 4.581 0.06 89.1 0.068

   14 125 33.95 -0.59 4.847 0.06 89.0 0.066

   15 100 33.75 -0.63 5.963 0.06 88.7 0.091

   16 75 33.58 -0.68 7.048 0.06 88.1 0.101

   17 50 33.46 -0.92 7.277 0.11 87.6 0.145

   18 30 33.35 -1.12 7.268 0.54 86.0 0.234

   19 20 33.24 -1.40 7.125 2.28 85.4 0.307

   20 15 33.12 -1.70 7.163 5.14 84.8 0.505

   21 10 33.13 -1.70 7.180 10.65 84.7 0.495

   22 5 33.12 -1.72 7.184 25.33 84.7 0.492

   23 0 33.12 -1.72 7.181 68.39 84.7 0.402

   24 0 33.12 -1.72 7.186 68.16 84.7 0.434

 45 41 Apr 25 2002 03:59:53 68 16.26 069 35.40

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 749 34.71 1.38 3.934 0.06 90.3 0.061

    2 749 34.71 1.38 3.934 0.06 90.3 0.056

    3 700 34.71 1.38 3.919 0.06 90.3 0.016

    4 649 34.71 1.37 3.913 0.06 90.4 0.030

    5 600 34.71 1.38 3.907 0.06 90.5 0.047

    6 550 34.71 1.37 3.903 0.06 90.5 0.023

    7 500 34.71 1.37 3.894 0.06 90.6 0.026

    8 450 34.70 1.37 3.884 0.06 90.6 0.026

    9 400 34.70 1.37 3.876 0.06 90.7 0.056

   10 352 34.69 1.36 3.873 0.06 90.7 0.025

   11 300 34.68 1.37 3.873 0.06 90.8 0.022

   12 250 34.66 1.31 3.867 0.06 90.8 0.028

   13 200 34.62 1.17 3.885 0.06 90.8 0.026

   14 150 34.48 0.61 4.141 0.06 90.7 0.037

   15 99 34.21 -0.15 5.125 0.06 90.4 0.065

   16 76 33.89 -0.42 5.770 0.06 89.8 0.096

   17 50 33.50 -1.16 7.110 0.06 88.3 0.191

   18 30 33.47 -1.22 7.320 0.06 88.3 0.171

   19 20 33.47 -1.22 7.334 0.09 88.3 0.203

   20 15 33.47 -1.22 7.345 0.12 88.3 0.172

   21 10 33.47 -1.22 7.352 0.21 88.3 0.169

   22 5 33.47 -1.22 7.348 0.54 88.2 0.191

   23 0 33.47 -1.22 7.347 2.22 87.1 0.179

   24 -1 5.75 -1.07 8.915 5.84 58.4 0.089

 46 42 Apr 25 2002 09:33:49 68 03.65 070 21.51

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 865 34.72 1.28 4.007 0.06 90.3 0.037

    2 866 34.72 1.28 4.007 0.06 90.4 0.030

    3 800 34.72 1.28 3.995 0.06 90.5 0.056

    4 701 34.72 1.31 3.967 0.06 90.8 0.017

    5 650 34.72 1.33 3.943 0.06 90.7 0.063

    6 600 34.71 1.33 3.926 0.06 90.7 0.017

    7 550 34.71 1.33 3.911 0.06 90.7 0.021

    8 500 34.71 1.36 3.899 0.06 90.7 0.060

    9 450 34.71 1.36 3.892 0.06 90.7 0.021

   10 399 34.71 1.36 3.887 0.06 90.7 0.020

   11 349 34.70 1.37 3.880 0.06 90.8 0.031

   12 300 34.69 1.37 3.870 0.06 90.9 0.048

   13 251 34.68 1.38 3.859 0.06 91.0 0.030

   14 199 34.64 1.24 3.852 0.06 90.8 0.022

   15 149 34.54 0.88 3.982 0.06 90.7 0.024

   16 101 34.37 0.29 4.420 0.06 90.5 0.037

   17 50 33.90 -0.35 5.932 0.06 89.9 0.090

   18 30 33.49 -1.34 6.932 0.06 89.4 0.118

   19 18 33.44 -1.44 7.039 0.09 89.3 0.115


   20 16 33.43 -1.46 7.063 0.11 89.4 0.102

   21 11 33.43 -1.46 7.071 0.18 89.4 0.110

   22 4 33.43 -1.46 7.080 0.78 89.4 0.151

   23 2 33.43 -1.46 7.080 1.24 89.3 0.144

   24 -1 24.67 -1.42 7.516 4.70 57.0 0.189

 47 43 Apr 25 2002 14:47:34 67 50.53 071 07.37

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 395 34.72 1.34 4.053 0.06 90.2 0.024

    2 395 34.72 1.34 4.052 0.06 90.2 0.028

    3 349 34.71 1.36 4.033 0.06 90.5 0.021

    4 351 34.71 1.36 4.034 0.06 90.6 0.020

    5 300 34.69 1.33 3.995 0.06 90.7 0.035

    6 300 34.69 1.33 3.995 0.06 90.7 0.027

    7 250 34.65 1.23 3.993 0.06 90.8 0.054

    8 249 34.65 1.23 3.993 0.06 90.8 0.055

    9 200 34.61 1.12 3.988 0.06 90.8 0.023

   10 198 34.60 1.11 3.987 0.06 90.8 0.025

   11 150 34.49 0.67 4.134 0.06 90.7 0.069

   12 151 34.49 0.68 4.131 0.06 90.7 0.077

   13 100 34.27 0.02 4.735 0.10 90.5 0.033

   14 100 34.27 0.02 4.737 0.09 90.5 0.026

   15 75 34.13 -0.31 5.045 0.18 90.5 0.038

   16 50 33.77 -0.75 5.831 0.45 90.1 0.107

   17 30 33.47 -1.22 7.211 2.03 88.7 0.184

   18 19 33.46 -1.22 7.253 5.27 88.7 0.178

   19 15 33.46 -1.22 7.256 8.07 88.7 0.184

   20 10 33.46 -1.22 7.251 12.72 88.7 0.151

   21 5 33.46 -1.23 7.263 30.11 88.7 0.152

   22 3 33.46 -1.21 7.269 36.50 88.7 0.144

   23 1 33.46 -1.21 7.272 84.06 88.7 0.143

   24 -1 10.36 -1.28 8.544 254.33 38.1 0.068

 48 44 Apr 25 2002 23:24:45 67 37.39 071 51.93

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 368 34.72 1.47 4.088 0.06 90.7 0.029

    2 387 34.72 1.46 4.059 0.06 90.6 0.025

    3 387 34.72 1.46 4.058 0.06 90.6 0.020

    4 350 34.72 1.48 4.043 0.06 90.7 0.021

    5 301 34.68 1.35 3.992 0.06 90.9 0.049

    6 251 34.64 1.23 3.972 0.06 91.0 0.023

    7 200 34.56 0.88 4.045 0.06 91.0 0.023

    8 150 34.42 0.26 4.409 0.06 90.8 0.026

    9 125 34.31 -0.24 4.819 0.06 90.7 0.031

   10 125 34.32 -0.22 4.845 0.06 90.7 0.027

   11 101 34.17 -0.69 5.252 0.06 90.5 0.051

   12 100 34.16 -0.69 5.244 0.06 90.5 0.040

   13 75 34.03 -0.60 5.247 0.06 90.5 0.044

   14 75 34.02 -0.60 5.253 0.06 90.5 0.036

   15 49 33.70 -0.88 6.462 0.06 88.7 0.194

   16 49 33.71 -0.86 6.403 0.06 88.7 0.218

   17 30 33.43 -1.31 7.223 0.06 88.4 0.196

   18 20 33.43 -1.32 7.308 0.08 88.4 0.210

   19 15 33.43 -1.32 7.310 0.11 88.4 0.224

   20 11 33.43 -1.32 7.322 0.18 88.4 0.190

   21 11 33.43 -1.32 7.321 0.17 88.4 0.185

   22 7 33.43 -1.32 7.318 0.29 88.4 0.213

   23 3 33.43 -1.32 7.309 0.51 88.3 0.227

   24 0 33.43 -1.32 7.312 0.76 88.1 0.223

 50 46 Apr 26 2002 13:37:48 67 08.76 073 24.50

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 2082 34.71 0.48 4.504 0.05 91.2 0.007

    2 2082 34.71 0.48 4.505 0.05 91.2 0.011

    3 1749 34.71 0.71 4.422 0.05 91.3 0.017

    4 1501 34.72 0.90 4.361 0.05 91.3 0.006

    5 1249 34.72 1.10 4.291 0.05 91.3 0.011

    6 1001 34.73 1.27 4.227 0.05 91.3 0.045

    7 899 34.73 1.36 4.208 0.05 91.3 0.019

    8 800 34.73 1.47 4.182 0.05 91.3 0.016

    9 700 34.73 1.55 4.155 0.05 91.3 0.043

   10 598 34.73 1.65 4.133 0.05 91.3 0.012

   11 500 34.73 1.74 4.034 0.05 91.3 0.025

   12 400 34.72 1.83 4.004 0.05 91.3 0.025

   13 300 34.70 1.86 3.856 0.05 91.2 0.022

   14 200 34.65 1.83 3.798 0.05 91.1 0.025

   15 149 34.59 1.60 3.840 0.05 90.9 0.031

   16 99 34.37 0.15 4.550 0.05 90.6 0.037

   17 50 33.85 -0.57 6.917 0.05 87.2 0.799

   18 30 33.78 -0.56 7.299 0.05 87.1 0.740

   19 20 33.78 -0.56 7.304 0.05 87.1 0.730

   20 16 33.78 -0.57 7.313 0.05 87.0 0.761

   21 10 33.78 -0.57 7.312 0.05 87.2 0.703

   22 5 33.78 -0.57 7.316 0.05 87.1 0.719

   23 5 33.78 -0.57 7.306 0.05 87.2 0.716

   24 4 33.78 -0.57 7.305 0.05 87.2 0.713

 51 47 Apr 26 2002 22:43:20 67 14.61 074 31.80

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 2843 34.71 0.35 4.512 0.05 -0.0 0.027

    2 2844 34.71 0.35 4.513 0.05 -0.0 0.021

    3 2502 34.71 0.43 4.483 0.05 -0.0 0.054

    4 2250 34.71 0.49 4.462 0.05 -0.0 0.014

    5 2003 34.71 0.58 4.427 0.05 -0.0 0.016

    6 1753 34.71 0.69 4.398 0.05 -0.0 0.016

    7 1503 34.71 0.80 4.359 0.05 -0.0 0.047

    8 1249 34.72 0.94 4.307 0.05 -0.0 0.011

    9 1003 34.72 1.08 4.265 0.05 -0.0 0.054

   10 751 34.73 1.25 4.204 0.05 -0.0 0.009

   11 501 34.72 1.50 4.018 0.05 -0.0 0.015

   12 300 34.67 1.54 3.890 0.05 -0.0 0.023

   13 251 34.63 1.48 3.883 0.05 -0.0 0.013

   14 202 34.49 0.63 4.125 0.05 -0.0 0.056

   15 150 34.27 -0.54 5.088 0.05 -0.0 0.058

   16 102 34.11 -1.32 5.858 0.05 -0.0 0.074

   17 50 33.82 -0.71 7.201 0.05 -0.0 0.530

   18 31 33.82 -0.67 7.257 0.05 -0.0 0.505

   19 22 33.82 -0.66 7.257 0.05 -0.0 0.474

   20 15 33.82 -0.66 7.264 0.05 -0.0 0.474

   21 12 33.82 -0.66 7.269 0.05 -0.0 0.506

   22 5 33.82 -0.66 7.268 0.05 -0.0 0.466

   23 2 33.82 -0.66 7.281 0.05 -0.0 0.452

   24 2 33.82 -0.66 7.286 0.05 -0.0 0.472

 52 48 Apr 27 2002 11:51:15 67 28.58 073 49.31

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 407 34.71 1.52 4.066 0.06 90.5 0.018

    2 406 34.71 1.52 4.068 0.06 90.5 0.024

    3 350 34.70 1.54 4.024 0.06 90.7 0.018

    4 350 34.70 1.54 4.021 0.06 90.7 0.023

    5 299 34.67 1.49 3.997 0.06 90.8 0.022

    6 299 34.67 1.50 3.997 0.06 90.8 0.022

    7 250 34.62 1.25 3.991 0.06 90.8 0.021

    8 250 34.62 1.25 3.993 0.06 90.8 0.021

    9 200 34.57 1.04 4.068 0.06 90.8 0.034

   10 201 34.57 1.04 4.068 0.06 90.8 0.035

   11 149 34.46 0.57 4.320 0.06 90.7 0.046


   12 151 34.45 0.48 4.315 0.06 90.7 0.041

   13 100 34.28 -0.50 5.117 0.06 90.5 0.042

   14 100 34.28 -0.47 5.170 0.06 90.5 0.039

   15 74 34.06 -1.23 5.958 0.06 89.8 0.112

   16 76 34.06 -1.23 6.026 0.06 89.8 0.138

   17 50 33.81 -0.73 7.161 0.06 87.9 0.499

   18 30 33.81 -0.74 7.282 0.07 87.8 0.459

   19 20 33.81 -0.75 7.297 0.10 87.8 0.454

   20 14 33.81 -0.75 7.288 0.13 87.8 0.542

   21 10 33.81 -0.75 7.280 0.21 87.8 0.512

   22 5 33.81 -0.76 7.295 0.49 87.8 0.486

   23 2 33.80 -0.76 7.293 0.69 87.8 0.450

   24 1 33.80 -0.76 7.285 1.17 87.3 0.463

 53 49 Apr 27 2002 16:58:32 67 40.62 073 11.45

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 478 34.73 1.36 4.104 0.06 90.3 0.045

    2 478 34.73 1.36 4.103 0.06 90.3 0.047

    3 452 34.73 1.36 4.098 0.06 90.3 0.045

    4 402 34.72 1.40 4.087 0.06 90.7 0.025

    5 352 34.72 1.47 4.057 0.06 90.8 0.027

    6 301 34.69 1.44 3.976 0.06 90.8 0.041

    7 251 34.63 1.18 3.956 0.06 90.7 0.020

    8 201 34.54 0.77 4.080 0.06 90.7 0.057

    9 150 34.36 -0.07 4.650 0.06 90.7 0.020

   10 100 34.16 -1.15 5.662 0.09 90.5 0.035

   11 75 34.02 -1.13 5.987 0.15 89.8 0.092

   12 75 34.02 -1.13 6.008 0.15 89.8 0.100

   13 70 33.95 -1.05 6.181 0.17 89.5 0.109

   14 49 33.65 -1.09 7.295 0.50 88.0 0.251

   15 49 33.65 -1.10 7.301 0.51 88.0 0.265

   16 30 33.64 -1.12 7.355 1.94 88.1 0.303

   17 30 33.64 -1.12 7.354 2.05 88.2 0.269

   18 21 33.64 -1.13 7.369 4.27 88.2 0.221

   19 20 33.64 -1.13 7.368 4.04 88.2 0.246

   20 15 33.64 -1.13 7.363 6.69 88.4 0.266

   21 10 33.64 -1.14 7.369 9.92 88.3 0.246

   22 5 33.63 -1.17 7.366 15.67 88.4 0.219

   23 3 33.63 -1.18 7.367 22.39 88.3 0.296

   24 2 33.63 -1.18 7.376 25.31 88.4 0.264

 54 50 Apr 27 2002 21:40:32 67 54.14 072 27.56

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 382 34.71 1.53 3.971 0.06 90.7 0.041

    2 382 34.71 1.53 3.973 0.06 90.7 0.038

    3 350 34.71 1.51 3.964 0.06 90.8 0.029

    4 302 34.71 1.68 3.963 0.06 91.0 0.038

    5 274 34.70 1.65 3.938 0.06 90.9 0.028

    6 239 34.69 1.76 3.907 0.06 90.9 0.051

    7 224 34.68 1.68 3.896 0.06 90.9 0.027

    8 200 34.61 1.30 3.937 0.06 90.8 0.021

    9 176 34.52 0.71 4.086 0.06 90.7 0.040

   10 151 34.43 0.32 4.287 0.06 90.7 0.065

   11 125 34.32 -0.26 4.780 0.06 90.6 0.038

   12 101 34.23 -0.76 5.242 0.06 90.6 0.038

   13 74 34.16 -1.22 5.681 0.06 90.2 0.052

   14 52 33.98 -1.17 6.214 0.06 89.1 0.177

   15 45 33.82 -1.12 6.650 0.06 88.5 0.300

   16 41 33.78 -1.11 6.861 0.06 88.4 0.239

   17 31 33.63 -1.10 7.236 0.06 88.0 0.272

   18 21 33.63 -1.10 7.308 0.08 88.0 0.278

   19 16 33.63 -1.10 7.322 0.11 88.0 0.282

   20 10 33.63 -1.09 7.318 0.19 88.0 0.263

   21 5 33.63 -1.09 7.313 0.45 88.0 0.298

   22 2 33.63 -1.09 7.318 1.08 88.0 0.249

   23 2 33.63 -1.09 7.318 1.15 88.0 0.256

   24 2 33.63 -1.09 7.320 1.29 88.0 0.285

 55 51 Apr 28 2002 07:43:07 68 07.53 071 42.40

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 547 34.70 1.33 3.928 0.06 90.1 0.067

    2 546 34.70 1.33 3.927 0.06 90.1 0.068

    3 500 34.70 1.33 3.920 0.06 90.2 0.020

    4 500 34.70 1.33 3.922 0.06 90.1 0.024

    5 450 34.69 1.32 3.916 0.06 90.3 0.040

    6 449 34.69 1.32 3.916 0.06 90.3 0.035

    7 401 34.69 1.31 3.913 0.06 90.4 0.019

    8 400 34.69 1.31 3.911 0.06 90.4 0.025

    9 350 34.68 1.29 3.912 0.06 90.5 0.055

   10 349 34.68 1.29 3.912 0.06 90.5 0.061

   11 300 34.63 1.16 3.937 0.06 90.6 0.017

   12 250 34.60 1.01 3.971 0.06 90.7 0.024

   13 201 34.55 0.90 4.020 0.06 90.5 0.053

   14 151 34.39 0.43 4.108 0.06 90.2 0.026

   15 100 34.17 -0.18 4.399 0.06 90.2 0.029

   16 50 33.85 -0.96 5.016 0.06 90.1 0.050

   17 30 33.52 -1.38 6.907 0.06 89.3 0.118

   18 20 33.51 -1.39 6.991 0.09 89.3 0.141

   19 14 33.51 -1.39 6.999 0.11 89.3 0.123

   20 10 33.51 -1.39 7.002 0.21 89.3 0.114

   21 6 33.51 -1.38 6.998 0.38 89.3 0.115

   22 6 33.51 -1.38 7.001 0.37 89.3 0.119

   23 3 33.51 -1.38 6.999 0.66 89.3 0.136

   24 4 33.51 -1.38 6.995 0.57 89.3 0.139

 56 52 Apr 28 2002 14:21:10 68 20.66 070 56.35

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 511 34.71 1.32 3.943 0.06 90.2 0.022

    2 512 34.71 1.32 3.945 0.06 90.2 0.029

    3 500 34.71 1.32 3.925 0.06 90.1 0.072

    4 449 34.70 1.33 3.932 0.06 90.5 0.044

    5 400 34.69 1.34 3.931 0.06 90.6 0.042

    6 350 34.67 1.32 3.921 0.06 90.6 0.026

    7 301 34.64 1.25 3.909 0.06 90.6 0.036

    8 250 34.57 0.99 3.991 0.06 90.4 0.053

    9 200 34.48 0.70 4.136 0.06 90.3 0.026

   10 150 34.29 0.15 4.165 0.06 90.1 0.041

   11 99 34.10 -0.39 4.324 0.07 90.3 0.034

   12 75 33.94 -0.80 4.932 0.08 90.3 0.044

   13 50 33.74 -1.11 5.545 0.13 89.9 0.063

   14 30 33.33 -1.71 6.710 0.37 88.9 0.104

   15 29 33.36 -1.65 6.725 0.38 88.9 0.114

   16 29 33.34 -1.69 6.779 0.39 88.7 0.108

   17 19 33.32 -1.73 6.971 0.87 88.6 0.147

   18 14 33.31 -1.73 6.989 1.41 88.6 0.143

   19 10 33.31 -1.73 6.991 2.30 88.6 0.092

   20 4 33.31 -1.73 6.996 4.92 88.6 0.102

   21 1 33.31 -1.73 6.998 15.26 88.4 0.112

   22 2 33.31 -1.73 6.998 7.49 88.5 0.108

   23 1 33.31 -1.73 6.996 8.53 88.5 0.110

   24 2 33.31 -1.73 7.001 8.42 88.5 0.108

 57 53 Apr 28 2002 18:05:00 68 29.35 070 37.75

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 763 34.72 1.32 3.882 0.06 89.8 0.040

    2 764 34.72 1.32 3.881 0.06 89.8 0.051

    3 699 34.71 1.32 3.870 0.06 89.8 0.020


    4 650 34.71 1.32 3.862 0.06 90.1 0.023

    5 599 34.71 1.32 3.865 0.06 90.4 0.027

    6 549 34.71 1.32 3.890 0.06 90.5 0.056

    7 500 34.70 1.33 3.896 0.06 90.5 0.023

    8 449 34.70 1.32 3.891 0.06 90.5 0.026

    9 400 34.69 1.30 3.887 0.06 90.4 0.062

   10 350 34.67 1.28 3.883 0.06 90.5 0.024

   11 300 34.65 1.23 3.886 0.06 90.5 0.064

   12 251 34.60 1.04 3.919 0.06 90.2 0.026

   13 200 34.51 0.79 3.957 0.06 90.2 0.026

   14 150 34.31 0.19 4.090 0.06 90.1 0.072

   15 100 34.07 -0.41 4.629 0.06 90.2 0.038

   16 49 33.76 -1.06 5.239 0.13 90.0 0.058

   17 40 33.66 -1.11 5.883 0.19 89.6 0.109

   18 30 33.36 -1.68 6.881 0.36 88.9 0.092

   19 20 33.33 -1.74 6.956 0.71 89.0 0.079

   20 15 33.33 -1.75 6.965 1.17 89.0 0.102

   21 10 33.33 -1.75 6.972 1.65 88.9 0.105

   22 5 33.32 -1.76 6.986 3.43 88.9 0.088

   23 2 33.32 -1.76 6.989 6.97 88.9 0.099

   24 1 33.32 -1.76 6.988 7.27 88.9 0.118

 58 54 Apr 28 2002 23:33:57 68 31.58 070 00.20

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 1179 34.72 1.33 3.979 0.05 89.9 0.014

    2 1180 34.72 1.33 3.979 0.05 90.0 0.018

    3 1050 34.72 1.33 3.968 0.05 90.3 0.059

    4 1000 34.72 1.33 3.958 0.05 90.3 0.016

    5 900 34.72 1.31 3.924 0.05 90.3 0.016

    6 799 34.71 1.29 3.921 0.05 90.3 0.059

    7 700 34.71 1.27 3.912 0.05 90.4 0.020

    8 600 34.70 1.25 3.905 0.05 90.4 0.009

    9 550 34.70 1.25 3.900 0.05 90.4 0.017

   10 501 34.70 1.26 3.887 0.05 90.5 0.029

   11 450 34.70 1.33 3.876 0.05 90.5 0.051

   12 400 34.69 1.35 3.863 0.05 90.5 0.057

   13 351 34.67 1.30 3.841 0.05 90.3 0.063

   14 300 34.65 1.26 3.848 0.05 90.3 0.036

   15 200 34.54 0.89 3.808 0.05 90.3 0.036

   16 100 34.21 -0.06 4.437 0.05 90.0 0.042

   17 50 33.57 -0.94 6.373 0.05 89.1 0.108

   18 31 33.32 -1.34 6.976 0.05 88.3 0.129

   19 20 33.14 -1.75 7.156 0.05 88.3 0.111

   20 15 33.12 -1.76 7.171 0.05 88.3 0.134

   21 11 33.12 -1.76 7.180 0.05 88.3 0.117

   22 5 33.13 -1.76 7.178 0.05 88.4 0.102

   23 5 33.12 -1.77 7.180 0.05 88.4 0.120

   24 5 33.12 -1.77 7.179 0.05 88.1 0.107

 59 55 Apr 29 2002 15:15:42 68 53.10 068 58.55

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 491 34.56 0.94 3.863 0.06 89.2 0.038

    2 491 34.56 0.94 3.863 0.06 89.1 0.048

    3 450 34.55 0.93 3.875 0.06 89.3 0.059

    4 400 34.55 0.91 3.900 0.06 89.6 0.061

    5 350 34.54 0.89 3.909 0.06 89.8 0.036

    6 300 34.53 0.84 3.905 0.06 89.7 0.018

    7 250 34.49 0.74 3.906 0.06 89.6 0.024

    8 200 34.39 0.45 3.951 0.06 89.5 0.027

    9 150 34.22 -0.01 4.177 0.06 89.9 0.031

   10 100 33.83 -0.89 5.128 0.06 89.4 0.043

   11 75 33.62 -1.19 5.990 0.06 88.7 0.077

   12 50 33.25 -1.48 6.617 0.07 87.3 0.159

   13 30 33.12 -1.59 6.814 0.26 87.0 0.191

   14 30 33.12 -1.60 6.808 0.26 87.0 0.198

   15 30 33.11 -1.60 6.811 0.26 87.1 0.188

   16 20 33.02 -1.73 6.927 1.09 86.8 0.188

   17 15 32.99 -1.77 6.963 2.57 85.3 0.222

   18 10 32.99 -1.79 7.035 7.56 84.9 0.571

   19 5 32.99 -1.78 7.059 22.15 84.9 0.427

   20 0 32.99 -1.78 7.055 188.27 84.9 0.444

   21 0 32.99 -1.78 7.051 188.61 84.9 0.442

   22 0 32.99 -1.78 7.052 188.59 84.8 0.430

   23 0 32.99 -1.78 7.052 187.80 84.8 0.419

   24 0 32.99 -1.78 7.052 187.74 84.7 0.407

 60 56 Apr 30 2002 04:05:17 69 09.55 069 13.96

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 598 34.70 1.24 3.940 0.06 90.1 0.018

    2 598 34.70 1.24 3.942 0.06 90.1 0.021

    3 550 34.70 1.23 3.936 0.06 90.0 0.018

    4 550 34.70 1.23 3.938 0.06 90.0 0.015

    5 500 34.69 1.23 3.930 0.06 90.1 0.025

    6 500 34.70 1.23 3.932 0.06 90.1 0.020

    7 450 34.69 1.22 3.919 0.06 90.2 0.029

    8 450 34.68 1.22 3.921 0.06 90.2 0.021

    9 400 34.67 1.24 3.902 0.06 90.2 0.040

   10 350 34.66 1.21 3.905 0.06 90.3 0.020

   11 300 34.62 1.11 3.908 0.06 90.0 0.061

   12 250 34.54 0.84 3.954 0.06 90.2 0.018

   13 200 34.38 0.39 4.052 0.06 89.5 0.065

   14 150 34.23 -0.03 4.152 0.06 90.0 0.022

   15 100 33.94 -0.83 4.575 0.06 89.9 0.031

   16 75 33.77 -1.12 4.752 0.06 89.9 0.043

   17 50 33.63 -1.53 4.646 0.06 90.1 0.035

   18 28 33.30 -1.72 5.349 0.06 89.5 0.071

   19 20 33.11 -1.80 6.475 0.08 89.0 0.104

   20 15 33.14 -1.79 6.715 0.12 88.9 0.092

   21 10 33.11 -1.80 6.752 0.21 88.8 0.114

   22 5 33.11 -1.80 6.763 0.55 88.6 0.121

   23 0 33.11 -1.80 6.774 3.01 88.7 0.147

   24 0 33.11 -1.80 6.774 2.99 88.7 0.143

 61 57 Apr 30 2002 13:37:21 68 59.89 069 25.73

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 500 34.69 1.27 3.937 0.06 90.0 0.061

    2 500 34.69 1.27 3.937 0.06 89.9 0.068

    3 450 34.68 1.26 3.936 0.06 90.0 0.075

    4 450 34.68 1.26 3.938 0.06 90.0 0.052

    5 400 34.67 1.25 3.942 0.06 90.2 0.029

    6 400 34.67 1.25 3.942 0.06 90.1 0.034

    7 350 34.65 1.20 3.948 0.06 90.1 0.021

    8 350 34.65 1.20 3.945 0.06 90.1 0.022

    9 300 34.61 1.10 3.962 0.06 90.2 0.031

   10 300 34.61 1.10 3.963 0.06 90.2 0.022

   11 250 34.54 0.88 3.966 0.06 89.9 0.030

   12 200 34.41 0.50 3.995 0.06 89.8 0.055

   13 150 34.23 -0.01 4.194 0.06 89.9 0.048

   14 100 33.97 -0.71 4.774 0.06 89.9 0.057

   15 75 33.75 -1.13 5.541 0.06 89.6 0.055

   16 50 33.51 -1.08 6.491 0.07 88.8 0.093

   17 30 33.18 -1.70 7.037 0.19 88.0 0.116

   18 20 33.16 -1.70 7.047 0.64 87.9 0.152

   19 15 33.16 -1.72 7.033 1.33 87.9 0.115

   20 10 33.12 -1.76 7.055 3.44 87.9 0.132

   21 5 33.12 -1.75 7.053 9.97 87.9 0.119


   22 0 33.11 -1.76 7.037 77.94 87.8 0.171

   23 0 33.11 -1.76 7.037 78.42 87.8 0.173

   24 0 33.11 -1.76 7.037 77.98 87.8 0.171

 62 58 Apr 30 2002 20:36:51 68 53.42 069 55.80

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 1267 34.72 1.34 3.959 0.05 89.8 0.060

    2 1267 34.72 1.34 3.960 0.05 89.8 0.067

    3 1200 34.72 1.33 3.955 0.05 90.0 0.023

    4 1100 34.72 1.33 3.945 0.05 90.1 0.026

    5 1000 34.72 1.32 3.928 0.05 90.1 0.041

    6 900 34.70 1.22 3.928 0.05 89.9 0.022

    7 800 34.70 1.22 3.918 0.05 90.2 0.013

    8 700 34.70 1.21 3.913 0.05 90.3 0.052

    9 600 34.70 1.24 3.897 0.05 90.3 0.023

   10 500 34.68 1.17 3.902 0.05 90.3 0.017

   11 400 34.68 1.28 3.869 0.05 90.4 0.023

   12 300 34.61 1.11 3.883 0.05 90.3 0.029

   13 200 34.37 0.35 4.026 0.05 89.7 0.032

   14 100 33.94 -0.80 4.838 0.05 89.9 0.034

   15 75 33.83 -1.01 5.175 0.05 89.6 0.038

   16 50 33.56 -1.21 5.593 0.05 89.4 0.109

   17 30 33.27 -1.50 6.748 0.05 87.7 0.128

   18 25 33.15 -1.73 6.974 0.05 87.9 0.141

   19 20 33.10 -1.77 7.008 0.05 88.1 0.111

   20 15 33.06 -1.80 6.998 0.05 88.3 0.163

   21 10 33.06 -1.80 6.997 0.05 88.3 0.120

   22 5 33.06 -1.80 6.997 0.05 88.3 0.134

   23 1 33.06 -1.80 6.992 0.05 88.3 0.121

   24 1 33.06 -1.80 6.993 0.05 88.3 0.126

 63 59 May 01 2002 07:29:11 68 43.28 070 24.62

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 376 34.59 1.04 3.896 0.06 89.1 0.031

    2 376 34.60 1.04 3.894 0.06 89.1 0.028

    3 351 34.59 1.03 3.900 0.06 89.3 0.030

    4 300 34.57 0.96 3.916 0.06 89.3 0.026

    5 251 34.40 0.45 3.998 0.06 89.0 0.035

    6 200 34.29 0.14 4.069 0.06 88.6 0.023

    7 150 34.21 -0.09 4.122 0.06 89.2 0.022

    8 149 34.21 -0.09 4.127 0.06 89.3 0.029

    9 100 34.05 -0.51 4.293 0.06 89.8 0.026

   10 100 34.03 -0.56 4.321 0.06 89.8 0.030

   11 76 33.81 -0.93 4.918 0.06 89.5 0.088

   12 50 33.52 -0.99 6.311 0.06 88.8 0.089

   13 30 33.28 -1.81 6.710 0.06 89.3 0.062

   14 21 33.18 -1.81 6.973 0.06 88.3 0.182

   15 15 33.16 -1.81 7.033 0.11 88.2 0.180

   16 14 33.16 -1.81 7.035 0.12 88.2 0.188

   17 10 33.16 -1.81 7.045 0.19 88.2 0.171

   18 10 33.15 -1.81 7.045 0.17 88.2 0.186

   19 3 33.15 -1.81 7.067 0.50 87.9 0.172

   20 1 33.15 -1.81 7.064 0.70 87.9 0.178

   21 0 33.15 -1.81 7.062 1.61 87.7 0.172

   22 -1 13.35 -1.86 8.108 3.13 42.1 0.177

 64 60 May 01 2002 12:27:58 68 45.62 071 04.12

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 307 34.28 0.56 4.138 0.06 87.7 0.029

    2 307 34.28 0.56 4.138 0.06 87.7 0.023

    3 249 34.42 0.51 4.145 0.06 88.0 0.036

    4 200 34.39 0.40 4.183 0.06 88.6 0.044

    5 150 34.25 0.03 4.233 0.06 89.1 0.068

    6 100 33.75 -1.07 5.340 0.06 87.7 0.061

    7 75 33.36 -1.74 6.429 0.06 89.5 0.060

    8 48 33.33 -1.81 6.584 0.06 89.7 0.066

    9 30 33.30 -1.82 6.629 0.09 89.6 0.104

   10 20 33.30 -1.82 6.656 0.14 89.5 0.084

   11 15 33.30 -1.82 6.655 0.21 89.5 0.060

   12 10 33.30 -1.82 6.659 0.36 89.5 0.075

   13 5 33.30 -1.81 6.667 0.72 89.5 0.093

   14 1 33.30 -1.81 6.658 1.47 89.5 0.095

   15 1 33.30 -1.81 6.658 1.45 89.5 0.095

 65 61 May 01 2002 17:22:11 68 37.18 071 32.73

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 157 34.24 0.02 4.423 0.06 89.1 0.040

    2 158 34.25 0.03 4.420 0.06 89.1 0.043

    3 150 34.22 -0.05 4.456 0.06 89.0 0.039

    4 125 34.08 -0.41 4.642 0.06 88.6 0.063

    5 98 33.99 -0.62 4.776 0.08 89.0 0.045

    6 76 33.86 -0.86 5.166 0.12 89.4 0.057

    7 55 33.54 -1.34 6.495 0.26 89.2 0.077

    8 51 33.48 -1.44 6.825 0.32 89.2 0.085

    9 31 33.44 -1.50 7.017 0.98 89.1 0.085

   10 20 33.43 -1.52 7.128 1.86 89.1 0.093

   11 15 33.42 -1.53 7.141 2.98 89.1 0.093

   12 10 33.42 -1.53 7.141 5.10 89.1 0.097

   13 5 33.42 -1.53 7.136 10.19 89.1 0.136

   14 2 33.42 -1.53 7.135 17.44 88.9 0.132

   15 2 33.42 -1.53 7.135 18.59 88.9 0.119

 66 62 May 02 2002 01:07:17 68 24.31 072 18.53

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 401 34.70 1.34 3.898 0.06 89.8 0.065

    2 400 34.70 1.34 3.899 0.06 89.7 0.070

    3 352 34.67 1.27 3.889 0.06 90.2 0.028

    4 300 34.66 1.24 3.893 0.06 90.2 0.025

    5 250 34.55 0.85 3.999 0.06 90.4 0.028

    6 200 34.46 0.47 4.184 0.06 90.3 0.057

    7 152 34.30 -0.16 4.677 0.06 90.2 0.040

    8 114 34.13 -0.35 4.677 0.06 90.0 0.028

    9 100 34.00 -0.60 4.821 0.06 90.0 0.037

   10 75 33.84 -0.90 5.241 0.06 89.9 0.053

   11 67 33.63 -1.23 5.952 0.06 89.6 0.103

   12 50 33.55 -1.31 7.141 0.06 88.7 0.187

   13 30 33.53 -1.36 7.163 0.06 88.8 0.129

   14 25 33.52 -1.37 7.168 0.07 88.9 0.142

   15 20 33.51 -1.40 7.176 0.09 88.9 0.149

   16 15 33.49 -1.43 7.198 0.12 89.0 0.126

   17 10 33.48 -1.46 7.223 0.20 89.1 0.125

   18 6 33.47 -1.47 7.226 0.45 89.1 0.133

   19 2 33.47 -1.48 7.229 1.03 89.1 0.117

   20 2 33.47 -1.48 7.227 1.22 89.1 0.117

 67 63 May 02 2002 10:27:41 68 10.51 073 04.02 63

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 319 34.71 1.36 4.021 0.06 89.7 0.025

    2 319 34.71 1.36 4.022 0.06 89.7 0.025

    3 300 34.70 1.36 4.003 0.06 89.8 0.046

    4 301 34.70 1.36 4.000 0.06 89.9 0.049

    5 250 34.64 1.17 3.993 0.06 90.3 0.024

    6 250 34.64 1.17 3.993 0.06 90.3 0.025

    7 200 34.59 1.01 4.048 0.06 90.3 0.055

    8 201 34.59 1.01 4.053 0.06 90.3 0.064

    9 149 34.44 0.36 4.352 0.06 90.1 0.029

   10 150 34.44 0.36 4.356 0.06 90.1 0.025


   11 100 34.19 -0.82 5.364 0.06 90.0 0.058

   12 99 34.19 -0.82 5.364 0.06 90.1 0.064

   13 75 34.12 -0.69 5.357 0.06 89.9 0.074

   14 75 34.12 -0.71 5.322 0.06 89.9 0.084

   15 50 33.63 -1.26 6.695 0.06 88.6 0.166

   16 30 33.60 -1.31 7.333 0.07 88.7 0.185

   17 19 33.60 -1.31 7.342 0.09 88.7 0.200

   18 16 33.60 -1.31 7.342 0.11 88.7 0.163

   19 10 33.60 -1.31 7.341 0.20 88.7 0.159

   20 5 33.59 -1.32 7.341 0.48 88.7 0.150

   21 2 33.59 -1.32 7.326 4.97 88.7 0.148

   22 2 33.59 -1.32 7.321 3.76 88.7 0.140

   23 2 33.59 -1.32 7.320 2.60 88.7 0.154

   24 2 33.59 -1.32 7.321 3.75 88.7 0.170

 68 64 May 02 2002 16:14:27 67 57.16 073 47.88

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 428 34.71 1.33 3.895 0.06 89.7 0.035

    2 428 34.71 1.33 3.895 0.06 89.7 0.029

    3 401 34.71 1.33 3.892 0.06 89.7 0.024

    4 374 34.71 1.33 3.890 0.06 89.8 0.024

    5 350 34.70 1.34 3.891 0.06 89.9 0.034

    6 324 34.69 1.33 3.902 0.06 90.3 0.028

    7 301 34.67 1.25 3.902 0.06 90.3 0.034

    8 274 34.64 1.15 3.910 0.06 90.2 0.024

    9 250 34.62 1.09 3.909 0.06 90.4 0.027

   10 225 34.59 0.93 3.962 0.06 90.4 0.035

   11 200 34.55 0.79 4.016 0.06 90.4 0.024

   12 175 34.47 0.45 4.209 0.06 90.4 0.026

   13 150 34.40 0.21 4.402 0.07 90.3 0.026

   14 125 34.27 -0.48 5.004 0.09 90.3 0.041

   15 99 34.16 -1.11 5.587 0.15 90.4 0.047

   16 60 33.96 -0.80 5.466 0.43 89.7 0.074

   17 50 33.58 -1.38 7.229 0.75 88.8 0.190

   18 29 33.57 -1.39 7.363 2.56 88.8 0.144

   19 20 33.57 -1.39 7.365 4.94 88.8 0.173

   20 16 33.57 -1.39 7.373 7.01 88.8 0.157

   21 11 33.56 -1.39 7.369 11.35 88.8 0.178

   22 6 33.56 -1.39 7.373 18.62 88.8 0.156

   23 2 33.56 -1.32 7.358 30.54 88.8 0.154

   24 1 33.56 -1.34 7.370 33.68 88.8 0.158

 69 65 May 02 2002 18:54:53 67 53.71 073 58.58

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 424 34.72 1.47 4.030 0.06 90.4 0.030

    2 424 34.72 1.47 4.028 0.06 90.4 0.028

    3 400 34.72 1.48 4.032 0.06 90.4 0.018

    4 375 34.72 1.51 4.027 0.06 90.5 0.021

    5 351 34.72 1.63 4.043 0.06 90.6 0.024

    6 325 34.71 1.59 4.002 0.06 90.6 0.022

    7 301 34.70 1.60 3.982 0.06 90.6 0.022

    8 250 34.64 1.25 3.927 0.06 90.4 0.029

    9 200 34.56 0.84 4.018 0.06 90.5 0.025

   10 150 34.41 0.16 4.426 0.06 90.5 0.035

   11 100 34.17 -1.09 5.488 0.07 90.4 0.030

   12 74 34.08 -0.97 5.688 0.11 90.1 0.058

   13 49 33.71 -1.21 6.993 0.23 88.1 0.339

   14 29 33.63 -1.30 7.313 0.68 88.3 0.253

   15 21 33.58 -1.38 7.356 1.28 88.6 0.194

   16 16 33.57 -1.39 7.396 1.60 88.6 0.196

   17 10 33.56 -1.39 7.394 2.58 88.6 0.199

   18 6 33.56 -1.38 7.398 3.92 88.7 0.198

   19 2 33.56 -1.38 7.392 6.73 88.6 0.197

   20 2 33.56 -1.39 7.392 7.46 88.6 0.191

 70 66 May 02 2002 21:57:39 67 49.85 074 12.77

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 1144 34.72 0.93 4.395 0.01 1.3 90.676

    2 1145 34.72 0.93 4.395 0.02 1.3 90.676

    3 1101 34.72 0.92 4.388 0.02 1.3 90.677

    4 1000 34.72 0.97 4.370 0.01 1.3 90.677

    5 852 34.72 1.08 4.322 0.01 1.3 90.692

    6 800 34.73 1.12 4.304 0.02 1.3 90.683

    7 750 34.73 1.17 4.277 0.01 1.4 90.676

    8 700 34.73 1.23 4.248 0.02 1.4 90.654

    9 602 34.73 1.35 4.165 0.02 1.4 90.613

   10 500 34.72 1.49 4.035 0.04 1.4 90.501

   11 451 34.71 1.47 3.977 0.06 1.4 90.456

   12 400 34.69 1.46 3.936 0.03 1.4 90.502

   13 300 34.66 1.55 3.923 0.02 1.4 90.577

   14 201 34.54 0.98 4.118 0.05 1.3 90.520

   15 100 34.15 -1.18 5.660 0.08 1.1 90.294

   16 61 33.73 -1.15 6.952 0.42 1.1 87.565

   17 50 33.72 -1.16 7.327 0.43 1.1 87.519

   18 30 33.72 -1.16 7.383 0.48 1.1 87.542

   19 20 33.71 -1.16 7.387 0.44 1.1 87.576

   20 14 33.71 -1.15 7.387 0.41 1.1 87.581

   21 11 33.71 -1.16 7.390 0.43 1.1 87.597

   22 5 33.71 -1.14 7.382 0.39 1.1 87.596

   23 2 33.71 -1.14 7.390 0.40 1.1 87.419

   24 2 33.71 -1.14 7.390 0.41 1.1 74.725

 71 68 May 03 2002 04:47:32 67 41.47 074 36.46

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 2495 34.71 0.40 4.522 0.04 0.0 -0.020

    2 2494 34.71 0.41 4.521 0.04 0.0 -0.020

    3 2399 34.71 0.43 4.511 0.02 0.0 -0.020

    4 2200 34.71 0.52 4.482 0.03 0.0 -0.020

    5 2001 34.71 0.66 4.433 0.03 0.0 -0.020

    6 1800 34.71 0.76 4.400 0.04 0.0 -0.020

    7 1600 34.72 0.86 4.364 0.03 0.0 -0.020

    8 1399 34.72 0.98 4.323 0.05 0.0 -0.020

    9 1199 34.72 1.11 4.273 0.01 0.0 -0.020

   10 999 34.73 1.26 4.221 0.02 0.0 -0.020

   11 801 34.73 1.42 4.152 0.02 0.0 -0.020

   12 600 34.73 1.63 4.073 0.06 0.0 -0.020

   13 399 34.72 1.80 3.933 0.05 0.0 -0.020

   14 199 34.63 1.69 3.831 0.05 0.0 -0.020

   15 100 34.28 -0.46 5.074 0.04 0.0 -0.020

   16 74 34.02 -1.15 6.216 0.20 0.1 -0.020

   17 50 33.78 -1.12 7.204 0.46 0.1 -0.020

   18 31 33.76 -1.12 7.350 0.45 0.1 -0.020

   19 19 33.76 -1.14 7.376 0.37 0.1 -0.020

   20 15 33.76 -1.15 7.381 0.37 0.0 -0.020

   21 11 33.76 -1.14 7.381 0.41 0.0 -0.020

   22 5 33.75 -1.11 7.381 0.38 0.0 -0.020

   23 2 33.75 -1.15 7.389 0.38 0.0 -0.020

   24 2 33.75 -1.15 7.390 0.35 0.0 -0.020

 73 70 May 03 2002 11:27:25 67 30.94 075 08.27

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 2965 34.71 0.41 4.517 0.02 0.0 -0.020

    2 2965 34.71 0.42 4.518 0.01 0.0 -0.020

    3 2751 34.71 0.44 4.505 0.01 0.0 -0.020

    4 2500 34.71 0.48 4.484 0.03 0.0 -0.020

    5 2249 34.71 0.57 4.455 0.03 0.0 -0.020

    6 2000 34.71 0.66 4.419 0.03 0.0 -0.020


    7 1750 34.71 0.80 4.373 0.05 0.0 -0.020

    8 1500 34.72 0.95 4.322 0.01 0.0 -0.020

    9 1250 34.72 1.11 4.266 0.03 0.0 -0.020

   10 1000 34.73 1.27 4.203 0.01 0.0 -0.020

   11 800 34.73 1.42 4.145 0.02 0.0 -0.020

   12 599 34.73 1.59 4.060 0.05 0.0 -0.020

   13 400 34.72 1.82 3.937 0.05 0.0 -0.020

   14 199 34.65 1.81 3.803 0.05 0.0 -0.020

   15 99 34.28 -0.53 5.141 0.02 0.0 -0.020

   16 74 34.12 -1.24 5.905 0.09 0.0 -0.020

   17 49 33.74 -1.13 7.307 0.46 0.0 -0.020

   18 29 33.73 -1.14 7.365 0.51 0.0 -0.020

   19 20 33.73 -1.14 7.379 0.41 0.0 -0.020

   20 15 33.73 -1.15 7.380 0.44 0.0 -0.020

   21 10 33.73 -1.12 7.385 0.43 0.0 -0.020

   22 6 33.73 -1.15 7.382 0.40 0.0 -0.020

   23 2 33.73 -1.14 7.387 0.44 0.0 -0.020

   24 2 33.73 -1.15 7.389 0.45 0.0 -0.020

 74 71 May 04 2002 00:27:38 68 06.09 074 47.78

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 405 34.72 1.58 4.047 0.06 90.6 0.018

    2 405 34.72 1.58 4.047 0.06 90.6 0.023

    3 350 34.71 1.59 4.016 0.06 90.6 0.025

    4 300 34.69 1.55 3.964 0.06 90.6 0.041

    5 250 34.62 1.20 3.957 0.06 90.5 0.022

    6 201 34.51 0.64 4.121 0.06 90.6 0.026

    7 150 34.36 -0.03 4.564 0.06 90.5 0.027

    8 100 34.13 -0.90 5.453 0.06 90.4 0.048

    9 80 33.84 -1.09 6.154 0.06 89.6 0.118

   10 75 33.80 -1.15 6.526 0.06 89.1 0.205

   11 49 33.66 -1.28 7.289 0.06 88.3 0.251

   12 30 33.63 -1.33 7.360 0.06 88.6 0.194

   13 21 33.49 -1.60 7.495 0.08 89.2 0.107

   14 16 33.49 -1.61 7.504 0.11 89.2 0.111

   15 11 33.49 -1.61 7.502 0.17 89.2 0.152

   16 5 33.49 -1.60 7.505 0.44 89.2 0.120

   17 5 33.49 -1.60 7.497 0.47 89.2 0.113

   18 4 33.49 -1.60 7.498 0.56 89.2 0.131

 75 72 May 04 2002 07:40:22 68 13.59 074 24.83

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 433 34.70 1.33 3.947 0.06 89.7 0.014

    2 433 34.70 1.33 3.947 0.06 89.7 0.028

    3 399 34.70 1.34 3.945 0.06 89.7 0.018

    4 400 34.70 1.34 3.947 0.06 89.8 0.029

    5 349 34.68 1.28 3.925 0.06 90.1 0.030

    6 349 34.68 1.28 3.925 0.06 90.1 0.061

    7 300 34.65 1.21 3.953 0.06 90.1 0.054

    8 299 34.65 1.21 3.951 0.06 90.3 0.022

    9 250 34.62 1.10 3.982 0.06 90.3 0.029

   10 250 34.62 1.10 3.980 0.06 90.4 0.046

   11 200 34.54 0.77 4.117 0.06 90.4 0.020

   12 200 34.54 0.76 4.124 0.06 90.4 0.021

   13 151 34.39 0.07 4.575 0.06 90.4 0.022

   14 99 34.09 -1.04 5.710 0.06 90.3 0.058

   15 75 33.63 -1.27 6.671 0.06 89.7 0.066

   16 49 33.47 -1.57 7.489 0.06 89.2 0.122

   17 30 33.45 -1.65 7.510 0.07 89.3 0.081

   18 20 33.44 -1.67 7.501 0.09 89.4 0.122

   19 15 33.44 -1.68 7.497 0.11 89.4 0.112

   20 10 33.44 -1.68 7.486 0.21 89.4 0.088

   21 5 33.44 -1.70 7.471 0.39 89.4 0.081

   22 1 33.44 -1.69 7.469 1.11 89.4 0.118

   23 1 33.44 -1.69 7.469 1.12 89.4 0.123

   24 1 33.44 -1.69 7.469 1.17 89.4 0.126

 76 73 May 04 2002 12:59:34 68 27.37 073 40.29

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 517 34.71 1.34 3.962 0.06 89.3 0.024

    2 517 34.71 1.34 3.962 0.06 89.3 0.024

    3 500 34.71 1.33 3.959 0.06 89.3 0.047

    4 499 34.71 1.33 3.959 0.06 89.3 0.048

    5 450 34.71 1.33 3.962 0.06 89.7 0.032

    6 449 34.71 1.33 3.962 0.06 89.7 0.024

    7 400 34.70 1.33 3.969 0.06 89.9 0.013

    8 400 34.70 1.33 3.969 0.06 89.9 0.022

    9 350 34.69 1.31 3.955 0.06 90.2 0.039

   10 350 34.69 1.31 3.956 0.06 90.2 0.020

   11 300 34.67 1.27 3.971 0.06 90.3 0.022

   12 250 34.64 1.20 3.983 0.06 90.4 0.021

   13 200 34.54 0.81 4.102 0.06 90.4 0.019

   14 149 34.39 0.08 4.587 0.06 90.4 0.020

   15 102 34.15 -1.06 5.685 0.06 90.4 0.027

   16 75 34.03 -1.03 5.880 0.07 90.1 0.065

   17 49 33.46 -1.59 7.366 0.12 89.4 0.096

   18 29 33.43 -1.67 7.490 0.24 89.4 0.098

   19 20 33.42 -1.71 7.509 0.41 89.4 0.104

   20 15 33.42 -1.70 7.513 0.57 89.4 0.099

   21 10 33.42 -1.72 7.505 0.91 89.4 0.078

   22 4 33.42 -1.71 7.488 2.05 89.4 0.083

   23 1 33.42 -1.72 7.489 3.93 89.3 0.128

   24 2 33.41 -1.72 7.490 3.45 89.4 0.119

 77 74 May 04 2002 21:56:59 68 40.98 072 55.09

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 210 34.52 0.72 4.173 0.06 89.8 0.030

    2 210 34.52 0.72 4.171 0.06 89.8 0.045

    3 201 34.47 0.58 4.218 0.06 89.7 0.021

    4 150 34.23 -0.32 4.882 0.06 89.8 0.023

    5 101 33.97 -0.70 5.153 0.06 89.7 0.059

    6 100 33.97 -0.70 5.014 0.06 89.8 0.063

    7 75 33.71 -1.18 5.365 0.06 89.6 0.072

    8 75 33.71 -1.18 5.386 0.06 89.6 0.064

    9 49 33.45 -1.57 6.470 0.06 89.3 0.090

   10 50 33.45 -1.56 6.475 0.06 89.3 0.079

   11 35 33.39 -1.76 6.969 0.06 89.3 0.061

   12 30 33.39 -1.76 7.027 0.06 89.3 0.063

   13 30 33.39 -1.77 7.032 0.06 89.3 0.065

   14 21 33.39 -1.77 7.051 0.08 89.4 0.078

   15 20 33.39 -1.76 7.048 0.08 89.4 0.071

   16 16 33.39 -1.77 7.061 0.11 89.4 0.059

   17 16 33.39 -1.77 7.063 0.11 89.4 0.066

   18 10 33.39 -1.77 7.072 0.19 89.4 0.061

   19 10 33.39 -1.77 7.071 0.19 89.4 0.060

   20 5 33.39 -1.78 7.080 0.39 88.7 0.059

   21 5 33.38 -1.78 7.079 0.37 88.6 0.059

   22 1 33.39 -1.78 7.069 1.16 89.0 0.062

   23 1 33.39 -1.78 7.068 1.10 89.3 0.065

   24 1 33.39 -1.78 7.072 1.29 88.8 0.059

 78 75 May 05 2002 07:21:01 68 54.56 072 08.88

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 163 34.28 0.09 4.440 0.06 88.5 0.027

    2 163 34.28 0.09 4.440 0.06 88.5 0.018

    3 150 34.25 0.01 4.480 0.06 88.5 0.020

    4 125 34.19 -0.16 4.540 0.06 88.6 0.020


    5 100 33.92 -0.85 4.933 0.06 88.8 0.061

    6 100 33.92 -0.85 4.940 0.06 88.8 0.042

    7 75 33.71 -1.23 5.340 0.06 88.8 0.056

    8 75 33.71 -1.23 5.360 0.06 88.9 0.048

    9 50 33.51 -1.52 5.891 0.06 89.1 0.045

   10 50 33.51 -1.52 5.894 0.06 89.1 0.039

   11 30 33.27 -1.79 6.733 0.06 89.5 0.044

   12 30 33.27 -1.79 6.754 0.06 89.5 0.075

   13 20 33.27 -1.81 6.830 0.09 89.5 0.054

   14 20 33.26 -1.81 6.830 0.09 89.5 0.049

   15 15 33.27 -1.81 6.838 0.11 89.5 0.045

   16 15 33.27 -1.81 6.838 0.12 89.5 0.045

   17 10 33.26 -1.81 6.849 0.21 89.5 0.050

   18 10 33.26 -1.81 6.848 0.20 89.5 0.052

   19 5 33.26 -1.81 6.857 0.45 89.5 0.064

   20 5 33.26 -1.81 6.862 0.45 89.5 0.048

   21 0 33.26 -1.81 6.804 1.49 89.4 0.050

   22 0 33.26 -1.81 6.801 1.50 89.4 0.049

   23 0 33.26 -1.81 6.801 1.51 89.4 0.056

   24 0 33.26 -1.81 6.799 1.49 89.5 0.050

 79 76 May 05 2002 16:16:08 69 10.16 072 45.03

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 168 34.22 -0.10 4.665 0.06 87.5 0.029

    2 168 34.22 -0.10 4.662 0.06 87.5 0.037

    3 150 34.11 -0.37 4.867 0.06 88.3 0.030

    4 139 33.97 -0.68 5.128 0.06 89.0 0.030

    5 111 33.67 -1.23 5.899 0.07 89.2 0.029

    6 100 33.62 -1.20 6.146 0.09 89.5 0.030

    7 90 33.56 -1.33 6.304 0.11 89.6 0.028

    8 50 33.29 -1.70 6.922 0.64 89.5 0.059

    9 30 33.27 -1.76 6.986 2.13 89.5 0.080

   10 20 33.27 -1.78 7.010 4.28 89.5 0.092

   11 15 33.27 -1.78 7.008 6.18 89.5 0.048

   12 10 33.27 -1.78 7.010 8.97 89.5 0.093

   13 5 33.27 -1.78 7.006 15.11 89.5 0.052

   14 0 33.27 -1.78 7.013 35.73 89.5 0.049

   15 0 33.27 -1.78 7.015 35.72 89.5 0.049

 80 77 May 06 2002 00:18:17 68 57.31 073 33.18

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 216 34.41 0.40 4.346 0.06 88.6 0.040

    2 216 34.41 0.40 4.346 0.06 88.6 0.027

    3 216 34.41 0.40 4.347 0.06 88.6 0.023

    4 200 34.36 0.27 4.406 0.06 88.6 0.032

    5 190 34.31 0.15 4.461 0.06 88.7 0.024

    6 170 34.08 -0.42 4.766 0.06 89.0 0.021

    7 150 33.73 -1.11 5.587 0.06 89.3 0.052

    8 110 33.43 -1.52 6.600 0.06 89.6 0.043

    9 100 33.37 -1.58 6.798 0.06 89.4 0.050

   10 100 33.37 -1.58 6.801 0.06 89.5 0.063

   11 84 33.32 -1.75 6.881 0.06 89.5 0.057

   12 75 33.31 -1.80 6.920 0.06 89.5 0.048

   13 50 33.31 -1.80 6.924 0.06 89.5 0.084

   14 30 33.31 -1.79 6.929 0.06 89.5 0.068

   15 20 33.31 -1.79 6.923 0.08 89.5 0.085

   16 15 33.31 -1.80 6.925 0.11 89.6 0.054

   17 10 33.31 -1.80 6.927 0.19 89.6 0.051

   18 5 33.31 -1.80 6.928 0.42 89.6 0.044

   19 0 33.31 -1.80 6.929 1.49 89.5 0.049

   20 0 33.31 -1.80 6.929 1.57 89.5 0.048

   21 0 33.31 -1.80 6.928 1.51 89.5 0.048

 81 78 May 06 2002 08:42:32 68 43.68 074 18.60

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 469 34.70 1.33 3.926 0.06 89.1 0.025

    2 469 34.70 1.33 3.926 0.06 89.1 0.020

    3 451 34.70 1.33 3.922 0.06 89.1 0.039

    4 400 34.69 1.32 3.925 0.06 89.4 0.031

    5 350 34.68 1.28 3.923 0.06 89.6 0.063

    6 350 34.68 1.28 3.926 0.06 89.6 0.050

    7 302 34.65 1.21 3.930 0.06 89.8 0.029

    8 302 34.65 1.21 3.931 0.06 89.8 0.023

    9 250 34.60 1.03 3.975 0.06 89.9 0.027

   10 250 34.60 1.03 3.975 0.06 89.9 0.022

   11 200 34.52 0.72 4.096 0.06 89.9 0.042

   12 200 34.52 0.71 4.104 0.06 89.9 0.030

   13 150 34.35 -0.10 4.650 0.06 89.9 0.029

   14 100 34.13 -1.14 5.645 0.06 89.9 0.035

   15 76 34.02 -0.76 5.413 0.06 89.5 0.034

   16 50 33.52 -1.67 6.964 0.06 88.9 0.131

   17 30 33.51 -1.70 7.336 0.06 88.9 0.088

   18 20 33.50 -1.73 7.339 0.08 88.9 0.088

   19 15 33.50 -1.75 7.325 0.11 88.9 0.075

   20 11 33.51 -1.73 7.321 0.17 88.9 0.072

   21 5 33.51 -1.73 7.355 0.41 88.9 0.103

   22 0 33.51 -1.72 7.355 2.38 88.4 0.096

   23 0 33.51 -1.72 7.357 1.47 88.7 0.109

   24 0 33.51 -1.72 7.362 1.79 88.8 0.124

 82 79 May 06 2002 14:35:06 68 29.51 075 02.74

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 423 34.71 1.30 3.937 0.06 89.4 0.030

    2 423 34.71 1.30 3.937 0.06 89.4 0.032

    3 401 34.71 1.30 3.934 0.06 89.4 0.026

    4 401 34.71 1.30 3.934 0.06 89.4 0.046

    5 351 34.70 1.34 3.932 0.06 89.6 0.023

    6 351 34.70 1.34 3.933 0.06 89.6 0.063

    7 300 34.66 1.22 3.922 0.06 89.7 0.018

    8 300 34.66 1.22 3.924 0.06 89.7 0.020

    9 251 34.60 1.02 3.937 0.06 89.8 0.058

   10 200 34.48 0.51 4.258 0.06 90.0 0.059

   11 200 34.48 0.51 4.266 0.06 90.0 0.056

   12 151 34.33 -0.22 4.829 0.06 89.9 0.049

   13 101 34.08 -0.91 5.550 0.11 89.6 0.044

   14 100 34.08 -0.91 5.553 0.11 89.6 0.040

   15 75 33.92 -1.01 5.739 0.24 89.4 0.076

   16 50 33.62 -1.40 6.974 0.75 88.8 0.130

   17 30 33.49 -1.75 7.463 2.40 88.8 0.101

   18 20 33.48 -1.78 7.505 4.45 88.8 0.115

   19 15 33.48 -1.79 7.504 6.40 88.8 0.136

   20 11 33.48 -1.79 7.510 9.04 88.8 0.108

   21 5 33.48 -1.79 7.509 19.00 88.8 0.101

   22 1 33.48 -1.79 7.510 82.52 88.7 0.118

   23 1 33.48 -1.79 7.510 63.54 88.8 0.103

   24 1 33.48 -1.79 7.511 53.03 88.8 0.104

 83 80 May 06 2002 20:04:26 68 17.23 075 41.33

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 2050 34.71 0.52 4.493 0.30 90.4 0.049

    2 2050 34.71 0.52 4.493 0.29 90.4 0.041

    3 1900 34.71 0.59 4.465 0.27 90.4 0.017

    4 1699 34.71 0.75 4.408 0.15 90.4 0.009

    5 1500 34.72 0.87 4.369 0.13 90.4 0.005

    6 1299 34.72 0.95 4.337 0.13 90.4 0.002

    7 1100 34.72 1.06 4.302 0.12 90.4 0.015

    8 901 34.73 1.19 4.249 0.12 90.4 0.038


    9 699 34.73 1.40 4.123 0.12 90.3 0.013

   10 550 34.71 1.37 3.979 0.11 90.1 0.046

   11 301 34.70 1.82 3.885 0.11 90.4 0.022

   12 251 34.68 1.81 3.848 0.11 90.3 0.060

   13 200 34.61 1.53 3.892 0.11 90.3 0.027

   14 150 34.39 0.17 4.632 0.11 90.2 0.023

   15 100 34.16 -1.32 5.773 0.10 90.0 0.050

   16 50 33.96 -1.05 5.978 0.10 89.5 0.081

   17 40 33.86 -1.08 6.187 0.10 89.2 0.093

   18 30 33.73 -1.54 7.282 0.10 88.1 0.245

   19 20 33.71 -1.60 7.388 0.10 88.0 0.266

   20 15 33.69 -1.70 7.425 0.14 88.2 0.237

   21 10 33.68 -1.72 7.446 0.15 88.2 0.249

   22 5 33.68 -1.72 7.453 0.19 88.2 0.249

   23 2 33.68 -1.71 7.457 0.17 88.2 0.218

   24 2 33.68 -1.71 7.457 0.18 88.2 0.217

 84 81 May 07 2002 03:13:32 68 32.92 076 20.45

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 1175 34.72 0.95 4.367 0.28 90.3 0.052

    2 1176 34.72 0.95 4.367 0.29 90.3 0.059

    3 1100 34.72 1.07 4.316 0.27 90.3 0.035

    4 1000 34.73 1.16 4.274 0.25 90.3 0.009

    5 900 34.73 1.24 4.234 0.22 90.3 0.030

    6 800 34.73 1.35 4.189 0.21 90.3 0.032

    7 700 34.73 1.43 4.144 0.20 90.3 0.046

    8 599 34.73 1.51 4.111 0.20 90.3 0.028

    9 500 34.72 1.61 4.046 0.19 90.3 0.033

   10 400 34.72 1.77 3.986 0.18 90.3 0.038

   11 300 34.70 1.85 3.901 0.24 90.3 0.060

   12 250 34.68 1.85 3.848 0.20 90.3 0.029

   13 200 34.63 1.71 3.857 0.19 90.2 0.023

   14 150 34.46 0.69 4.334 0.17 90.1 0.021

   15 101 34.21 -1.15 5.683 0.17 90.0 0.036

   16 69 34.05 -1.48 6.187 0.17 89.1 0.123

   17 50 33.78 -1.77 7.325 0.15 88.6 0.212

   18 30 33.77 -1.80 7.421 0.09 88.7 0.170

   19 19 33.77 -1.81 7.428 0.09 88.7 0.193

   20 15 33.77 -1.81 7.430 0.24 88.7 0.153

   21 10 33.77 -1.81 7.430 0.24 88.7 0.225

   22 5 33.77 -1.80 7.435 0.35 88.5 0.168

   23 1 33.77 -1.80 7.433 0.48 88.5 0.206

   24 1 33.77 -1.80 7.433 0.42 88.5 0.209

 85 82 May 07 2002 08:37:33 68 45.65 075 42.03

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 450 34.72 1.29 3.972 0.06 89.3 0.034

    2 450 34.72 1.29 3.972 0.06 89.4 0.032

    3 400 34.71 1.34 3.978 0.06 89.9 0.029

    4 400 34.71 1.34 3.980 0.06 89.9 0.028

    5 350 34.70 1.47 3.988 0.06 90.1 0.021

    6 350 34.70 1.47 3.991 0.06 90.0 0.023

    7 300 34.64 1.10 3.921 0.06 89.9 0.033

    8 300 34.64 1.10 3.921 0.06 89.9 0.026

    9 250 34.57 0.86 4.020 0.06 90.0 0.033

   10 250 34.57 0.85 4.021 0.06 90.0 0.029

   11 200 34.44 0.25 4.392 0.06 90.1 0.024

   12 200 34.44 0.24 4.398 0.06 90.1 0.034

   13 150 34.25 -0.79 5.241 0.06 90.0 0.026

   14 100 34.02 -0.96 5.671 0.06 89.7 0.024

   15 65 33.76 -1.51 7.075 0.06 88.6 0.155

   16 50 33.74 -1.53 7.333 0.06 88.4 0.187

   17 30 33.62 -1.58 7.174 0.07 89.0 0.109

   18 20 33.52 -1.78 7.303 0.09 89.0 0.100

   19 15 33.51 -1.81 7.342 0.12 89.1 0.082

   20 10 33.51 -1.81 7.352 0.19 89.1 0.110

   21 5 33.50 -1.83 7.362 0.51 89.1 0.080

   22 1 33.50 -1.83 7.372 1.31 89.1 0.086

   23 1 33.50 -1.83 7.370 1.43 89.1 0.083

   24 1 33.50 -1.83 7.370 1.32 89.2 0.092

 86 83 May 07 2002 15:34:23 69 00.19 074 57.45

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 332 34.63 1.10 3.904 0.06 88.7 0.044

    2 332 34.63 1.10 3.902 0.06 88.6 0.053

    3 300 34.59 0.98 3.923 0.06 88.8 0.068

    4 300 34.59 0.98 3.923 0.06 88.8 0.060

    5 250 34.57 0.88 3.977 0.06 89.1 0.034

    6 250 34.57 0.88 3.977 0.06 89.1 0.035

    7 200 34.48 0.56 4.192 0.06 89.7 0.024

    8 200 34.48 0.56 4.203 0.06 89.7 0.026

    9 150 34.29 -0.35 4.710 0.06 89.9 0.022

   10 100 34.03 -0.60 5.065 0.08 89.5 0.040

   11 75 33.67 -1.20 5.499 0.14 89.2 0.095

   12 50 33.47 -1.61 7.153 0.40 89.0 0.084

   13 35 33.47 -1.58 7.242 0.68 89.0 0.079

   14 35 33.47 -1.59 7.244 0.69 89.0 0.086

   15 31 33.44 -1.75 7.238 0.95 89.2 0.065

   16 20 33.44 -1.77 7.237 2.98 89.2 0.062

   17 15 33.43 -1.80 7.235 4.53 88.0 0.097

   18 10 33.43 -1.81 7.233 6.44 89.0 0.065

   19 5 33.43 -1.80 7.241 10.03 87.3 0.113

   20 0 33.43 -1.80 7.235 19.59 88.6 0.065

   21 0 33.43 -1.80 7.237 19.66 87.9 0.070

   22 0 33.43 -1.80 7.237 20.03 87.4 0.069

   23 0 33.43 -1.80 7.237 19.61 88.2 0.067

   24 0 33.43 -1.80 7.234 19.22 88.2 0.065

 88 84 May 08 2002 01:35:31 69 14.01 074 11.75

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 633 34.61 1.04 3.954 0.06 87.9 0.069

    2 633 34.61 1.04 3.954 0.06 87.9 0.065

    3 600 34.61 1.03 3.950 0.06 88.2 0.029

    4 499 34.60 1.01 3.950 0.06 88.5 0.034

    5 400 34.59 0.96 3.968 0.06 88.9 0.024

    6 300 34.55 0.80 4.055 0.06 89.3 0.052

    7 200 34.33 0.05 4.652 0.06 89.4 0.025

    8 150 34.11 -0.51 5.096 0.06 89.6 0.066

    9 100 33.66 -1.22 6.464 0.06 89.1 0.103

   10 79 33.53 -1.42 6.710 0.06 89.1 0.078

   11 50 33.43 -1.80 7.165 0.06 89.2 0.080

   12 40 33.38 -1.82 7.094 0.06 89.2 0.046

   13 31 33.37 -1.82 7.078 0.06 89.3 0.059

   14 20 33.36 -1.82 7.080 0.09 89.3 0.072

   15 15 33.36 -1.82 7.081 0.12 89.3 0.050

   16 11 33.36 -1.82 7.066 0.21 89.3 0.103

   17 6 33.36 -1.82 7.059 0.51 89.3 0.050

   18 1 33.37 -1.82 7.038 1.62 89.2 0.044

   19 1 33.37 -1.82 7.034 1.23 89.3 0.053

 89 85 May 08 2002 13:29:24 69 32.93 074 25.82

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 171 34.03 -0.60 5.346 0.06 89.3 0.033

    2 171 34.03 -0.60 5.346 0.06 89.2 0.058

    3 151 34.01 -0.64 5.377 0.06 89.3 0.024

    4 151 34.01 -0.65 5.380 0.06 89.3 0.023

    5 126 33.83 -0.99 5.872 0.06 89.5 0.030


    6 101 33.56 -1.28 6.500 0.06 89.4 0.056

    7 101 33.55 -1.31 6.510 0.06 89.4 0.056

    8 76 33.42 -1.57 6.803 0.06 89.2 0.078

    9 50 33.37 -1.73 6.942 0.09 89.2 0.055

   10 30 33.34 -1.80 6.958 0.19 89.2 0.047

   11 20 33.34 -1.80 6.963 0.35 89.3 0.044

   12 15 33.34 -1.80 6.960 0.52 89.3 0.063

   13 10 33.34 -1.80 6.968 0.81 89.3 0.093

   14 5 33.34 -1.81 6.973 1.52 89.2 0.074

   15 0 33.34 -1.80 6.970 4.10 89.1 0.081

   16 0 33.34 -1.80 6.970 4.18 89.2 0.092

 90 86 May 08 2002 18:31:04 69 29.26 074 49.57

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 252 34.49 0.65 4.113 0.06 88.3 0.055

    2 252 34.50 0.65 4.111 0.06 88.3 0.055

    3 200 34.31 0.02 4.581 0.06 88.8 0.024

    4 175 34.12 -0.52 5.080 0.06 89.1 0.025

    5 150 33.90 -0.95 5.751 0.06 89.1 0.028

    6 125 33.74 -1.13 5.945 0.06 89.0 0.042

    7 100 33.51 -1.52 6.527 0.06 88.9 0.059

    8 100 33.50 -1.52 6.525 0.06 88.9 0.074

    9 80 33.42 -1.69 6.900 0.07 88.9 0.047

   10 50 33.39 -1.77 6.999 0.16 89.0 0.067

   11 50 33.39 -1.77 7.000 0.16 89.0 0.082

   12 30 33.38 -1.79 7.028 0.51 89.0 0.067

   13 30 33.39 -1.79 7.028 0.51 89.0 0.060

   14 20 33.38 -1.80 7.042 1.33 89.0 0.051

   15 20 33.38 -1.80 7.039 1.33 89.0 0.048

   16 15 33.38 -1.80 7.046 2.30 89.0 0.060

   17 15 33.38 -1.80 7.045 2.30 89.0 0.058

   18 10 33.38 -1.80 7.048 4.13 89.0 0.089

   19 10 33.38 -1.80 7.048 4.14 89.0 0.083

   20 5 33.38 -1.80 7.050 7.08 89.0 0.049

   21 5 33.38 -1.80 7.052 7.09 89.0 0.053

   22 -0 33.38 -1.79 7.054 68.67 89.0 0.046

   23 -0 33.38 -1.79 7.054 68.93 89.0 0.050

   24 -0 33.38 -1.79 7.054 68.72 89.0 0.053

 91 87 May 09 2002 01:16:56 69 15.76 075 38.08

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 434 34.66 1.18 3.933 0.06 88.6 0.022

    2 434 34.66 1.18 3.933 0.06 88.6 0.020

    3 400 34.66 1.16 3.925 0.06 88.6 0.028

    4 350 34.63 1.07 3.909 0.06 88.5 0.022

    5 300 34.58 0.93 3.941 0.06 88.7 0.037

    6 250 34.53 0.75 4.018 0.06 88.8 0.029

    7 200 34.39 0.21 4.384 0.06 89.2 0.025

    8 148 34.10 -1.05 5.664 0.06 89.5 0.026

    9 125 33.97 -0.85 5.455 0.06 89.0 0.039

   10 100 33.82 -0.98 5.571 0.06 88.8 0.028

   11 75 33.42 -1.74 7.071 0.06 88.7 0.104

   12 50 33.40 -1.80 7.139 0.06 88.8 0.060

   13 30 33.40 -1.80 7.128 0.07 88.8 0.064

   14 20 33.40 -1.80 7.126 0.09 88.8 0.093

   15 15 33.40 -1.80 7.124 0.12 88.8 0.056

   16 9 33.40 -1.79 7.126 0.24 88.8 0.058

   17 5 33.40 -1.80 7.123 0.42 88.8 0.056

   18 0 33.40 -1.80 7.129 1.40 88.7 0.094

   19 0 33.40 -1.80 7.127 1.43 88.7 0.087

 92 88 May 09 2002 07:25:10 69 01.29 076 22.16

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 425 34.71 1.27 3.960 0.06 89.0 0.032

    2 426 34.71 1.27 3.961 0.06 89.0 0.031

    3 400 34.71 1.27 3.958 0.06 89.1 0.030

    4 400 34.71 1.27 3.960 0.06 89.1 0.054

    5 350 34.71 1.27 3.960 0.06 89.2 0.019

    6 350 34.71 1.27 3.962 0.06 89.2 0.020

    7 301 34.67 1.19 3.939 0.06 89.4 0.015

    8 301 34.67 1.19 3.938 0.06 89.4 0.015

    9 250 34.60 0.97 3.979 0.06 89.6 0.035

   10 250 34.60 0.97 3.981 0.06 89.6 0.025

   11 200 34.48 0.50 4.206 0.06 89.5 0.035

   12 200 34.48 0.50 4.212 0.06 89.5 0.033

   13 150 34.32 -0.36 4.823 0.06 89.5 0.023

   14 100 34.06 -1.39 5.954 0.06 89.3 0.052

   15 75 33.87 -1.58 6.873 0.06 88.9 0.120

   16 50 33.80 -1.68 7.290 0.06 88.6 0.152

   17 30 33.57 -1.85 7.417 0.07 88.8 0.070

   18 20 33.49 -1.85 7.384 0.09 88.8 0.077

   19 15 33.49 -1.85 7.378 0.12 88.8 0.092

   20 10 33.49 -1.84 7.378 0.21 88.8 0.087

   21 5 33.49 -1.84 7.379 0.46 88.8 0.066

   22 0 33.49 -1.84 7.374 1.23 88.7 0.066

   23 0 33.50 -1.84 7.375 1.18 88.6 0.064

   24 0 33.50 -1.84 7.373 1.18 88.8 0.063

 93 89 May 09 2002 15:13:00 68 48.62 76 59.45

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 436 34.72 1.56 4.038 0.06 89.7 0.022

    2 436 34.72 1.56 4.040 0.06 89.7 0.022

    3 400 34.72 1.68 4.010 0.06 89.8 0.026

    4 400 34.72 1.68 4.009 0.06 89.8 0.028

    5 350 34.71 1.66 4.003 0.06 89.8 0.015

    6 350 34.71 1.66 4.004 0.06 89.8 0.021

    7 300 34.70 1.76 3.956 0.06 89.8 0.020

    8 300 34.70 1.76 3.953 0.06 89.8 0.013

    9 250 34.69 1.81 3.893 0.06 89.7 0.043

   10 250 34.69 1.80 3.890 0.06 89.7 0.033

   11 200 34.64 1.65 3.899 0.06 89.7 0.027

   12 200 34.64 1.65 3.899 0.06 89.7 0.024

   13 150 34.54 1.06 4.134 0.07 89.6 0.050

   14 100 34.22 -1.10 5.467 0.12 89.5 0.042

   15 75 34.10 -1.48 5.928 0.24 89.2 0.053

   16 50 33.87 -1.81 7.115 0.77 88.3 0.174

   17 30 33.86 -1.83 7.272 2.51 88.2 0.196

   18 20 33.86 -1.83 7.288 4.82 88.1 0.198

   19 15 33.86 -1.83 7.299 6.35 88.1 0.212

   20 10 33.86 -1.83 7.302 9.15 87.9 0.235

   21 5 33.86 -1.83 7.306 14.03 88.0 0.205

   22 1 33.86 -1.83 7.314 27.61 87.7 0.178

   23 1 33.86 -1.83 7.312 27.61 87.9 0.191

   24 1 33.86 -1.83 7.310 27.08 88.0 0.191

 94 90 May 09 2002 22:43:00 69 02.46 77 46.47

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 402 34.72 1.30 4.044 0.06 89.4 0.043

    2 402 34.72 1.30 4.044 0.06 89.4 0.034

    3 402 34.72 1.30 4.044 0.06 89.4 0.033

    4 350 34.72 1.30 4.031 0.06 89.5 0.034

    5 350 34.72 1.30 4.029 0.06 89.5 0.024

    6 300 34.68 1.28 3.977 0.06 89.6 0.056

    7 250 34.65 1.16 3.982 0.06 89.7 0.018

    8 250 34.65 1.16 3.983 0.06 89.7 0.016

    9 200 34.56 0.75 4.084 0.06 89.6 0.058

   10 150 34.41 0.07 4.489 0.06 89.6 0.017


   11 150 34.41 0.06 4.508 0.06 89.6 0.021

   12 100 34.21 -1.12 5.348 0.06 89.5 0.040

   13 100 34.21 -1.13 5.384 0.06 89.5 0.040

   14 70 33.96 -1.70 6.704 0.06 89.1 0.072

   15 70 33.94 -1.74 6.695 0.06 89.0 0.079

   16 50 33.91 -1.85 7.218 0.06 89.0 0.089

   17 30 33.85 -1.86 7.299 0.07 89.0 0.117

   18 20 33.82 -1.86 7.372 0.10 89.0 0.078

   19 15 33.82 -1.86 7.382 0.13 89.0 0.084

   20 10 33.82 -1.85 7.383 0.20 89.0 0.103

   21 5 33.82 -1.86 7.382 0.52 88.9 0.122

   22 0 33.82 -1.86 7.383 1.57 88.8 0.087

   23 0 33.82 -1.86 7.380 1.55 88.9 0.089

   24 0 33.82 -1.86 7.378 1.53 88.9 0.083

 95 91 May 10 2002 05:18:00 69 17.40 77 03.31

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 391 34.72 1.31 4.090 0.06 89.5 0.017

    2 391 34.72 1.31 4.089 0.06 89.5 0.028

    3 392 34.72 1.31 4.088 0.06 89.5 0.027

    4 391 34.72 1.31 4.087 0.06 89.5 0.028

    5 350 34.72 1.37 4.086 0.06 89.7 0.058

    6 350 34.72 1.37 4.083 0.06 89.7 0.052

    7 300 34.71 1.42 4.036 0.06 89.7 0.029

    8 300 34.71 1.42 4.036 0.06 89.7 0.027

    9 250 34.68 1.37 3.987 0.06 89.7 0.026

   10 250 34.68 1.37 3.987 0.06 89.7 0.025

   11 200 34.60 0.99 4.038 0.06 89.6 0.021

   12 150 34.45 0.26 4.360 0.06 89.6 0.061

   13 125 34.38 -0.09 4.653 0.06 89.6 0.037

   14 100 34.23 -1.01 5.226 0.06 89.5 0.026

   15 75 34.10 -1.27 5.778 0.06 89.4 0.051

   16 50 33.89 -1.46 6.587 0.06 89.1 0.064

   17 30 33.83 -1.63 7.123 0.07 89.0 0.071

   18 20 33.77 -1.68 7.267 0.09 88.8 0.108

   19 15 33.73 -1.69 7.292 0.12 88.8 0.084

   20 10 33.53 -1.84 7.357 0.19 88.7 0.087

   21 5 33.53 -1.85 7.374 0.44 87.2 0.074

   22 0 33.53 -1.84 7.383 1.63 86.5 0.092

   23 0 33.53 -1.84 7.381 1.54 86.8 0.086

   24 0 33.53 -1.84 7.381 1.59 86.8 0.080

 96 92 May 10 2002 15:41:00 69 31.99 76 18.41

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 406 34.66 1.15 3.910 0.06 88.5 0.026

    2 406 34.66 1.15 3.910 0.06 88.6 0.042

    3 400 34.66 1.15 3.908 0.06 88.6 0.027

    4 400 34.66 1.15 3.908 0.06 88.6 0.019

    5 350 34.64 1.08 3.906 0.06 88.7 0.015

    6 350 34.64 1.08 3.908 0.06 88.7 0.027

    7 300 34.59 0.92 3.956 0.06 88.8 0.020

    8 300 34.59 0.92 3.957 0.06 88.8 0.030

    9 250 34.54 0.73 4.054 0.06 89.1 0.027

   10 200 34.36 -0.07 4.679 0.06 89.4 0.026

   11 150 34.08 -1.37 5.875 0.06 89.4 0.039

   12 125 33.90 -1.10 6.016 0.06 89.3 0.078

   13 100 33.75 -1.67 7.268 0.07 88.5 0.102

   14 75 33.45 -1.82 7.320 0.10 88.9 0.090

   15 50 33.45 -1.82 7.346 0.25 88.9 0.070

   16 30 33.44 -1.82 7.348 0.91 88.9 0.059

   17 20 33.44 -1.82 7.350 2.24 88.9 0.101

   18 15 33.44 -1.82 7.349 3.92 88.9 0.079

   19 10 33.44 -1.82 7.348 7.01 88.9 0.075

   20 5 33.44 -1.82 7.349 12.11 88.9 0.071

   21 0 33.44 -1.82 7.350 51.82 88.8 0.065

   22 0 33.44 -1.82 7.350 89.92 88.7 0.069

   23 0 33.44 -1.82 7.352 105.45 88.7 0.066

   24 0 33.44 -1.82 7.356 106.90 88.8 0.071

 101 93 May 12 2002 19:28:00 68 15.71 68 59.81

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 202 34.53 0.88 3.897 0.06 88.9 0.033

    2 202 34.53 0.88 3.892 0.06 88.9 0.035

    3 202 34.53 0.88 3.890 0.06 88.9 0.039

    4 150 34.26 -0.04 4.906 0.06 88.9 0.034

    5 100 33.77 -0.53 6.419 0.06 88.5 0.065

    6 75 33.64 -0.64 7.170 0.06 88.5 0.115

    7 44 33.45 -1.61 7.415 0.07 87.8 0.091

    8 30 33.45 -1.64 7.447 0.10 87.8 0.090

    9 20 33.45 -1.64 7.437 0.15 87.8 0.087

   10 14 33.45 -1.63 7.442 0.23 87.8 0.086

   11 10 33.45 -1.63 7.442 0.33 87.9 0.082

   12 5 33.45 -1.62 7.441 0.76 87.8 0.091

   13 1 33.45 -1.63 7.444 1.85 87.8 0.091

   14 0 33.45 -1.63 7.445 1.79 87.8 0.095

 102 94 May 13 2002 17:06:00 67 20.11 70 21.34

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 623 34.73 1.19 4.025 0.06 87.8 0.045

    2 600 34.73 1.21 4.050 0.06 88.6 0.030

    3 575 34.73 1.24 4.073 0.06 89.0 0.022

    4 550 34.72 1.28 4.043 0.06 89.1 0.057

    5 525 34.72 1.32 4.001 0.06 89.1 0.022

    6 500 34.72 1.34 3.935 0.06 89.1 0.034

    7 475 34.72 1.34 3.912 0.06 89.1 0.049

    8 450 34.71 1.36 3.903 0.06 89.2 0.040

    9 425 34.71 1.38 3.901 0.06 89.2 0.028

   10 400 34.71 1.38 3.894 0.06 89.3 0.060

   11 375 34.70 1.38 3.886 0.06 89.3 0.032

   12 350 34.70 1.39 3.877 0.06 89.4 0.020

   13 325 34.69 1.40 3.871 0.06 89.3 0.024

   14 300 34.68 1.40 3.864 0.06 89.3 0.053

   15 250 34.66 1.35 3.845 0.06 89.3 0.023

   16 199 34.65 1.52 3.849 0.06 89.3 0.034

   17 150 34.55 0.98 3.963 0.06 89.2 0.030

   18 100 34.37 0.15 4.442 0.09 89.0 0.036

   19 50 33.65 -1.38 6.888 0.45 88.2 0.138

   20 20 33.52 -1.80 7.429 2.82 87.9 0.107

   21 1 33.52 -1.80 7.447 15.42 87.8 0.115

   22 1 33.52 -1.80 7.448 15.81 87.7 0.131

   23 1 33.52 -1.80 7.445 18.12 87.6 0.120

   24 1 33.52 -1.80 7.453 20.76 87.8 0.109

 103 95 May 13 2002 20:06:00 67 06.05 70 16.13

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 642 34.73 1.19 4.032 0.06 87.7 0.053

    2 625 34.73 1.18 4.030 0.06 87.8 0.037

    3 600 34.73 1.20 4.054 0.06 88.6 0.032

    4 575 34.72 1.26 4.066 0.06 89.0 0.017

    5 550 34.72 1.28 4.038 0.06 89.1 0.025

    6 525 34.72 1.31 4.016 0.06 89.1 0.031

    7 500 34.72 1.34 3.961 0.06 89.2 0.051

    8 475 34.72 1.36 3.924 0.06 89.2 0.026

    9 449 34.71 1.37 3.902 0.06 89.2 0.018

   10 426 34.71 1.37 3.895 0.06 89.3 0.038

   11 400 34.71 1.38 3.902 0.06 89.3 0.022

   12 375 34.71 1.39 3.898 0.06 89.4 0.019


   13 350 34.70 1.39 3.897 0.06 89.4 0.040

   14 325 34.70 1.40 3.894 0.06 89.4 0.017

   15 300 34.69 1.40 3.886 0.06 89.4 0.054

   16 250 34.68 1.39 3.873 0.06 89.4 0.033

   17 200 34.65 1.32 3.853 0.06 89.3 0.026

   18 150 34.60 1.13 3.865 0.06 89.3 0.051

   19 100 34.45 0.50 4.167 0.06 89.2 0.045

   20 50 33.62 -1.56 7.129 0.06 87.9 0.125

   21 20 33.61 -1.61 7.384 0.08 87.9 0.120

   22 1 33.61 -1.63 7.409 1.33 87.9 0.161

   23 1 33.61 -1.63 7.413 1.46 88.0 0.154

 104 96 May 13 2002 22:46:00 66 54.02 70 22.98

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 634 34.73 1.18 4.016 0.06 88.1 0.058

    2 600 34.73 1.18 4.021 0.06 88.3 0.040

    3 574 34.73 1.21 4.105 0.06 88.9 0.053

    4 550 34.73 1.25 4.084 0.06 89.0 0.051

    5 525 34.72 1.29 4.036 0.06 89.1 0.045

    6 501 34.72 1.32 4.001 0.06 89.2 0.032

    7 474 34.72 1.34 3.945 0.06 89.2 0.031

    8 450 34.71 1.36 3.903 0.06 89.2 0.019

    9 425 34.71 1.37 3.906 0.06 89.3 0.022

   10 400 34.71 1.37 3.902 0.06 89.3 0.035

   11 375 34.71 1.40 3.894 0.06 89.3 0.062

   12 350 34.71 1.43 3.909 0.06 89.4 0.032

   13 326 34.70 1.39 3.880 0.06 89.4 0.020

   14 300 34.69 1.40 3.875 0.06 89.2 0.057

   15 250 34.67 1.42 3.865 0.06 89.3 0.062

   16 199 34.62 1.18 3.898 0.06 89.3 0.032

   17 150 34.52 0.77 4.039 0.06 89.2 0.017

   18 100 34.30 -0.16 4.596 0.06 89.0 0.031

   19 50 33.76 -1.12 6.112 0.06 88.1 0.102

   20 20 33.64 -1.51 7.297 0.09 88.1 0.097

   21 0 33.62 -1.58 7.366 3.19 88.0 0.149

   22 1 33.62 -1.58 7.363 1.94 87.9 0.144

 105 97 May 14 2002 04:34:00 66 39.086 70 24.751

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 597 34.73 1.29 4.209 0.06 85.6 0.038

    2 598 34.73 1.29 4.209 0.06 85.2 0.029

    3 575 34.73 1.29 4.208 0.06 88.4 0.037

    4 577 34.73 1.29 4.209 0.06 88.5 0.034

    5 550 34.73 1.29 4.208 0.06 88.6 0.021

    6 525 34.73 1.29 4.206 0.06 89.1 0.041

    7 501 34.72 1.33 4.109 0.06 89.0 0.042

    8 476 34.72 1.38 3.971 0.06 88.9 0.028

    9 450 34.72 1.39 3.942 0.06 89.0 0.021

   10 425 34.71 1.38 3.891 0.06 89.2 0.035

   11 400 34.71 1.39 3.836 0.06 89.2 0.055

   12 375 34.70 1.40 3.860 0.06 89.3 0.035

   13 350 34.70 1.43 3.888 0.06 89.2 0.019

   14 325 34.69 1.43 3.922 0.06 89.2 0.061

   15 301 34.67 1.30 3.896 0.06 89.2 0.023

   16 275 34.65 1.26 3.896 0.06 89.2 0.049

   17 250 34.62 1.14 3.918 0.06 89.2 0.021

   18 200 34.55 0.88 4.003 0.06 89.2 0.024

   19 150 34.43 0.34 4.266 0.06 89.1 0.040

   20 100 34.20 -0.70 5.288 0.06 88.8 0.078

   21 50 33.66 -1.35 7.276 0.06 87.8 0.183

   22 19 33.65 -1.41 7.430 0.09 87.8 0.162

   23 2 33.65 -1.42 7.444 1.18 87.8 0.125

   24 2 33.65 -1.42 7.444 1.12 87.8 0.122

 106 98 May 14 2002 07:11:00 66 30.92 67 44.37

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 588 34.72 1.26 4.012 0.06 87.0 0.025

    2 588 34.72 1.26 4.012 0.06 86.5 0.028

    3 575 34.72 1.26 4.011 0.06 87.3 0.066

    4 575 34.72 1.26 4.011 0.06 87.3 0.064

    5 550 34.72 1.27 4.006 0.06 88.1 0.051

    6 525 34.72 1.32 3.979 0.06 89.0 0.034

    7 500 34.72 1.33 3.938 0.06 89.1 0.045

    8 475 34.72 1.34 3.918 0.06 89.1 0.065

    9 450 34.71 1.34 3.899 0.06 89.2 0.026

   10 425 34.71 1.37 3.890 0.06 89.2 0.028

   11 400 34.71 1.37 3.893 0.06 89.3 0.017

   12 375 34.71 1.40 3.890 0.06 89.3 0.054

   13 350 34.70 1.42 3.908 0.06 89.3 0.031

   14 326 34.70 1.40 3.884 0.06 89.4 0.025

   15 300 34.70 1.49 3.896 0.06 89.4 0.066

   16 275 34.69 1.50 3.896 0.06 89.4 0.017

   17 250 34.66 1.31 3.866 0.06 89.3 0.056

   18 200 34.61 1.18 3.870 0.06 89.3 0.042

   19 151 34.54 0.92 3.957 0.06 89.2 0.026

   20 100 34.35 0.05 4.487 0.06 89.1 0.028

   21 50 33.66 -1.43 7.258 0.06 87.7 0.162

   22 20 33.66 -1.44 7.407 0.09 87.7 0.165

   23 1 33.66 -1.46 7.416 0.77 86.3 0.145

   24 0 33.66 -1.46 7.425 2.83 69.5 0.142

 107 99 May 15 2002 09:43:39 66 30.90 067 44.36

bottle depth Salin Temp Oxygen PAR Trans Fluor

    1 357 34.60 1.09 3.756 0.06 88.2 0.040

    2 357 34.60 1.10 3.754 0.06 88.1 0.034

    3 324 34.59 1.07 3.733 0.06 88.2 0.026

    4 300 34.58 1.04 3.709 0.06 88.1 0.027

    5 275 34.56 0.98 3.673 0.06 88.1 0.043

    6 250 34.55 0.94 3.582 0.06 87.7 0.049

    7 225 34.53 0.90 3.561 0.06 87.6 0.030

    8 201 34.51 0.83 3.528 0.06 87.8 0.025

    9 175 34.47 0.74 3.603 0.06 87.8 0.026

   10 150 34.41 0.60 3.717 0.06 87.9 0.030

   11 150 34.41 0.61 3.723 0.06 88.0 0.032

   12 125 34.19 0.15 4.693 0.06 88.2 0.033

   13 100 33.82 -0.53 6.029 0.06 88.3 0.075

   14 100 33.82 -0.54 6.063 0.06 88.3 0.078

   15 75 33.60 -1.24 6.951 0.06 88.2 0.078

   16 50 33.59 -1.24 6.970 0.06 88.1 0.081

   17 30 33.56 -1.23 6.854 0.07 88.0 0.068

   18 20 33.55 -1.23 6.787 0.09 87.9 0.071

   19 15 33.54 -1.25 6.718 0.13 87.9 0.095

   20 10 33.50 -1.31 6.739 0.21 87.9 0.103

   21 5 33.51 -1.31 6.749 0.49 87.8 0.078

   22 1 33.49 -1.34 6.766 1.95 87.6 0.085

   23 1 33.49 -1.34 6.767 1.90 87.6 0.079

   24 1 33.49 -1.34 6.763 1.77 87.6 0.075


 


 


Appendix 4. Summary of salinity measurements during the third SO GLOBEC survey cruise, NBP02-02. The samples are identified by cast number and Niskin bottle. The depth at which the bottle was closed as well as the two CTD salinity measurement and the AutoSal measurements are provided. All replicate salinity measurements are included in the appendix.

 

CTD niskin        depth         S0     S1       autosal      session sample                      CTD niskin    depth         S0     S1       autosal      session sample

cast   bottle       (m)                                       salinity      in session                      cast bottle    (m)                                       salinity      in session

 1        3       499.485     34.7040     34.7056     34.7028     2       19

 1        3       499.485     34.7040     34.7056     34.7030     2       19

 1        3       499.485     34.7040     34.7056     34.7049     2       19

 1        3       499.485     34.7040     34.7056     34.7049     2       19

 1        3       499.485     34.7040     34.7056     34.7055     2       19

 1        7       498.974     34.7039     34.7055     34.7034     2       22

 1        7       498.974     34.7039     34.7055     34.7045     2       22

 1        7       498.974     34.7039     34.7055     34.7045     2       22

 1        7       498.974     34.7039     34.7055     34.7054     2       22

 1        11     498.767     34.7038     34.7055     34.7042     2       24

 1        11     498.767     34.7038     34.7055     34.7045     2       24

 1        11     498.767     34.7038     34.7055     34.7045     2       24

 1        11     498.767     34.7038     34.7055     34.7046     2       24

 1        13     498.768     34.7038     34.7053     34.7043     2       21

 1        13     498.768     34.7038     34.7053     34.7047     2       21

 1        13     498.768     34.7038     34.7053     34.7048     2       21

 1        13     498.768     34.7038     34.7053     34.7048     2       21

 1        20     497.509     34.7037     34.7054     34.7041     2       23

 1        20     497.509     34.7037     34.7054     34.7046     2       23

 1        20     497.509     34.7037     34.7054     34.7046     2       23

 1        20     497.509     34.7037     34.7054     34.7058     2       23

 1        20     497.509     34.7037     34.7054     34.7065     2       23

 1        24     497.855     34.7037     34.7051     34.7037     2       20

 1        24     497.855     34.7037     34.7051     34.7045     2       20

 1        24     497.855     34.7037     34.7051     34.7046     2       20

 1        24     497.855     34.7037     34.7051     34.7046     2       20

 3        3       2753.047 34.7046      34.7071     34.7053     2       15

 3        3       2753.047 34.7046      34.7071     34.7076     2       15

 3        3       2753.047 34.7046      34.7071     34.7077     2       15

 3        3       2753.047 34.7046      34.7071     34.7077     2       15

 3        10     1000.909 34.7254      34.7265     34.7175     2       12

 3        10     1000.909 34.7254      34.7265     34.7179     2       12

 3        10     1000.909 34.7254      34.7265     34.7179     2       12

 3        10     1000.909 34.7254      34.7265     34.7179     2       12

 3        15     149.682     34.3594     34.3596     34.3570     2       16

 3        15     149.682     34.3594     34.3596     34.3570     2       16

 3        15     149.682     34.3594     34.3596     34.3570     2       16

 3        15     149.682     34.3594     34.3596     34.3578     2       16

 3        24     2.465         33.7967     33.7967     33.7940     2       18

 3        24     2.465         33.7967     33.7967     33.8013     2       18

 3        24     2.465         33.7967     33.7967     33.8029     2       18

 3        24     2.465         33.7967     33.7967     33.8043     2       18

 3        24     2.465         33.7967     33.7967     33.8043     2       18

 4        3       657.518     34.7302     34.7312     34.7360     2       13

 4        3       657.518     34.7302     34.7312     34.7373     2       13

 4        3       657.518     34.7302     34.7312     34.7373     2       13

 4        3       657.518     34.7302     34.7312     34.7379     2       13

 4        10     351.778     34.7143     34.7147     34.7313     2       17

 4        10     351.778     34.7143     34.7147     34.7325     2       17

 4        10     351.778     34.7143     34.7147     34.7343     2       17

 4        10     351.778     34.7143     34.7147     34.7346     2       17

 4        10     351.778     34.7143     34.7147     34.7346     2       17

 4        24     4.817         33.8143     33.8143     33.8164     2       14

 4        24     4.817         33.8143     33.8143     33.8171     2       14

 4        24     4.817         33.8143     33.8143     33.8178     2       14

 4        24     4.817         33.8143     33.8143     33.8178     2       14

 5        3       341.318     34.7159     34.7174     34.7178     2       10

 5        3       341.318     34.7159     34.7174     34.7178     2       10

 5        3       341.318     34.7159     34.7174     34.7180     2       10

 5        3       341.318     34.7159     34.7174     34.7180     2       10

 5        9       202.316     34.6513     34.6520     34.6560     2       9


 5        9       202.316     34.6513     34.6520     34.6562     2       9

 5        9       202.316     34.6513     34.6520     34.6562     2       9

 5        9       202.316     34.6513     34.6520     34.6563     2       9

 5        24     4.242         33.8000     33.8005     33.8014     2       11

 5        24     4.242         33.8000     33.8005     33.8016     2       11

 5        24     4.242         33.8000     33.8005     33.8016     2       11

 5        24     4.242         33.8000     33.8005     33.8018     2       11

 6        3       348.201     34.7166     34.7169     34.7159     2       8

 6        3       348.201     34.7166     34.7169     34.7171     2       8

 6        3       348.201     34.7166     34.7169     34.7171     2       8

 6        3       348.201     34.7166     34.7169     34.7171     2       8

 6        9       99.599       34.3659     34.3623     34.3755     2       7

 6        9       99.599      34.3659      34.3623     34.3769     2       7

 6        9       99.599      34.3659      34.3623     34.3769     2       7

 6        9       99.599      34.3659      34.3623     34.3769     2       7

 6        24     2.458         33.4379     33.4375     33.4318     2       6

 6        24     2.458         33.4379     33.4375     33.4399     2       6

 6        24     2.458         33.4379     33.4375     33.4440     2       6

 6        24     2.458         33.4379     33.4375     33.4440     2       6

 7        3       599.536     34.7226     34.7228     34.7242     2       1

 7        3       599.536     34.7226     34.7228     34.7248     2       1

 7        3       599.536     34.7226     34.7228     34.7248     2       1

 7        3       599.536     34.7226     34.7228     34.7252     2       1

 7        3       599.536     34.7226     34.7228     34.7279     2       1

 7        3       599.536     34.7226     34.7228     34.7292     2       1

 7        10     99.713       34.0781     34.1078     34.0735     2       2

 7        10     99.713       34.0781     34.1078     34.0735     2       2

 7        10     99.713       34.0781     34.1078     34.0735     2       2

 7        10     99.713       34.0781     34.1078     34.0736     2       2

 7        24     2.824         33.2594     33.2586     33.2656     2       5

 7        24     2.824         33.2594     33.2586     33.2664     2       5

 7        24     2.824         33.2594     33.2586     33.2664     2       5

 7        24     2.824         33.2594     33.2586     33.2678     2       5

 8        3       412.953     34.7174     34.7175     34.7199     2       4

 8        3       412.953     34.7174     34.7175     34.7205     2       4

 8        3       412.953     34.7174     34.7175     34.7205     2       4

 8        3       412.953     34.7174     34.7175     34.7208     2       4

 8        10     99.312       33.9457     33.9472     34.0469     2       3

 8        10     99.312       33.9457     33.9472     34.0489     2       3

 8        10     99.312       33.9457     33.9472     34.0489     2       3

 8        10     99.312       33.9457     33.9472     34.0501     2       3

 8        24     1.978         33.2723     33.2712     33.2729     3       1

 8        24     1.978         33.2723     33.2712     33.2731     3       1

 8        24     1.978         33.2723     33.2712     33.2731     3       1

 8        24     1.978         33.2723     33.2712     33.2766     3       1

 9        1       134.341     34.2980     34.3249     34.3017     3       4

 9        1       134.341     34.2980     34.3249     34.3020     3       4

 9        1       134.341     34.2980     34.3249     34.3020     3       4

 9        1       134.341     34.2980     34.3249     34.3027     3       4

 9        8       30.157      33.4265      33.4276     33.4564     3       2

 9        8       30.157      33.4265      33.4276     33.4569     3       2

 9        8       30.157      33.4265      33.4276     33.4569     3       2

 9        8       30.157      33.4265      33.4276     33.4579     3       2

 9        21     5.314         33.2201     33.2190     33.2216     3       3

 9        21     5.314         33.2201     33.2190     33.2220     3       3

 9        21     5.314         33.2201     33.2190     33.2220     3       3

 9        21     5.314         33.2201     33.2190     33.2234     3       3

 10      3       303.558     34.6916     34.6921     34.6944     3       7

 10      3       303.558     34.6916     34.6921     34.6944     3       7

 10      3       303.558     34.6916     34.6921     34.6944     3       7

 10      3       303.558     34.6916     34.6921     34.6949     3       7

 10      10     49.644       33.8022     33.7728     33.8187     3       8

 10      10     49.644       33.8022     33.7728     33.8187     3       8

 10      10     49.644       33.8022     33.7728     33.8194     3       8

 10      10     49.644       33.8022     33.7728     33.8206     3       8

 10      22     0.374         33.5779     33.5785     33.5777     3       6

 10      22     0.374         33.5779     33.5785     33.5777     3       6

 10      22     0.374         33.5779     33.5785     33.5778     3       6

 10      22     0.374         33.5779     33.5785     33.5781     3       6

 11      1       498.228     34.7248     34.7250     34.7254     3       9

 11      1       498.228     34.7248     34.7250     34.7254     3       9

 11      1       498.228     34.7248     34.7250     34.7256     3       9

 11      1       498.228     34.7248     34.7250     34.7267     3       9

 11      8       101.088     34.2046     34.2041     34.2095     3       5

 11      8       101.088     34.2046     34.2041     34.2098     3       5

 11      8       101.088     34.2046     34.2041     34.2098     3       5

 11      8       101.088     34.2046     34.2041     34.2103     3       5

 11      22     1.855         33.6068     33.6041     33.6053     3       10

 11      22     1.855         33.6068     33.6041     33.6056     3       10

 11      22     1.855         33.6068     33.6041     33.6056     3       10

 11      22     1.855         33.6068     33.6041     33.6057     3       10

 12      1       468.954     34.7190     34.7191     34.7189     3       11

 12      1       468.954     34.7190     34.7191     34.7193     3       11

 12      1       468.954     34.7190     34.7191     34.7193     3       11

 12      1       468.954     34.7190     34.7191     34.7195     3       11

 12      12     99.984       34.2280     34.2252     34.2301     3       15

 12      12     99.984       34.2280     34.2252     34.2303     3       15

 12      12     99.984       34.2280     34.2252     34.2303     3       15

 12      12     99.984       34.2280     34.2252     34.2308     3       15

 12      22     1.852         33.6829     33.6814     33.6872     4       1

 12      22     1.852         33.6829     33.6814     33.6874     4       1

 12      22     1.852         33.6829     33.6814     33.6874     4       1

 12      22     1.852         33.6829     33.6814     33.6884     4       1

 13      1       901.527     34.7219     34.7225     34.7248     3       12

 13      1       901.527     34.7219     34.7225     34.7250     3       12

 13      1       901.527     34.7219     34.7225     34.7261     3       12

 13      1       901.527     34.7219     34.7225     34.7261     3       12

 13      16     100.014     34.1538     34.1615     34.1438     3       13

 13      16     100.014     34.1538     34.1615     34.1445     3       13

 13      16     100.014     34.1538     34.1615     34.1453     3       13

 13      16     100.014     34.1538     34.1615     34.1453     3       13

 13      16     100.014     34.1538     34.1615     34.1472     3       13

 13      24     1.874         33.5662     33.5658     33.5628     3       14

 13      24     1.874         33.5662     33.5658     33.5630     3       14

 13      24     1.874         33.5662     33.5658     33.5630     3       14

 13      24     1.874         33.5662     33.5658     33.5633     3       14

 15      12     499.670     34.7161     34.7172     34.7067     3       17

 15      12     499.670     34.7161     34.7172     34.7071     3       17

 15      12     499.670     34.7161     34.7172     34.7072     3       17

 15      12     499.670     34.7161     34.7172     34.7072     3       17

 15      15     100.147     34.4082     34.4088     34.4081     3       16

 15      15     100.147     34.4082     34.4088     34.4081     3       16

 15      15     100.147     34.4082     34.4088     34.4081     3       16

 15      15     100.147     34.4082     34.4088     34.4084     3       16

 15      24     2.653         33.7161     33.7162     33.7147     3       18

 15      24     2.653         33.7161     33.7162     33.7147     3       18

 15      24     2.653         33.7161     33.7162     33.7147     3       18

 15      24     2.653         33.7161     33.7162     33.7148     3       18

 16      1       777.398     34.7281     34.7286     34.7288     4       5

 16      1       777.398     34.7281     34.7286     34.7294     4       5

 16      1       777.398     34.7281     34.7286     34.7294     4       5

 16      1       777.398     34.7281     34.7286     34.7297     4       5

 16      13     101.507     34.4257     34.4240     34.4189     4       4

 16      13     101.507     34.4257     34.4240     34.4190     4       4

 16      13     101.507     34.4257     34.4240     34.4192     4       4

 16      13     101.507     34.4257     34.4240     34.4192     4       4

 16      24     2.454         33.5777     33.5768     33.5778     4       3

 16      24     2.454         33.5777     33.5768     33.5778     4       3

 16      24     2.454         33.5777     33.5768     33.5778     4       3


 16      24     2.454         33.5777     33.5768     33.5779     4       3

 17      1       528.655     34.7250     34.7253     34.7267     4       10

 17      1       528.655     34.7250     34.7253     34.7268     4       10

 17      1       528.655     34.7250     34.7253     34.7268     4       10

 17      1       528.655     34.7250     34.7253     34.7268     4       10

 17      12     124.874     34.2250     34.2251     34.2254     4       6

 17      12     124.874     34.2250     34.2251     34.2262     4       6

 17      12     124.874     34.2250     34.2251     34.2265     4       6

 17      12     124.874     34.2250     34.2251     34.2265     4       6

 17      12     124.874     34.2250     34.2251     34.2273     4       6

 17      12     124.874     34.2250     34.2251     34.2277     4       6

 17      23     3.571         33.5587     33.5582     33.5586     4       2

 17      23     3.571         33.5587     33.5582     33.5587     4       2

 17      23     3.571         33.5587     33.5582     33.5587     4       2

 17      23     3.571         33.5587     33.5582     33.5592     4       2

 18      1       530.604     34.7255     34.7260     34.6879     4       16

 18      1       530.604     34.7255     34.7260     34.6886     4       16

 18      1       530.604     34.7255     34.7260     34.6886     4       16

 18      1       530.604     34.7255     34.7260     34.6893     4       16

 18      1       530.604     34.7255     34.7260     34.7263     4       7

 18      1       530.604     34.7255     34.7260     34.7265     4       7

 18      1       530.604     34.7255     34.7260     34.7265     4       7

 18      1       530.604     34.7255     34.7260     34.7266     4       7

 18      12     49.494       33.8634     33.9356     33.9356     4       9

 18      12     49.494       33.8634     33.9356     33.9369     4       9

 18      12     49.494       33.8634     33.9356     33.9404     4       9

 18      12     49.494       33.8634     33.9356     33.9404     4       9

 18      12     49.494       33.8634     33.9356     33.9462     4       9

 18      12     49.494       33.8634     33.9356     33.9514     4       9

 18      24     2.265         33.5155     33.5147     33.5140     4       8

 18      24     2.265         33.5155     33.5147     33.5149     4       8

 18      24     2.265         33.5155     33.5147     33.5169     4       8

 18      24     2.265         33.5155     33.5147     33.5170     4       8

 18      24     2.265         33.5155     33.5147     33.5170     4       8

 19      2       498.942     34.7208     34.7205     34.7254     4       13

 19      2       498.942     34.7208     34.7205     34.7261     4       13

 19      2       498.942     34.7208     34.7205     34.7261     4       13

 19      2       498.942     34.7208     34.7205     34.7276     4       13

 19      15     74.904       34.0581     34.0695     34.0649     4       12

 19      15     74.904       34.0581     34.0695     34.0650     4       12

 19      15     74.904       34.0581     34.0695     34.0650     4       12

 19      15     74.904       34.0581     34.0695     34.0654     4       12

 19      21     4.980         33.3637     33.3626     34.2227     4       25

 19      21     4.980         33.3637     33.3626     34.2229     4       25

 19      21     4.980         33.3637     33.3626     34.2229     4       25

 19      21     4.980         33.3637     33.3626     34.2235     4       25

 19      21     4.980         33.3637     33.3626     34.9981     4       25

 20      1       423.839     34.7127     34.7132     34.7061     4       15

 20      1       423.839     34.7127     34.7132     34.7109     4       15

 20      1       423.839     34.7127     34.7132     34.7109     4       15

 20      1       423.839     34.7127     34.7132     34.7116     4       15

 20      1       423.839     34.7127     34.7132     34.7118     4       15

 20      12     99.251       34.2848     34.2987     34.2830     4       14

 20      12     99.251       34.2848     34.2987     34.2833     4       14

 20      12     99.251       34.2848     34.2987     34.2833     4       14

 20      24     2.560         33.4811     33.4770     33.4870     4       11

 20      24     2.560         33.4811     33.4770     33.4870     4       11

 20      24     2.560         33.4811     33.4770     33.4870     4       11

 20      24     2.560         33.4811     33.4770     33.4876     4       11

 21      15     75.096       33.9780     33.9773     34.0098     4       21

 21      15     75.096       33.9780     33.9773     34.0099     4       21

 21      15     75.096       33.9780     33.9773     34.0099     4       21

 21      15     75.096       33.9780     33.9773     34.0100     4       21

 21      24     1.339         33.2507     33.2492     33.2495     4       17

 21      24     1.339         33.2507     33.2492     33.2497     4       17

 21      24     1.339         33.2507     33.2492     33.2497     4       17

 21      24     1.339         33.2507     33.2492     33.2498     4       17

 22      1       614.563     34.7246     34.7245     34.7222     4       18

 22      1       614.563     34.7246     34.7245     34.7235     4       18

 22      1       614.563     34.7246     34.7245     34.7235     4       18

 22      1       614.563     34.7246     34.7245     34.7243     4       18

 22      15     74.921       34.2240     34.2248     34.2428     4       19

 22      15     74.921       34.2240     34.2248     34.2430     4       19

 22      15     74.921       34.2240     34.2248     34.2430     4       19

 22      15     74.921       34.2240     34.2248     34.2431     4       19

 22      22     5.556         33.7015     33.7019     33.7010     4       20

 22      22     5.556         33.7015     33.7019     33.7012     4       20

 22      22     5.556         33.7015     33.7019     33.7012     4       20

 22      22     5.556         33.7015     33.7019     33.7017     4       20

 23      1       483.186     34.7216     34.7217     34.7184     4       23

 23      1       483.186     34.7216     34.7217     34.7204     4       23

 23      1       483.186     34.7216     34.7217     34.7204     4       23

 23      1       483.186     34.7216     34.7217     34.7212     4       23

 23      13     75.406       34.1997     34.2060     34.1969     4       22

 23      13     75.406       34.1997     34.2060     34.1971     4       22

 23      13     75.406       34.1997     34.2060     34.1971     4       22

 23      13     75.406       34.1997     34.2060     34.1972     4       22

 23      24     2.111         33.4404     33.4397     33.4385     4       24

 23      24     2.111         33.4404     33.4397     33.4389     4       24

 23      24     2.111         33.4404     33.4397     33.4389     4       24

 23      24     2.111         33.4404     33.4397     33.4390     4       24

 24      1       466.813     34.7204     34.7207     34.7197     5       5

 24      1       466.813     34.7204     34.7207     34.7201     5       5

 24      1       466.813     34.7204     34.7207     34.7207     5       5

 24      13     99.612       34.1492     34.1501     34.1207     5       4

 24      13     99.612       34.1492     34.1501     34.1207     5       4

 24      13     99.612       34.1492     34.1501     34.1208     5       4

 24      24     2.315         33.4889     33.4883     33.4732     5       1

 24      24     2.315         33.4889     33.4883     33.4833     5       1

 24      24     2.315         33.4889     33.4883     33.4843     5       1

 24      24     2.315         33.4889     33.4883     33.4860     5       1

 26      1       3332.362 34.7042      34.7067     34.7066     5       6

 26      1       3332.362 34.7042      34.7067     34.7066     5       6

 26      1       3332.362 34.7042      34.7067     34.7067     5       6

 26      14     200.977     34.5886     34.5882     33.3878     5       2

 26      14     200.977     34.5886     34.5882     33.3926     5       2

 26      14     200.977     34.5886     34.5882     33.3952     5       2

 26      14     200.977     34.5886     34.5882     33.3988     5       2

 26      22     5.064         33.7555     33.7548     33.7545     5       3

 26      22     5.064         33.7555     33.7548     33.7551     5       3

 26      22     5.064         33.7555     33.7548     33.7553     5       3

 27      1       3670.052 34.7034      34.7061     34.7047     5       10

 27      1       3670.052 34.7034      34.7061     34.7049     5       10

 27      1       3670.052 34.7034      34.7061     34.7049     5       10

 27      15     100.393     34.2719     34.2838     34.2574     5       11

 27      15     100.393     34.2719     34.2838     34.2579     5       11

 27      15     100.393     34.2719     34.2838     34.2581     5       11

 27      24     2.134         33.7819     33.7822     33.7829     5       7

 27      24     2.134         33.7819     33.7822     33.7831     5       7

 27      24     2.134         33.7819     33.7822     33.7834     5       7

 28      1       443.302     34.7214     34.7233     34.7202     5       14

 28      1       443.302     34.7214     34.7233     34.7209     5       14

 28      1       443.302     34.7214     34.7233     34.7210     5       14

 28      9       101.090     34.1216     34.1215     34.1205     5       15

 28      9       101.090     34.1216     34.1215     34.1213     5       15

 28      9       101.090     34.1216     34.1215     34.1213     5       15

 28      9       101.090     34.1216     34.1215     34.1271     5       15

 28      24     0.075         33.6744     33.6744     33.6754     5       16

 28      24     0.075         33.6744     33.6744     33.6755     5       16

 28      24     0.075         33.6744     33.6744     33.6756     5       16

 29      1       408.718     34.7114     34.7116     34.7116     5       8

 29      1       408.718     34.7114     34.7116     34.7117     5       8

 29      1       408.718     34.7114     34.7116     34.7119     5       8

 29      9       99.213      34.2741      34.2813     34.2841     5       9

 29      9       99.213      34.2741      34.2813     34.2845     5       9

 29      9       99.213     34.2741      34.2813     34.2848     5       9


 29      20     2.966         33.4856     33.4848     33.4877     5       12

 29      20     2.966         33.4856     33.4848     33.4878     5       12

 29      20     2.966         33.4856     33.4848     33.4879     5       12

 30      1       461.360     34.7140     34.7141     34.7132     5       13

 30      1       461.360     34.7140     34.7141     34.7137     5       13

 30      1       461.360     34.7140     34.7141     34.7138     5       13

 30      12     100.473     34.2324     34.2401     34.2295     5       18

 30      12     100.473     34.2324     34.2401     34.2300     5       18

 30      12     100.473     34.2324     34.2401     34.2302     5       18

 30      24     -0.566       33.4536     33.4686     33.5079     5       17

 30      24     -0.566       33.4536     33.4686     33.5182     5       17

 30      24     -0.566       33.4536     33.4686     33.5189     5       17

 31      2       764.431     34.7233     34.7237     34.7237     5       23

 31      2       764.431     34.7233     34.7237     34.7240     5       23

 31      2       764.431     34.7233     34.7237     34.7241     5       23

 31      16     99.934       34.3463     34.3493     34.3319     5       19

 31      16     99.934       34.3463     34.3493     34.3319     5       19

 31      16     99.934       34.3463     34.3493     34.3325     5       19

 31      23     1.601         33.4712     33.4708     33.4734     5       20

 31      23     1.601         33.4712     33.4708     33.4735     5       20

 31      23     1.601         33.4712     33.4708     33.4749     5       20

 31      23     1.601         33.4712     33.4708     33.4765     5       20

 32      1       454.384     34.6982     34.6987     34.6977     5       24

 32      1       454.384     34.6982     34.6987     34.6979     5       24

 32      1       454.384     34.6982     34.6987     34.6981     5       24

 32      10     77.009       34.1764     34.1775     34.1794     5       21

 32      10     77.009       34.1764     34.1775     34.1806     5       21

 32      10     77.009       34.1764     34.1775     34.1813     5       21

 32      10     77.009       34.1764     34.1775     34.1829     5       21

 32      24     2.607         33.4869     33.4861     33.4890     5       22

 32      24     2.607         33.4869     33.4861     33.4917     5       22

 32      24     2.607         33.4869     33.4861     33.4938     5       22

 32      24     2.607         33.4869     33.4861     33.4960     5       22

 33      1       153.554     34.1966     34.2141     34.1605     5       27

 33      1       153.554     34.1966     34.2141     34.1607     5       27

 33      1       153.554     34.1966     34.2141     34.1608     5       27

 33      2       99.786       33.6852     33.6845     33.6850     5       26

 33      2       99.786       33.6852     33.6845     33.6872     5       26

 33      2       99.786               33.6852      33.6845     33.6873     5       26

 33      10     2.338         33.4443     33.4429     33.4437     5       25

 33      10     2.338         33.4443     33.4429     33.4446     5       25

 33      10     2.338         33.4443     33.4429     33.4446     5       25

 34      1       182.270     34.4396     34.4404     33.7435     7       21

 34      1       182.270     34.4396     34.4404     33.7436     7       21

 34      1       182.270     34.4396     34.4404     33.7437     7       21

 34      12     2.441         33.3057     33.3054     33.3029     6       1

 34      12     2.441         33.3057     33.3054     33.3034     6       1

 34      12     2.441         33.3057     33.3054     33.3056     6       1

 34      12     2.441         33.3057     33.3054     33.3062     6       1

 34      5       99.679      33.7324      33.7168     34.4367     7       22

 34      5       99.679      33.7324      33.7168     34.4372     7       22

 34      5       99.679      33.7324      33.7168     34.4373     7       22

 35      1       185.658     34.4479     34.4525     34.4499     6       2

 35      1       185.658     34.4479     34.4525     34.4509     6       2

 35      1       185.658     34.4479     34.4525     34.4540     6       2

 35      3       99.790      33.7133      33.7166     33.7231     6       6

 35      3       99.790       33.7133     33.7166     33.7320     6       6

 35      3       99.790      33.7133      33.7166     33.7320     6       6

 35      10     2.751         33.3001     33.2992     33.2988     6       5

 35      10     2.751         33.3001     33.2992     33.2989     6       5

 35      10     2.751         33.3001     33.2992     33.2989     6       5

 36      1       199.087     34.4423     34.4439     34.4407     6       9

 36      1       199.087     34.4423     34.4439     34.4409     6       9

 36      1       199.087     34.4423     34.4439     34.4410     6       9

 36      4       100.347     34.0932     34.0922     34.0894     6       10

 36      4       100.347     34.0932     34.0922     34.0966     6       10

 36      4       100.347     34.0932     34.0922     34.0971     6       10

 36      11     1.721         33.4126     33.4118     33.4119     6       7

 36      11     1.721         33.4126     33.4118     33.4165     6       7

 36      11     1.721         33.4126     33.4118     33.4172     6       7

 36      11     1.721         33.4126     33.4118     33.4174     6       7

 37      2       658.052     34.6679     34.6682     34.6669     6       8

 37      2       658.052     34.6679     34.6682     34.6672     6       8

 37      2       658.052     34.6679     34.6682     34.6674     6       8

 37      14     99.973       33.9103     33.9079     33.9115     6       4

 37      14     99.973       33.9103     33.9079     33.9121     6       4

 37      14     99.973       33.9103     33.9079     33.9129     6       4

 37      23     1.876         33.2799     33.2790     33.2760     6       3

 37      23     1.876         33.2799     33.2790     33.2785     6       3

 37      23     1.876         33.2799     33.2790     33.2787     6       3

 38      1       659.285     34.6669     34.6677     34.6697     6       12

 38      1       659.285     34.6669     34.6677     34.6705     6       12

 38      1       659.285     34.6669     34.6677     34.6706     6       12

 38      13     99.534       34.0275     34.0191     34.0261     6       16

 38      13     99.534       34.0275     34.0191     34.0263     6       16

 38      13     99.534       34.0275     34.0191     34.0286     6       16

 38      22     4.402         33.2361     33.2310     33.2494     6       11

 38      22     4.402         33.2361     33.2310     33.2508     6       11

 38      22     4.402         33.2361     33.2310     33.2510     6       11

 38      22     4.402         33.2361     33.2310     33.2525     6       11

 39      1       287.043     34.6136     34.6142     34.6111     6       13

 39      1       287.043     34.6136     34.6142     34.6136     6       13

 39      1       287.043     34.6136     34.6142     34.6139     6       13

 39      11     74.767       33.6277     33.6289     33.7012     6       14

 39      11     74.767       33.6277     33.6289     33.7025     6       14

 39      11     74.767       33.6277     33.6289     33.7031     6       14

 39      24     0.312         33.1552     33.1544     33.1578     6       15

 39      24     0.312         33.1552     33.1544     33.1579     6       15

 39      24     0.312         33.1552     33.1544     33.1580     6       15

 41      2       518.146     34.6814     34.6822     34.6797     6       19

 41      2       518.146     34.6814     34.6822     34.6797     6       19

 41      2       518.146     34.6814     34.6822     34.6799     6       19

 41      14     74.767       33.9299     33.9234     33.9300     6       18

 41      14     74.767       33.9299     33.9234     33.9302     6       18

 41      14     74.767       33.9299     33.9234     33.9307     6       18

 41      24     0.888         33.2209     33.2206     33.2191     6       17

 41      24     0.888         33.2209     33.2206     33.2196     6       17

 41      24     0.888         33.2209     33.2206     33.2197     6       17

 42      1       188.137     34.4129     34.4163     34.4102     6       22

 42      1       188.137     34.4129     34.4163     34.4115     6       22

 42      1       188.137     34.4129     34.4163     34.4117     6       22

 42      4       99.780       33.8825     33.8768     33.8991     6       21

 42      4       99.780       33.8825     33.8768     33.8993     6       21

 42      4       99.780       33.8825     33.8768     33.9010     6       21

 42      4       99.780       33.8825     33.8768     33.9013     6       21

 42      13     0.573         33.0646     33.0635     33.0642     6       23

 42      13     0.573         33.0646     33.0635     33.0645     6       23

 42      13     0.573         33.0646     33.0635     33.0645     6       23

 43      1       405.862     34.6596     34.6603     34.6585     6       20

 43      1       405.862     34.6596     34.6603     34.6590     6       20

 43      1       405.862     34.6596     34.6603     34.6599     6       20

 43      11     199.967     34.4251     34.4271     34.4441     7       1

 43      11     199.967     34.4251     34.4271     34.4444     7       1

 43      11     199.967     34.4251     34.4271     34.4445     7       1

 43      24     1.096         32.9843     32.9830     32.9815     6       24

 43      24     1.096         32.9843     32.9830     32.9817     6       24

 43      24     1.096         32.9843     32.9830     32.9829     6       24

 44      1       635.319     34.6762     34.6768     34.6740     7       6

 44      1       635.319     34.6762     34.6768     34.6742     7       6

 44      1       635.319     34.6762     34.6768     34.6747     7       6

 44      14     125.006     33.9511     33.9523     34.0087     7       2

 44      14     125.006     33.9511     33.9523     34.0088     7       2

 44      14     125.006     33.9511     33.9523     34.0095     7       2

 44      24     0.447         33.1188     33.1184     33.1165     7       5

 44      24     0.447         33.1188     33.1184     33.1170     7       5

 44      24     0.447         33.1188     33.1184     33.1182     7       5


 44      24     0.447         33.1188     33.1184     33.1183     7       5

 44      24     0.447         33.1188     33.1184     33.1184     7       5

 45      1       749.329     34.7129     34.7139     34.7119     7       3

 45      1       749.329     34.7129     34.7139     34.7119     7       3

 45      1       749.329     34.7129     34.7139     34.7122     7       3

 45      15     99.158       34.2057     34.2045     34.2137     7       8

 45      15     99.158       34.2057     34.2045     34.2140     7       8

 45      15     99.158       34.2057     34.2045     34.2142     7       8

 45      23     0.142         33.4659     33.4657     33.4556     7       4

 45      23     0.142         33.4659     33.4657     33.4655     7       4

 45      23     0.142         33.4659     33.4657     33.4665     7       4

 46      2       866.315     34.7220     34.7229     34.7200     7       9

 46      2       866.315     34.7220     34.7229     34.7203     7       9

 46      2       866.315     34.7220     34.7229     34.7208     7       9

 46      16     100.590     34.3736     34.3565     34.3799     7       10

 46      16     100.590     34.3736     34.3565     34.3802     7       10

 46      16     100.590     34.3736     34.3565     34.3817     7       10

 46      23     1.769         33.4326     33.4327     33.4329     7       7

 46      23     1.769         33.4326     33.4327     33.4332     7       7

 46      23     1.769         33.4326     33.4327     33.4337     7       7

 47      2       395.366     34.7149     34.7159     34.7114     7       12

 47      2       395.366     34.7149     34.7159     34.7114     7       12

 47      2       395.366     34.7149     34.7159     34.7137     7       12

 47      15     75.209       34.1376     34.1311     34.1244     7       13

 47      15     75.209       34.1376     34.1311     34.1248     7       13

 47      15     75.209       34.1376     34.1311     34.1249     7       13

 47      24     -1.336       10.2901     10.4396     33.4609     7       11

 47      24     -1.336       10.2901     10.4396     33.4611     7       11

 47      24     -1.336       10.2901     10.4396     33.4613     7       11

 48      2       387.194     34.7161     34.7169     34.7152     7       14

 48      2       387.194     34.7161     34.7169     34.7156     7       14

 48      2       387.194     34.7161     34.7169     34.7159     7       14

 48      12     100.356     34.1663     34.1637     34.1677     7       19

 48      12     100.356     34.1663     34.1637     34.1678     7       19

 48      12     100.356     34.1663     34.1637     34.1679     7       19

 48      24     0.481         33.4270     33.4268     33.4241     7       20

 48      24     0.481         33.4270     33.4268     33.4243     7       20

 48      24     0.481         33.4270     33.4268     33.4243     7       20

 50      2       2082.500 34.7061      34.7079     34.70957 8        23

 50      2       2082.500 34.7061      34.7079     34.70977 8        23

 50      2       2082.500 34.7061      34.7079     34.70977 8        23

 50      16     99.015       34.3732     34.3730     34.3470     7       15

 50      16     99.015       34.3732     34.3730     34.3475     7       15

 50      16     99.015       34.3732     34.3730     34.3494     7       15

 50      16     99.015       34.3732     34.3730     34.3496     7       15

 50      24     4.393         33.7755     33.7750     33.77842 8        24

 50      24     4.393         33.7755     33.7750     33.77842 8        24

 50      24     4.393         33.7755     33.7750     33.77862 8        24

 51      1       2842.695 34.7045      34.7072     34.7039     7       16

 51      1       2842.695 34.7045      34.7072     34.7040     7       16

 51      1       2842.695 34.7045      34.7072     34.7040     7       16

 51      12     299.511     34.6679     34.6687     34.6647     7       23

 51      12     299.511     34.6679     34.6687     34.6663     7       23

 51      12     299.511     34.6679     34.6687     34.6682     7       23

 51      23     1.709         33.8210     33.8209     33.8194     7       18

 51      23     1.709         33.8210     33.8209     33.8195     7       18

 51      23     1.709         33.8210     33.8209     33.8205     7       18

 52      2       405.596     34.7125     34.7133     34.7119     7       17

 52      2       405.596     34.7125     34.7133     34.7143     7       17

 52      2       405.596     34.7125     34.7133     34.7145     7       17

 52      14     100.399     34.2744     34.2882     34.26652 8        3

 52      14     100.399     34.2744     34.2882     34.26671 8        3

 52      14     100.399     34.2744     34.2882     34.26691 8        3

 52      22     4.957         33.8055     33.8054     33.7958     7       24

 52      22     4.957         33.8055     33.8054     33.8026     7       24

 52      22     4.957         33.8055     33.8054     33.8030     7       24

 52      22     4.957         33.8055     33.8054     33.8046     7       24

 53      2       478.343     34.7258     34.7266     34.72763            8       2

 53      2       478.343     34.7258     34.7266     34.72900 8        2

 53      2       478.343     34.7258     34.7266     34.72900 8        2

 53      6       301.202     34.6935     34.6942     34.69505 8        4

 53      6       301.202     34.6935     34.6942     34.69564 8        4

 53      6       301.202     34.6935     34.6942     34.69584 8        4

 53      24     2.143         33.6289     33.6287     33.62996 8        6

 53      24     2.143         33.6289     33.6287     33.63016 8        6

 53      24     2.143         33.6289     33.6287     33.63016 8        6

 54      2       382.048     34.7133     34.7140     34.55656 8        20

 54      2       382.048     34.7133     34.7140     34.55695 8        20

 54      2       382.048     34.7133     34.7140     34.55734 8        20

 54      2       382.048     34.7133     34.7140     34.71408 8        8

 54      2       382.048     34.7133     34.7140     34.71448 8        8

 54      2       382.048     34.7133     34.7140     34.71468 8        8

 54      9       175.834     34.5218     34.5213     34.53930 8        1

 54      9       175.834     34.5218     34.5213     34.53950 8        1

 54      9       175.834     34.5218     34.5213     34.53969 8        1

 54      22     1.668         33.6290     33.6287     33.62977 8        7

 54      22     1.668         33.6290     33.6287     33.62996 8        7

 54      22     1.668         33.6290     33.6287     33.63055 8        7

 55      2       546.468     34.6982     34.6989     34.69937 8        5

 55      2       546.468     34.6982     34.6989     34.69976 8        5

 55      2       546.468     34.6982     34.6989     34.69995 8        5

 55      15     99.758       34.1728     34.1723     34.17410 8        10

 55      15     99.758       34.1728     34.1723     34.17429 8        10

 55      15     99.758       34.1728     34.1723     34.17429 8        10

 55      24     4.221         33.5132     33.5127     33.50363 8        9

 55      24     4.221         33.5132     33.5127     33.51419 8        9

 55      24     4.221         33.5132     33.5127     33.51498 8        9

 56      2       512.163     34.7082     34.7090     34.71134 8        13

 56      2       512.163     34.7082     34.7090     34.71193 8        13

 56      2       512.163     34.7082     34.7090     34.71193 8        13

 56      12     74.664       33.9350     33.9353     33.93911 8        12

 56      12     74.664       33.9350     33.9353     33.93911 8        12

 56      12     74.664       33.9350     33.9353     33.93930 8        12

 56      24     1.618         33.3138     33.3131     33.31482 8        11

 56      24     1.618         33.3138     33.3131     33.31482 8        11

 56      24     1.618         33.3138     33.3131     33.31482 8        11

 57      2       763.663     34.7154     34.7164     34.71624 8        14

 57      2       763.663     34.7154     34.7164     34.71644 8        14

 57      2       763.663     34.7154     34.7164     34.71703 8        14

 57      13     200.287     34.5124     34.5130     34.51342 8        16

 57      13     200.287     34.5124     34.5130     34.51381 8        16

 57      13     200.287     34.5124     34.5130     34.51420 8        16

 57      23     1.512         33.3229     33.3225     33.32204 8        15

 57      23     1.512         33.3229     33.3225     33.32242 8        15

 57      23     1.512         33.3229     33.3225     33.32360 8        15

 58      2       1180.231 34.7204      34.7214     34.72272 8        18

 58      2       1180.231 34.7204      34.7214     34.72272 8        18

 58      2       1180.231 34.7204      34.7214     34.72292 8        18

 58      16     99.716       34.2070     34.2180     34.20914 8        19

 58      16     99.716       34.2070     34.2180     34.20914 8        19

 58      16     99.716       34.2070     34.2180     34.20934 8        19

 58      23     4.763         33.1228     33.1221     33.12186 8        17

 58      23     4.763         33.1228     33.1221     33.12206 8        17

 58      23     4.763         33.1228     33.1221     33.12206 8        17

 59      10     100.072     33.8225     33.8331     33.85973 8        21

 59      10     100.072     33.8225     33.8331     33.86090 8        21

 59      10     100.072     33.8225     33.8331     33.86169 8        21

 59      24     0.195         32.9887     32.9880     32.98942 8        22

 59      24     0.195         32.9887     32.9880     32.98962 8        22

 59      24     0.195         32.9887     32.9880     32.98962 8        22

 60      2       597.656     34.6970     34.6979     34.6942     9       2

 60      2       597.656     34.6970     34.6979     34.6942     9       2

 60      16     74.892       33.7868     33.7632     33.8031     9       1

 60      16     74.892       33.7868     33.7632     33.8034     9       1

 60      16     74.892       33.7868     33.7632     33.8036     9       1

 60      16     74.892       33.7868     33.7632     34.6940     9       1


 60      24     0.397         33.1084     33.1077     33.1076     9       3

 60      24     0.397         33.1084     33.1077     33.1077     9       3

 60      24     0.397         33.1084     33.1077     33.1078     9       3

 61      2       499.835     34.6892     34.6901     34.6803     9       19

 61      2       499.835     34.6892     34.6901     34.6825     9       19

 61      2       499.835     34.6892     34.6901     34.6830     9       19

 61      14     99.870       33.9577     33.9749     33.9410     9       17

 61      14     99.870       33.9577     33.9749     33.9411     9       17

 61      14     99.870       33.9577     33.9749     33.9416     9       17

 61      24     0.273         33.1113     33.1102     34.6840     9       18

 61      24     0.273         33.1113     33.1102     34.6842     9       18

 61      24     0.273         33.1113     33.1102     34.6852     9       18

 62      2       1267.295 34.7197      34.7210     34.7172     9       15

 62      2       1267.295 34.7197      34.7210     34.7177     9       15

 62      2       1267.295 34.7197      34.7210     34.7178     9       15

 62      14     100.098     33.9379     33.9380     33.9575     9       14

 62      14     100.098     33.9379     33.9380     33.9579     9       14

 62      14     100.098     33.9379     33.9380     33.9583     9       14

 62      23     0.585         33.0631     33.0628     33.0582     9       13

 62      23     0.585         33.0631     33.0628     33.0583     9       13

 62      23     0.585         33.0631     33.0628     33.0585     9       13

 63      2       375.855     34.5947     34.5956     34.5906     9       23

 63      2       375.855     34.5947     34.5956     34.5909     9       23

 63      2       375.855     34.5947     34.5956     34.5911     9       23

 63      11     75.664       33.8151     33.8138     33.8371     9       22

 63      11     75.664       33.8151     33.8138     33.8379     9       22

 63      11     75.664       33.8151     33.8138     33.8380     9       22

 64      2       306.971     34.1133     34.4409     33.1494     9       21

 64      2       306.971     34.1133     34.4409     33.1498     9       21

 64      2       306.971     34.1133     34.4409     33.1505     9       21

 64      2       306.971     34.1133     34.4409     34.4362     9       11

 64      2       306.971     34.1133     34.4409     34.4364     9       11

 64      2       306.971     34.1133     34.4409     34.4370     9       11

 64      4       199.625     34.3851     34.3858     34.3817     9       10

 64      4       199.625     34.3851     34.3858     34.3821     9       10

 64      4       199.625     34.3851     34.3858     34.3822     9       10

 64      15     1.159         33.3033     33.3031     33.2991     9       9

 64      15     1.159         33.3033     33.3031     33.2993     9       9

 64      15     1.159         33.3033     33.3031     33.2994     9       9

 65      2       157.833     34.2480     34.2516     34.2302     9       5

 65      2       157.833     34.2480     34.2516     34.2303     9       5

 65      2       157.833     34.2480     34.2516     34.2308     9       5

 65      5       98.305       33.9870     33.9857     33.9904     9       6

 65      5       98.305       33.9870     33.9857     33.9904     9       6

 65      5       98.305       33.9870     33.9857     33.9909     9       6

 65      14     1.588         33.4214     33.4211     33.4162     9       7

 65      14     1.588         33.4214     33.4211     33.4163     9       7

 65      14     1.588         33.4214     33.4211     33.4165     9       7

 66      2       400.275     34.6989     34.6997     34.6933     9       8

 66      2       400.275     34.6989     34.6997     34.6940     9       8

 66      2       400.275     34.6989     34.6997     34.6950     9       8

 66      9       99.643      34.0065      34.0014     34.0372     9       4

 66      9       99.643      34.0065      34.0014     34.0372     9       4

 66      9       99.643      34.0065      34.0014     34.0374     9       4

 66      19     2.168         33.4730     33.4725     33.4669     9       12

 66      19     2.168         33.4730     33.4725     33.4669     9       12

 66      19     2.168         33.4730     33.4725     33.4669     9       12

 67      2       318.827     34.7060     34.7067     34.7025     9       20

 67      2       318.827     34.7060     34.7067     34.7030     9       20

 67      2       318.827     34.7060     34.7067     34.7031     9       20

 67      10     150.492     34.4361     34.4371     34.4322     9       16

 67      10     150.492     34.4361     34.4371     34.4322     9       16

 67      10     150.492     34.4361     34.4371     34.4329     9       16

 67      24     1.570         33.5941     33.5941     33.5796     9       24

 67      24     1.570         33.5941     33.5941     33.5899     9       24

 67      24     1.570         33.5941     33.5941     33.5900     9       24

 68      2       428.417     34.7104     34.7111     34.7084     10     5

 68      2       428.417     34.7104     34.7111     34.7089     10     5

 68      2       428.417     34.7104     34.7111     34.7092     10     5

 68      16     60.313       33.9646     33.9623     34.0344     10     9

 68      16     60.313       33.9646     33.9623     34.0346     10     9

 68      16     60.313       33.9646     33.9623     34.0351     10     9

 68      24     1.477         33.5636     33.5618     33.5610     10     1

 68      24     1.477         33.5636     33.5618     33.5610     10     1

 68      24     1.477         33.5636     33.5618     33.5612     10     1

 69      2       423.671     34.7182     34.7190     34.7169     10     2

 69      2       423.671     34.7182     34.7190     34.7172     10     2

 69      2       423.671     34.7182     34.7190     34.7176     10     2

 69      11     100.103     34.1779     34.1708     34.1741     10     6

 69      11     100.103     34.1779     34.1708     34.1741     10     6

 69      11     100.103     34.1779     34.1708     34.1854     10     6

 69      20     1.540         33.5646     33.5642     33.5623     10     3

 69      20     1.540         33.5646     33.5642     33.5625     10     3

 69      20     1.540         33.5646     33.5642     33.5625     10     3

 70      2       1144.665 34.7185      34.7195     34.7180     10     14

 70      2       1144.665 34.7185      34.7195     34.7184     10     14

 70      2       1144.665 34.7185      34.7195     34.7191     10     14

 70      14     200.770     34.5366     34.5367     34.5340     10     13

 70      14     200.770     34.5366     34.5367     34.5344     10     13

 70      14     200.770     34.5366     34.5367     34.5346     10     13

 70      23     2.103         33.7088     33.7085     33.7064     10     10

 70      23     2.103         33.7088     33.7085     33.7066     10     10

 70      23     2.103         33.7088     33.7085     33.7077     10     10

 71      2       2493.924 34.7045      34.7066     34.7042     10     7

 71      2       2493.924 34.7045      34.7066     34.7042     10     7

 71      2       2493.924 34.7045      34.7066     34.7045     10     7

 71      16     74.421       34.0218     34.0208     34.0671     10     11

 71      16     74.421       34.0218     34.0208     34.0671     10     11

 71      16     74.421       34.0218     34.0208     34.0674     10     11

 71      24     2.101         33.7532     33.7532     33.7508     10     15

 71      24     2.101         33.7532     33.7532     33.7509     10     15

 71      24     2.101         33.7532     33.7532     33.7514     10     15

 73      2       2964.858 34.7043      34.7070     34.7045     10     19

 73      2       2964.858 34.7043      34.7070     34.7124     10     19

 73      2       2964.858 34.7043      34.7070     34.7125     10     19

 73      16     74.173       34.1262     34.1183     34.1243     10     18

 73      16     74.173       34.1262     34.1183     34.1244     10     18

 73      16     74.173       34.1262     34.1183     34.1252     10     18

 73      23     1.611         33.7290     33.7291     33.7276     10     17

 73      23     1.611         33.7290     33.7291     33.7278     10     17

 73      23     1.611         33.7290     33.7291     33.7282     10     17

 74      2       404.956     34.7212     34.7219     34.7183     10     23

 74      2       404.956     34.7212     34.7219     34.7187     10     23

 74      2       404.956     34.7212     34.7219     34.7188     10     23

 74      8       99.611      34.1280      34.1387     34.1387     10     22

 74      8       99.611      34.1280      34.1387     34.1394     10     22

 74      8       99.611       34.1280     34.1387     34.1401     10     22

 74      17     4.892         33.4907     33.4904     33.4880     10     21

 74      17     4.892         33.4907     33.4904     33.4882     10     21

 74      17     4.892         33.4907     33.4904     33.4885     10     21

 75      2       432.621     34.7006     34.7013     34.6991     10     16

 75      2       432.621     34.7006     34.7013     34.6992     10     16

 75      2       432.621     34.7006     34.7013     34.6993     10     16

 75      14     99.275       34.0884     34.0881     34.1195     10     20

 75      14     99.275       34.0884     34.0881     34.1196     10     20

 75      14     99.275       34.0884     34.0881     34.1197     10     20

 75      22     1.353         33.4370     33.4367     33.4341     10     24

 75      22     1.353         33.4370     33.4367     33.4342     10     24

 75      22     1.353         33.4370     33.4367     33.4343     10     24

 76      2       516.972     34.7103     34.7109     34.7107     10     4

 76      2       516.972     34.7103     34.7109     34.7108     10     4

 76      2       516.972     34.7103     34.7109     34.7109     10     4

 76      15     101.866     34.1544     34.1544     34.1514     10     8

 76      15     101.866     34.1544     34.1544     34.1516     10     8

 76      15     101.866     34.1544     34.1544     34.1518     10     8

 76      23     1.338         33.4153     33.4149     33.4123     10     12


 76      23     1.338         33.4153     33.4149     33.4129     10     12

 76      23     1.338         33.4153     33.4149     33.4131     10     12

 77      2       210.132     34.5183     34.5197     34.4989     11     9

 77      2       210.132     34.5183     34.5197     34.4996     11     9

 77      2       210.132     34.5183     34.5197     34.5008     11     9

 77      6       100.186     33.9667     33.9669     33.9707     11     10

 77      6       100.186     33.9667     33.9669     33.9708     11     10

 77      6       100.186     33.9667     33.9669     33.9713     11     10

 77      22     0.643         33.3878     33.3874     33.3816     11     11

 77      22     0.643         33.3878     33.3874     33.3820     11     11

 77      22     0.643         33.3878     33.3874     33.3822     11     11

 78      2       162.948     34.2792     34.2874     34.2822     11     13

 78      2       162.948     34.2792     34.2874     34.2828     11     13

 78      2       162.948     34.2792     34.2874     34.2931     11     13

 78      9       49.816      33.5080      33.5071     33.5386     11     14

 78      9       49.816      33.5080      33.5071     33.5388     11     14

 78      9       49.816       33.5080     33.5071     33.5389     11     14

 78      22     0.320         33.2629     33.2630     33.2574     11     15

 78      22     0.320         33.2629     33.2630     33.2575     11     15

 78      22     0.320         33.2629     33.2630     33.2804     11     15

 79      2       168.460     34.2171     34.2180     34.2052     11     19

 79      2       168.460     34.2171     34.2180     34.2055     11     19

 79      2       168.460     34.2171     34.2180     34.2058     11     19

 79      6       100.358     33.6150     33.6186     33.6717     11     18

 79      6       100.358     33.6150     33.6186     33.6717     11     18

 79      6       100.358     33.6150     33.6186     33.6726     11     18

 79      15     0.154         33.2685     33.2683     33.2628     11     17

 79      15     0.154         33.2685     33.2683     33.2636     11     17

 79      15     0.154         33.2685     33.2683     33.2646     11     17

 80      2       216.325     34.4091     34.4101     34.3789     11     23

 80      2       216.325     34.4091     34.4101     34.3789     11     23

 80      9       100.385     33.3707     33.3703     33.3926     11     21

 80      9       100.385     33.3707     33.3703     33.3929     11     21

 80      9       100.385     33.3707     33.3703     33.3932     11     21

 80      20     0.299         33.3127     33.3124     33.3059     11     22

 80      20     0.299         33.3127     33.3124     33.3061     11     22

 80      20     0.299         33.3127     33.3124     33.3064     11     22

 81      2       469.296     34.7004     34.7007     34.6949     11     5

 81      2       469.296     34.7004     34.7007     34.6950     11     5

 81      2       469.296     34.7004     34.7007     34.6953     11     5

 81      15     75.532       34.0256     34.0227     34.0274     11     6

 81      15     75.532       34.0256     34.0227     34.0275     11     6

 81      15     75.532       34.0256     34.0227     34.0278     11     6

 81      22     0.070         33.5054     33.5052     33.4995     11     7

 81      22     0.070         33.5054     33.5052     33.4999     11     7

 81      22     0.070         33.5054     33.5052     33.5199     11     7

 82      2       422.741     34.7115     34.7120     34.7071     11     1

 82      2       422.741     34.7115     34.7120     34.7072     11     1

 82      2       422.741     34.7115     34.7120     34.7072     11     1

 82      15     74.993       33.9383     33.9043     33.9184     11     2

 82      15     74.993       33.9383     33.9043     33.9190     11     2

 82      15     74.993       33.9383     33.9043     33.9191     11     2

 82      22     0.510         33.4788     33.4777     33.4742     11     3

 82      22     0.510         33.4788     33.4777     33.4749     11     3

 82      22     0.510         33.4788     33.4777     33.4750     11     3

 83      2       2049.645 34.7071      34.7086     34.7058     11     8

 83      2       2049.645 34.7071      34.7086     34.7064     11     8

 83      2       2049.645 34.7071      34.7086     34.7070     11     8

 83      8       900.505     34.7266     34.7276     34.7214     11     4

 83      8       900.505     34.7266     34.7276     34.7214     11     4

 83      8       900.505     34.7266     34.7276     34.7215     11     4

 83      23     2.260         33.6831     33.6816     33.6763     11     12

 83      23     2.260         33.6831     33.6816     33.6767     11     12

 83      23     2.260         33.6831     33.6816     33.6778     11     12

 84      2       1175.548 34.7206      34.7204     34.7154     11     20

 84      2       1175.548 34.7206      34.7204     34.7158     11     20

 84      2       1175.548 34.7206      34.7204     34.7196     11     20

 84      8       599.396     34.7288     34.7296     34.7248     11     16

 84      8       599.396     34.7288     34.7296     34.7253     11     16

 84      8       599.396     34.7288     34.7296     34.7253     11     16

 84      23     0.951         33.7737     33.7733     33.7675     11     24

 84      23     0.951         33.7737     33.7733     33.7678     11     24

 84      23     0.951         33.7737     33.7733     33.7692     11     24

 85      2       450.186     34.7159     34.7165     34.7132     14     23

 85      2       450.186     34.7159     34.7165     34.7136     14     23

 85      2       450.186     34.7159     34.7165     34.7136     14     23

 85      14     100.038     34.0233     34.0227     34.0281     14     21

 85      14     100.038     34.0233     34.0227     34.0282     14     21

 85      14     100.038     34.0233     34.0227     34.0284     14     21

 85      22     0.840         33.5031     33.5019     33.5042     14     22

 85      22     0.840         33.5031     33.5019     33.5045     14     22

 85      22     0.840         33.5031     33.5019     33.5051     14     22

 86      2       332.332     34.6269     34.6281     34.6179     14     17

 86      2       332.332     34.6269     34.6281     34.6180     14     17

 86      2       332.332     34.6269     34.6281     34.6183     14     17

 86      5       249.894     34.5655     34.5662     34.0829     14     18

 86      5       249.894     34.5655     34.5662     34.0852     14     18

 86      5       249.894     34.5655     34.5662     34.0867     14     18

 86      22     0.154         33.4315     33.4308     33.4297     14     19

 86      22     0.154         33.4315     33.4308     33.4297     14     19

 86      22     0.154         33.4315     33.4308     33.4299     14     19

 88      2       633.412     34.6102     34.6109     34.6078     14     24

 88      2       633.412     34.6102     34.6109     34.6091     14     24

 88      2       633.412     34.6102     34.6109     34.6113     14     24

 88      6       299.825     34.5453     34.5458     34.5427     14     20

 88      6       299.825     34.5453     34.5458     34.5429     14     20

 88      6       299.825     34.5453     34.5458     34.5432     14     20

 88      18     0.833         33.3652     33.3653     33.3618     14     13

 88      18     0.833         33.3652     33.3653     33.3621     14     13

 88      18     0.833         33.3652     33.3653     33.3621     14     13

 89      2       170.533     34.0303     34.0303     34.0271     14     14

 89      2       170.533     34.0303     34.0303     34.0274     14     14

 89      2       170.533     34.0303     34.0303     34.0276     14     14

 89      3       150.671     34.0086     34.0082     34.0081     14     16

 89      3       150.671     34.0086     34.0082     34.0082     14     16

 89      3       150.671     34.0086     34.0082     34.0086     14     16

 89      16     0.102         33.3365     33.3354     33.3343     14     15

 89      16     0.102         33.3365     33.3354     33.3344     14     15

 89      16     0.102         33.3365     33.3354     33.3347     14     15

 90      2       252.305     34.4921     34.5003     34.4579     14     11

 90      2       252.305     34.4921     34.5003     34.4582     14     11

 90      2       252.305     34.4921     34.5003     34.4582     14     11

 90      6       125.014     33.7355     33.7347     33.7953     14     12

 90      6       125.014     33.7355     33.7347     33.7956     14     12

 90      6       125.014     33.7355     33.7347     33.7958     14     12

 90      22     -0.038       33.3793     33.3790     33.3764     14     10

 90      22     -0.038       33.3793     33.3790     33.3766     14     10

 90      22     -0.038       33.3793     33.3790     33.3766     14     10

 91      2       433.899     34.6646     34.6652     34.6625     14     6

 91      2       433.899     34.6646     34.6652     34.6628     14     6

 91      2       433.899     34.6646     34.6652     34.6629     14     6

 91      6       250.056     34.5345     34.5347     33.3959     14     9

 91      6       250.056     34.5345     34.5347     33.3962     14     9

 91      6       250.056     34.5345     34.5347     33.3962     14     9

 91      9       124.658     33.9710     33.9712     34.0387     14     5

 91      9       124.658     33.9710     33.9712     34.0387     14     5

 91      9       124.658     33.9710     33.9712     34.0388     14     5

 92      2       425.526     34.7121     34.7125     34.7095     14     7

 92      2       425.526     34.7121     34.7125     34.7098     14     7

 92      2       425.526     34.7121     34.7125     34.7100     14     7

 92      13     150.117     34.3206     34.3208     34.3259     14     8

 92      13     150.117     34.3206     34.3208     34.3265     14     8

 92      13     150.117     34.3206     34.3208     34.3289     14     8

 92      22     0.498         33.4954     33.4946     33.5003     14     1

 92      22     0.498         33.4954     33.4946     33.5004     14     1

 92      22     0.498         33.4954     33.4946     33.5005     14     1


 93      2       436.349     34.7175     34.7177     34.7137     14     3

 93      2       436.349     34.7175     34.7177     34.7137     14     3

 93      2       436.349     34.7175     34.7177     34.7137     14     3

 93      22     0.524         33.8584     33.8578     33.8568     14     4

 93      22     0.524         33.8584     33.8578     33.8570     14     4

 93      22     0.524         33.8584     33.8578     33.8574     14     4

 93      24     0.582         33.8587     33.8580     34.2211     14     2

 93      24     0.582         33.8587     33.8580     34.2212     14     2

 93      24     0.582        33.8587      33.8580     34.2218     14     2

 94      3      402.040      34.7212     34.7213     34.7193     14     26

 94      3      402.040      34.7212     34.7213     34.7198     14     26

 94      3      402.040      34.7212     34.7213     34.7199     14     26

 94      8      250.140      34.6451     34.6475     34.6515     14     27

 94      8      250.140      34.6451     34.6475     34.6516     14     27

 94      8      250.140      34.6451     34.6475     34.6528     14     27

 94      22     0.411         33.8233     33.8226     33.8212     14     25

 94      22     0.411         33.8233     33.8226     33.8213     14     25

 94      22    0.411          33.8233     33.8226     33.8216     14     25

 95      2       391.476     34.7232     34.7235     34.7212     14     30

 95      2       391.476     34.7232     34.7235     34.7217     14     30

 95      2       391.476     34.7232     34.7235     34.7223     14     30

 95      13     125.066     34.3907     34.3756     34.3707     14     29

 95      13     125.066     34.3907     34.3756     34.3707     14     29

 95      13     125.066     34.3907     34.3756     34.3708     14     29

 95      22     0.287        33.5312      33.5295     33.5387     14     31

 95      22     0.287         33.5312     33.5295     33.5392     14     31

 95      22     0.287         33.5312     33.5295     33.5395     14     31

 96      2       406.075     34.6620     34.6622     34.6595     14     28

 96      2       406.075     34.6620     34.6622     34.6596     14     28

 96      2       406.075     34.6620     34.6622     34.6598     14     28

 96      6       349.794     34.6401     34.6391     34.6417     14     32

 96      6       349.794     34.6401     34.6391     34.6419     14     32

 96      6       349.794     34.6401     34.6391     34.6420     14     32

 96      22     0.120         33.4434     33.4424     33.4398     14     33

 96      22     0.120         33.4434     33.4424     33.4402     14     33

 96      22     0.120         33.4434     33.4424     33.4402     14     33

 101 1         201.985     34.5328     34.5326     34.5152     15     17

 101 1         201.985     34.5328     34.5326     34.5158     15     17

 101 1         201.985     34.5328     34.5326     34.5160     15     17

 101 5         99.906      33.7708      33.7673     33.8690     15     18

 101 5          99.906       33.7708     33.7673     33.8693     15     18

 101 5          99.906       33.7708     33.7673     33.8704     15     18

 101 10        13.882       33.4497     33.4483     33.4472     15     16

 101 10        13.882       33.4497     33.4483     33.4473     15     16

 101 10        13.882       33.4497     33.4483     33.4476     15     16

 102 1         623.266     34.7255     34.7254     34.7236     15     6

 102 1         623.266     34.7255     34.7254     34.7242     15     6

 102 1         623.266     34.7255     34.7254     34.7242     15     6

 102 12       349.973     34.6973     34.6968     34.6951     15     1

 102 12       349.973     34.6973     34.6968     34.6952     15     1

 102 12       349.973     34.6973     34.6968     34.6956     15     1

 102 22       1.335         33.5236     33.5224     33.5202     15     5

 102 22       1.335         33.5236     33.5224     33.5203     15     5

 102 22       1.335         33.5236     33.5224     33.5206     15     5

 103 1         641.640     34.7255     34.7253     34.7244     15     8

 103 1         641.640     34.7255     34.7253     34.7247     15     8

 103 1         641.640     34.7255     34.7253     34.7247     15     8

 103 12       375.078     34.7069     34.7067     34.7069     15     12

 103 12       375.078     34.7069     34.7067     34.7070     15     12

 103 12       375.078     34.7069     34.7067     34.7074     15     12

 103 22       0.856       33.6075      33.6059     33.6052     15     2

 103 22       0.856       33.6075      33.6059     33.6054     15     2

 103 22       0.856         33.6075     33.6059     33.6055     15     2

 104 1         633.568     34.7253     34.7250     34.7238     15     4

 104 1         633.568     34.7253     34.7250     34.7242     15     4

 104 1         633.568     34.7253     34.7250     34.7243     15     4

 104 14       300.440     34.6898     34.6897     34.6888     15     3

 104 14       300.440     34.6898     34.6897     34.6889     15     3

 104 14       300.440     34.6898     34.6897     34.6891     15     3

 104 21       0.386         33.6207     33.6196     33.6186     15     7

 104 21       0.386         33.6207     33.6196     33.6187     15     7

 104 21       0.386         33.6207     33.6196     33.6189     15     7

 104 21       0.386         33.6207     33.6196     33.6192     15     7

 105 2         597.691     34.7285     34.7283     34.7282     15     9

 105 2         597.691     34.7285     34.7283     34.7288     15     9

 105 2         597.691     34.7285     34.7283     34.7298     15     9

 105 20       99.649       34.2081     34.1986     34.2077     15     11

 105 20       99.649       34.2081     34.1986     34.2080     15     11

 105 20       99.649       34.2081     34.1986     34.2080     15     11

 106 2         588.417     34.7240     34.7240     34.7227     15     14

 106 2         588.417     34.7240     34.7240     34.7240     15     14

 106 2         588.417     34.7240     34.7240     34.7244     15     14

 106 20       99.888       34.3502     34.3468     34.3630     15     15

 106 20       99.888       34.3502     34.3468     34.3642     15     15

 106 20       99.888       34.3502     34.3468     34.3665     15     15

 106 23       1.212         33.6589     33.6575     33.6561     15     13

 106 23       1.212       33.6589      33.6575     33.6564     15     13

 106 23       1.212       33.6589      33.6575     33.6570     15     13

CTD  niskin depth      S0              S1       autosal      session sample

cast   bottle       (m)                                       salinity      in session


 


 


Appendix 5. Summary of oxygen titrations during the third SO GLOBEC survey cruise, NBP02-02. The samples are identified by cast number and niskin bottle. The oxygen flask number along with the titrated oxygen and the value provided by the oxygen sensor in ml/l.

 

cast_no niskin flask     o2calc     o2sens                          cast_no niskin        flask o2calc      o2sens

3     3     107         4.846      4.486

3     14   126         4.044      3.822

3     24   124         7.725      7.224

4     3     128         4.323      4.191

4     24   156         7.602      7.187

5     3     132         3.894      3.747

5     9     117         4.022      3.856

5     24   104         7.628      7.193

6     3     151         4.261      4.048

6     8     148         4.089      3.906

6     24   129         7.757      7.4

7     3     121         4.283      4.034

7     7     147         4.013      3.844

7     24   113         7.729      7.11

8     3     149         4.240      4.078

8     8     109         3.989      3.848

8     24   154         7.765      7.16

9     1     143         4.840      4.59

9     8     152         7.529      6.886

9     21   156         7.923      7.279

10   3     118         4.016      3.984

10   6     111         4.191      4.042

10   22   138         7.701      7.268

11   1     139         4.540      4.319

11   6     130         4.072      3.871

11   22   146         7.887      7.303

12   1     124         4.067      3.889

12   12   122         5.806      5.337

12   22   128         7.890      7.33

13   1     133         4.572      4.331

13   15   110         5.548      5.097

13   24   136         8.071      7.439

15   1     107         4.873      4.51

15   13   100         4.027      3.808

15   24   126         7.925      7.341

16   1     150         4.416      4.173

16   13   104         4.794      4.42

16   24   106         8.060      7.421

17   1     116         4.473      4.227

17   14   131         6.172      5.503

17   23   143         8.037      7.429

18   1     110         4.340      4.114

18   9     107         4.012      3.843

18   24   133         7.957      7.367


19       2             122       4.440    3.989

19       8             139       4.071    3.866

19       21           118       7.982    7.37

20       1             128       4.124    3.983

20       12           113       5.216    4.826

20       24           111       7.957    7.356

21       1             130       3.970    3.9

21       7             124       4.133    3.927

22       1             151       4.242    4.08

22       11           152       3.914    3.863

22       22           154       7.824    7.249

23       1             132       4.202    4.031

23       13           149       5.262    4.796

23       24           148       7.954    7.338

24       1             121       4.151    3.951

24       13           146       5.871    5.312

24       24           147       7.997    7.387

26       1             156       4.910    4.503

26       14           130       4.063    3.823

26       15           109       6.094    5.353

26       22           129       8.060    7.374

27       1             121       4.915    4.515

27       15           138       5.850    5.239

27       24           124       7.989    7.334

28       1             146       4.320    4.14

28       5             111       4.117    3.94

28       9             149       6.123    5.563

28       24           139       8.070    7.406

29       1             148       3.899    3.884

29       7             151       4.082    3.96

29       9             122       5.126    4.817

30       1             100       4.017    3.912

30       12           147       5.385    4.92

30       13           132       6.331    5.723

30       24           152       7.891    7.316

31       2             113       4.319    4.027

31       16           143       4.699    4.321

31       17           107       7.243    6.548

31       23           133       7.774    7.161

32       1             118       4.081    3.96

32       7             136       4.108    3.885

32       10           131       5.762    5.22

32       24           104       7.943    7.285

33       1             106       5.736    5.387

33   2     150         7.768      7.21

33   10   126         8.023      7.388

34   1     110         4.709      4.527

34   5     132         7.484      6.907

34   6     152         7.830      7.29

34   12   156         8.029      7.377

35   1     128         4.560      4.43

35   2     149         5.301      4.912

35   10   124         8.052      7.427

36   1     130         4.085      3.986

36   3     151         4.541      4.342

36   4     122         5.452      5.082

36   11   148         7.885      7.259

37   2     111         3.872      3.719

37   14   146         5.076      4.6

37   23   147         7.995      7.361

38   1     109         3.919      3.714

38   10   154         3.792      3.592

38   13   133         4.802      4.374

38   22   121         7.874      7.245

39   1     116         3.624      3.487

39   6     129         3.578      3.442

39   11   139         6.204      5.385

39   24   138         7.890     7.225

42   13   130         7.793      7.104

43   1     138         3.879      3.854

43   11   139         4.048      3.866

43   13   151         4.331      4.154

43   24   129         7.738      7.07

44   1     148         4.063      3.85

44   14   128         5.083      4.847

44   15   124         6.103      5.963

44   24   116         7.967      7.186

45   1     106         4.130      3.934

45   11   113         4.084      3.873

45   13   156         4.087      3.885

45   23   131         7.955      7.347

46   13   136         4.071      3.859

46   16   107         4.701      4.42

47   9     147         4.122      3.988

48   2     132         4.165      4.059

48   10   121         5.164      4.845

48   12   150         5.653      5.244

48   24   146         7.885      7.312

50   2     113         4.819      4.505

50   2     128         4.705      4.505

50   14   133         4.105      3.798

50   16   154         5.184      4.55

50   24   131         7.825      7.305


51       1             109       5.181    4.512

51       12           130       4.036    3.89

51       13           116       4.039    3.883

51       23           121       7.781    7.281

52       2             110       4.380   4.068

52       11           139       4.492    4.32

52       14           147       5.565    5.17

52       22           138       7.787    7.295

52       22           128       7.751    7.295

53       2             113       4.187    4.103

53       7             131       4.078    3.956

54       9             149       4.613    4.086

55       13           100       4.351    4.02

56       7             121       4.145    3.909

57       2             130       4.048    3.881

57       13           116       4.175    3.957

57       15           113       4.920    4.629

57       23           154       7.581    6.989

58       16           147       4.696    4.437

65       5             104       5.274    4.776

66       2             122       4.256    3.899

66       9             106       5.306    4.821

66       14           139       7.997    7.168

68       16           154       5.702    5.466

69       2             143       4.303    4.028

69       11           146       6.185    5.488

69       20           110       8.229    7.392

70       2             138       4.714    4.395

70       23           129       8.251    7.39

71       10           111       4.627    4.221

71       24           100       7.985    7.39

75       11           149       4.301    4.117

77       6             116       5.314    5.014

80       9             100       7.230    6.798

82       9             138       4.079    3.937

83       8             126       4.455    4.249

84       2             151       4.594    4.367

84       8             113       4.282    4.111

85       2             104       4.101    3.972

88       6             146       4.167    4.055

88       18           128       7.533    7.038

94       8             138       4.096    3.983

95       2             136       4.231    4.089

95       9             118       4.127    3.987

95       22           126       7.898    7.383

101     3            146       4.116    3.89

102    1             107       4.199    4.025

103     1             115       4.129    4.032

103     12           119       4.056    3.898

103 22   101         8.002      7.409

104 1     108         4.227      4.016

104 14    127         4.061      3.875

104 21    157         7.995      7.366

106 2      138         4.293      4.012

106 17    129         4.069      3.866

 


 


 


Appendix 6. Summary of expendable probes used during the third SO GLOBEC survey cruise, NBP02-02. Expendable Bathythermographs (XBT) and expendable CTD (XCTD) are listed separately XBT’s first.

 

XBT’s

event number cast station     latitude            longitude      cast depth                      event number cast station            latitude     longitude cast depth

nbp10102.001 test - T-7 58 34.007 65 0.084 760

nbp10202.001 1 D1 T-7 59 10.202 64 59.613 760

nbp10202.002 2 D2 T-7 59 19.188 64 59.83 760

nbp10202.003 3 D3 T-7 59 29.871 65 0.032 760

nbp10202.004 4 D4 T-7 59 39.59 65 0.138 760

nbp10202.005 5 D5 T-7 59 49.602 65 0.191 760

nbp10202.006 6 D6 T-7 59 59.967 65 0.163 760

nbp10202.007 7 D7 T-7 60 10.00 65 0.167 760

nbp10202.008 8 D8 T-7 60 20.085 64 59.968 760

nbp10202.009 9 D9 T-7 60 30.00 65 07.525 760

nbp10202.010 10 D10 T-7 60 38.048 65 15.612 760

nbp10202.012 11 D11 T-7 60 46.885 65 24.339 760

nbp10202.013 12 D12 T-7 60 55.66 65 33.015 760

nbp10202.014 13 D13 T-7 61 04.45 65 41.82 760

nbp10202.015 14 D14 T-7 61 13.83 65 50.787 760

nbp10202.016 15 D15 T-7 61 23.36 66 0.40 0 760

nbp10202.018 16 D16 T-7 61 31.526 66 8.962 760

nbp10202.019 17 D17 T-7 61 40.953 66 8.615 760

nbp10202.020 18 D18 T-7 61 49.975 66 27.799 bad cast

nbp10202.021 19 D19 T-7 61 51.358 66 29.258 760

nbp10202.022 20 D20 T-7 61 59.696 66 37.454 760

nbp10202.024 21 D21 T-7 62 08.457 66 47.042 760

nbp10202.026 22 D22 T-7 62 17.478 66 55.939 760

nbp10202.027 23 D23 T-7 62 26.813 67 05.668 bad cast

nbp10202.028 24 D24 T-7 62 27.285 67 06.117 760

nbp10202.029 25 D25 T-7 62 36.361 67 15.952 bad cast

nbp10202.030 26 D26 T-7 62 36.59 67 16.474 760

nbp10202.031 27 D27 T-7 62 45.904 67 26.127 760

nbp10302.001 28 D28 T-7 62 55.342 67 35.944 760

nbp10302.002 29 D29 T-7 63 4.196 67 45.043 760

nbp10302.003 30 D30 T-7 63 12.477 67 54.126 760

nbp10302.004 31 D31 T-7 63 20.488 68 2.598 760

nbp10302.005 32 D32 T-7 63 28.817 68 11.844 760

nbp10302.006 33 D33 T-7 63 38.019 68 21.825 760

nbp10302.007 34 D34 T-7 63 47.179 68 31.881 760

nbp10302.008 35 D35 T-7 63 56.359 68 41.915 760

nbp10302.009 36 D35 T-7 63 56.805 68 42.41 760

nbp10302.010 37 D36 T-7 64 6.411 68 53.206 760

nbp10602.006 38 9A T-7 66 26.526 69 35.070 500

nbp10602.008 39 9B T-7 66 31.057 69 43.047 500

nbp10602.011 40 9C T-4 66 27.294 69 44.343 460

nbp10602.013 41 9D T-4 66 25.425 69 50.955 460

nbp10602.014 42 9E T-4 66 21.988 70 01.841 bad below 300

nbp10602.015 43 9F T-4 66 21.988 70 02.422 460

nbp10602.016 44 9G T-4 66 19.149 70 12.188 460

nbp11702.026 45 50A T-4 67 49.435 72 27.235 460

nbp11702.027 46 50A T-4 67 49.435 72 27.235 428

nbp11702.028 47 50B T-4 67 51.332 72 24.352 306

nbp11702.029 48 50C T-4 67 54.405 72 23.516 306

nbp11802.001 49 50D T-4 67 56.54 72 17.85 314

nbp11802.002 50 50E T-4 67 58.24 72 17.26 328

nbp11802.003 51 50F T-4 67 59.58 72 06.37 Bad

nbp11802.004 52 50G T-4 67 59.78 72 05.69 408

nbp11802.005 53 50H T-4 67 01.03 72 01.62 Failed

nbp11802.006 54 50I T-4 68 01.24 72 00.95 419

nbp11802.007 55 50J T-4 68 02.78 71 55.98 429

nbp11802.008 56 50K T-4 68 02.94 71 55.45 439

nbp11802.009 57 50L T-4 68 04.52 71 50.65 Bad

nbp11802.010 58 50M T-4 68 04.69 71 50.21 450

nbp12202.033 59 67 T-5 67 46.499 74 21.092 BAD below 500


nbp12202.034 60 67 T-5 67 46.335 74 21.596 BAD Below 500

nbp13402.007 61 901 T-4 66 27.88 69 45.50 460

nbp13402.010 62 902 T-4 66 29.3118 69 41.00 460

nbp13402.011 63 903 T-4 66 30.932 69 36.364 460

nbp13402.012 64 904 T-4 66 32.422 69 30.877 460

nbp13402.013 65 905 T-4 66 33.938 69 25.926 460

nbp13402.014 66 906 T-4 66 35.347 69 20.742 413

nbp13802.002 61 DN2 T-7 62 15.874 62 31.271 bad

nbp12380.003 62 DN2 T-7 62 15.381 62 31.415 760

nbp13802.004 63 DN3 T-5 62 6.287 62 34.953 bad

nbp13802.005 64 DN3 T-5 62 6.01 62 34.969 1360

nbp13802.006 65 DN4 T-7 61 56.749 62 38.695 760

nbp13802.007 66 DN5 T-5 61 46.593 62 42.457 950

nbp13802.008 67 DN6 T-7 62 36.576 62 46.253 760

nbp13802.009 68 DN7 T-5 61 27.288 62 49.451 1800

nbp13802.010 69 DN8 T-7 61 16.619 62 53.334 760

nbp13802.011 70 DN9 T-5 61 7.05 62 59.974 800

nbp13802.013 71 DN11 T-7 60 47.453 63 20.691 760

nbp13802.014 72 DN12 T-5 60 37.423 63 23.315 BAD

nbp13802.015 73 DN12 T-5 60 37.423 63 23.315 BAD @ 1000

nbp13802.016 74 DN12 T-5 60 36.945 63 23.33 BAD @ 1500

nbp13802.017 75 DN13 T-7 60 27.964 63 26.412 760

nbp13802.018 76 DN14 T-5 60 18.704 63 29.495 1850

nbp13802.021 77 DN15 T-7 60 08.467 63 32.922 760

nbp13802.022 78 DN16 T-5 59 58.335 63 35.753 Failed

nbp13802.023 79 DN16 T-5 59 58.335 63 35.753 1850

nbp13802.024 80 DN17 T-7 59 48.607 63 39.067 760

nbp13802.025 81 DN18 T-5 59 39.207 63 43.909 1850

nbp13802.026 82 DN19 T-7 59 29.65 63 48.948 760

 

XCTD’s

event number cast station latitude                 longitude   cast depth

nbp11602.001 1         45 67 24.40 72 35.09 BAD below 360

nbp12202.032 2        67 67 46.499 74 21.092 Not loading

nbp12302.005 3        69 67 41.43 74 36.39 1692

nbp13802.001 4        DN1 62 25.47 62 27.228 1585

nbp13802.012 5        DN10 60 57.255 63 00.496 1000

nbp13802.027 6       DN20 59 19.942 63 50.878 2000

Appendix 7. Video and Lugol's Samples Taken on NBP0202

Station Depths(m) Add'l Formalin                                      Station            Depths(m)         Add'l Formalin

1     "0,50,100,2750"

2     "0,100,180,653"

3     "0,75,100,350"                    X

4     "0,150,348"

5     "0,50,75,100,400,600"

6     "0,50,100,413"

7     "5,30,145"

8     "0,50,100,300"

9     "0,100,125,225,500"           XX

10   "0,150,200,465"                  XX

11   "0,150,650,900"                  X

12   "0,100,150,500,3102"

13   "0,50,100,774"

14   "0,125,300,528"

15   "0,100,528"                         X

16   "0,150,498"

17   "0,75,125,422"

18   "0,98,365"

19   "0,30,50,125,615"

20   "0,50,100,484"

21   "0,50,100,150,467"

22   "0,100,300,3332"

23   "0,200,3670"

24   "0,50,100,443"

25   "10,50,100,408"

26   "0,100,461"

27   "0,50,100,761"

28   "0,50,150,453"

29   "0,100,155"                         X

33   "0,30,198"

34   "0,50,150,657"

35   "0,75,100,658"                    X

36   "0,50,100,287"

37   "0,30,100,517"                    X

38   "0,50,100,188"

39   "0,75,100,405"

41   "0,100,749"

42   "0,50,866"

43   "0,50,395"

44   "0,75,390"

46   "0,150,2081"

47   "0,100,150,2840"

48   "0,75,406"                           X

49   "0,75,480"

50   "0,50,382"

51   "0,50,547"

52   "0,50,512"


53      "0,100,762"

54      "0,100,1178"                    X

55      "0,50,100,490"                 X

56      "0,75,547"

57      "0,50,75,500"

58      "0,100,1267"

60      "0,100,306"

61      "0,75,155"

62      "0,68,400"                        X

63      "0,50,318"

66      "0,100,1145"

68      "0,200,2494"

70      "0,100,2964"                    X

71      "0,75,404"                        X

72      "0,75,433"

73      "0,75,100,517"

74      "0,75,210"

75      "0,50,162"

76      "0,100,178"

77      "0,216,170"

78      "0,75,464"                        X

79      "0,75,150,422"

80      "0,150,2049"

81      "0,70,200,1175"

82      "0,100,450"

83      "0,75,332"

84      "0,100,633"

85      "0,125,170"

86      "0,150,252"

87      "0,150,433"

88      "0,100,425"

89      "0,100,150,436"               XX

90      "0,100,401"                      X

91      "0,125,391"

92      "0,100,150,406"               X

MT1  "0,50,623"

MT2  "0,160,641"                      XX

MT4  "0,50,597"

MT5  "0,50,100,588"                 X

CS1   "0,50,100,356"                 XXXX


Appendix 8. Summary of sightings during daytime survey effort within the SO GLOBEC study area during cruise NBP0103. Sightings of flying birds within the 300m transect and penguins and seals within the 600m transect are reported.


Species (common name)

Species (scientific name)

Number observed

Snow Petrel

Pagodroma nivea

695

Cape Petrel ('Pintado Petrel')

Daption capense

628

Southern Fulmar

Fulmarus glacialoides

509

Antarctic Petrel

Thalassoica antarctica

343

Kelp Gull

Larus dominicanus

99

Blue Petrel

Halobaena caerulea

95

Southern Giant Petrel

Macronectes giganteus

65

Adelie Penguin

Pygoscelis adeliae

49

Wilsons Storm-petrel

Oceanites oceanicus

43

Grey-headed Albatross

Diomedea chrysostoma

28

Unidentified Prion

Pachyptila spp.

16

Blue-eyed Shag

Phalacrocorax atriceps

13

Unidentified Skua

Catharacta spp.

10

Antarctic Tern

Sterna vittata

3

Sooty Shearwater

Puffinus griseus

1

Emperor Penguin

Aptenodytes forsteri

1

Crabeater Seal

Lobodon carcinophagus

210

 

 

 


Appendix 9. Results from analysis of fourteen diet samples of Adelie Penguins from the Barcroft Islands taken on May 15, 2002. Samples are divided into digested contents not identifiable to taxa and fresh contents that are. Fresh contents are further divided into fish, amphipod, and krill components. Weight of each sample component and summary data for krill length from each Adelie Penguin sampled are presented in the appendix. Samples in which otoliths were found are also indicated.

 

Sample

Body weight (g)

Sex (M/F)

Digested sample (g)

Fresh Sample (g)

Fish (g)

Amphipods (g)

Krill - Euphausia superba (g)

Krill Length (avg, mm)

Krill Length (SD, mm)

Otolith?

1

4900

M

9.2

101.7

0.0

3.8

97.9

43.6

5.3

Yes

2

4850

M

0.0

104.4

0.0

0.0

104.4

40.2

6.0

No

3

5100

M

0.0

117.6

36.2

0.0

81.4

44.9

4.4

Yes

4

4600

F

49.7

75.4

5.4

5.0

65.0

41.7

7.9

No

5

4900

M

42.8

112.6

0.0

22.4

90.2

37.4

6.5

No

6

4600

M

35.1

78.8

3.0

16.8

59.0

42.6

5.8

Yes

7

4700

F

19.0

155.0

18.1

38.0

98.9

43.7

7.4

Yes

8

4100

F

0.0

147.5

0.0

3.5

144.0

44.2

7.5

No

9

4300

F

43.4

23.6

0.0

5.4

18.2

36.0

13.9

No

10

4100

F

21.4

56.8

0.0

19.3

37.5

43.8

8.1

No

11

6200

M

0.0

157.8

0.0

45.2

112.6

40.4

5.7

No

12

6500

M

84.5

50.5

0.0

27.3

23.2

40.5

9.3

No

13

5000

M

6.5

32.8

3.2

3.3

26.3

47.4

3.5

No

14

4400

F

23.1

39.2

4.1

2.8

32.3

44.1

6.8

Yes

Average

4875

-

23.9

89.6

5.0

13.8

70.8

42.2

-

-

 


Appendix 10. 1-m Ring Net Tow Information. Presence/absence of diatoms, amphipods, copepods, adult and larval krill from 1m2 net tows down to approximately 60m in the water at 22 stations on the survey grid during SO GLOBEC 3. Presence is indicated with an “X” and absence by a “0.”

 

 

Tow

Consecutive Station

Diatoms

Amphipods

Copepods

Adult Krill

(Euphausia superba)

Larval Krill (Euphausia Superba)

1

3

X

X

0

0

X

2

7

0

0

0

X

X

3

14

X

X

X

0

X

4

19

X

X

X

0

X

5

22

X

X

0

0

0

6

27

X

X

X

0

X

7

29

X

X

X

0

0

8

33

0

0

X

0

X

9

37

0

0

0

X

X

10

44

X

X

X

0

X

11

46

X

X

0

0

0

12

48

X

0

0

0

0

13

60

0

0

X

X

0

14

63

0

X

X

0

0

15

66

X

X

0

0

0

16

70

X

X

X

0

X

17

74

0

0

X

0

X

18

77

0

X

X

0

X

19

80

X

X

X

0

X

20

82

X

0

X

0

X

21

87

0

0

X

X

0

22

90

0

0

X

X

0

 

 

 


Appendix 11. BIOMAPER-II Tape Log.

 

TOW

Stn

DATE

(GMT)(EDT)

TIME

(GMT)(EDT)

LAT S

º Min

LON W

º Min

DAT

TAPE

ACOUSTICS

FILENAME

BM

DAY

ESS

FILENAME

VIDEO TAPES

CAM 2# CAM 4#

VPR

 FILENAME

VPR

DAY

BS

TR

COMMENTS

1

0

4/13

4/13

1340

940

64

8

68

55

 

1030956

 

B4130940

 

 

 

 

 

Test Tows and Noise Test

1

0

4/13

4/13

1405

1005

64

8

68

57

 

1030959

 

 

 

 

 

 

 

 

1

0

4/13

4/13

1530

1130

 

 

 

 

 

 

 

 

1

2

04131411.01

 

 

End Run

1

0

4/13

4/13

1534

1134

64

8

69

7

 

N1031134

 

 

 

 

 

 

 

Start Noise Run

1

0

4/13

4/13

1540

1140

 

 

 

 

 

 

 

 

 

 

 

 

 

End Noise Run

1

0

4/13

4/13

1543

1143

64

8.04

69

9.494

 

N1031142

 

 

 

 

 

 

 

Start Data Aquisition

1

0

4/13

4/13

1610

1215

64

8.08

69

11.818

 

 

 

 

 

 

 

 

 

Stop Xmit, Stop Files, End Tow 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

0

4/13

4/13

1730

2130

64

4.8

69

20.8

 

 

 

BM2Tst2

 

 

 

 

 

Test Tow for Flight

2

0

4/13

4/13

1823

2223

64

3.15

69

22.8

 

N1031802

 

 

 

 

 

 

 

103.766157 0-50m, End Tow 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

1

4/14

4/14

1147

747

65

39.879

70

40.325

 

None

 

B4140800

 

 

04141200.01

 

1

Deployment aborted, ground fault

3

1

4/14

4/14

1230

830

65

40.212

70

41.151

 

 

 

 

 

 

 

 

 

End Tow 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

2

4/14

4/14

1644

1244

65

49

70

20

3

B1041239

104

B4141242

3

4

04141648.01

103

1

Start Tow from St. 2

4

2-3

4/14

4/14

1721

1321

 

 

 

 

4

B1041320

104

 

3

4

 

103

1

HTI Spontaneous Restart

4

2-3

4/14

4/14

1846

1446

65

53

70

11

4

B1041448

104

 

5

6

 

103

1

Tape Change

4

2-3

4/14

4/14

2052

1652

65

57

69

54

5

B1041651

104

 

7

8

 

103

1

Tape Change

4

3

4/14

4/14

2150

1750

65

58.68

69

50

6

B1041651

104

 

7

8

 

103

1

At Station #3

4

3

4/14

4/14

2258

1858

 

 

 

 

6

B1041651

104

 

9

10

 

103

1

Tape Change

4

3-4

4/14

4/14

2328

1928

65

58.98

69

51.4

6

B1041924

104

 

 

 

 

103

1

Transit to 4, BM going down

4

3-4

4/15

4/14

24

2054

66

2.249

69

38.393

7

B1042054

104

 

11

12

 

104

1

Tape/File Change

4

3-4

4/15

4/14

255

2255

66

8.108

69

18.548

8

B1042255

105

 

13

14

 

104

1

Tape/File Change

4

4

4/15

4/15

423

23

 

 

 

 

 

 

 

 

 

 

 

104

1

End Tow 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

4-5

4/15

4/15

1025

625

66

7.49

69

6.37

9

B1050551

105

B4151650

15

16

04150953.01

104

1

 

5

4-5

4/15

4/15

1156

756

 

 

 

 

10

B1050754

105

 

17

18

 

104

1

Tape Change

5

4-5

4/15

4/15

1352

952

66

20.472

68

32.65

11

B1050952

105

 

19

20

 

104

1

Tape Change

5

5-6

4/15

4/15

1559

1159

66

23.733

68

23.91

 

 

105

 

21

22

 

104

1

VPR Tape Change

5

5-6

4/15

4/15

1632

1232

66

23.85

68

23.662

12

B1051225

105

 

 

 

 

104

1

Acoustics Tape Change

5

5-6

4/15

4/15

1703

1305

66

25

68

19.77

12

N1051258

105

B4151300

21

22

04151704.01

104

1

Tape Change

5

5-6

4/15

4/15

1800

1400

66

27.49

68

10.744

13

N1051354

105

 

23

24

 

104

1

Acoustis Tape 13 Start

5

6-7

4/15

4/15

2000

1600

68

29.89

68

2.23

14

B1051553

105

 

25

26

 

104

1-2

Tape Change

5

6-7

4/15

4/15

2158

1758

66

37.49

68

16.32

15

B1051752

105

 

27

28

 

104

1-2

Tape Change

5

6-7

4/15

4/15

2357

1957

66

45.181

68

31.272

16

B1051957

105

 

29

30

 

104

1-2

Tape Change

5

6-7

4/16

4/15

153

2153

66

49.064

68

28.202

17

B1052153

105

 

31

32

 

105

1-2

Tape Change

5

7-8

4/16

4/16

407

7

66

48.39

68

32.221

18

B1052357

105

B4152357

33

34

04160406.01

105

2

Start Going 7 to 8

5

7-8

4/16

4/16

600

200

66

42.6

68

50.3

19

B1060158

106

 

35

36

 

105

2

Start AC Tape #19

5

7-8

4/16

4/16

807

407

66

39.51

69

1.21

20

B1060402

106

 

37

38

 

105

2

Tape Change

5

7-8

4/16

4/16

1008

608

66

34.15

69

21.23

21

B1060602

106

 

39

40

 

105

2

Tape Change

5

8-9

4/16

4/16

1016

616

66

33.59

69

23.24

 

 

106

B4161017

 

 

04161018.01

105

2

BM Aquis. Froze, Restart

5

9

4/16

4/16

1207

807

66

28.77

69

39.099

22

B1060807

106

 

41

42

 

105

2

Tape Change

5

9

4/16

4/16

1413

1013

66

28.619

69

38.743

23

B1061013

106

 

43

44

 

105

2

Tape Change

5

9

4/16

4/16

1614

1214

66

28.309

69

40.916

24

B1061214

106

 

45

46

 

105

2

Tape Change

5

9-10

4/16

4/16

1816

1416

66

22.61

70

0.39

25

B1061414

106

 

47

48

 

105

2

Tape Change

5

9-10

4/16

4/16

2016

1616

66

16.84

70

19.67

26

B1061618

106

 

49

50

 

105

2

Tape Change

5

10-11

4/16

4/16

2148

1748

66

16.08

70

22.49

 

 

106

 

 

 

 

105

2

Transit to Station 11

5

10-11

4/16

4/16

2219

1819

66

14.84

70

27.04

27

B1061820

106

 

51

52

 

105

2

Tape Change

5

10-11

4/17

4/16

23

2023

66

9.173

70

47.308

28

B1062023

106

 

53

54

 

106

2

Tape Change

5

11

4/17

4/16

110

2110

66

6.892

70

54.472

 

 

106

 

 

 

 

106

2

End Tow 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

12-13

4/17

4/17

1459

1059

66

2.323

71

7.288

29

B1071059

107

B4171057

55

56

04171501.01

106

2-3

Start Tow 6

6

12-13

4/7

4/17

1659

1259

66

9.49

71

15.2

30

B1071259

107

 

57

58

 

106

2-3

Tape Change

6

12-13

4/17

4/17

1900

1500

66

19.08

71

20.94

31

B1071501

107

.

59

60

 

106

2-3

Tape Change

6

13-14

4/17

4/17

2104

1704

 

 

 

 

32

B1071704

107

 

61

62

 

106

3

Tape Change

6

13-14

4/17

4/17

2307

1907

 

 

 

 

33

B1071907

107

 

63

64

 

106

3

Tape Change

6

14

4/18

4/17

108

2108

66

31.556

70

59.737

34

B1072108

107

 

65

66

 

107

3

Tape Change

6

14-15

4/18

4/17

309

2309

66

35.206

70

53.458

35

B1072307

107

 

67

68

 

107

3

Tape Change

6

14-15

4/18

4/18

509

109

66

40.28

70

33.7

36

B1080109

107

 

69

70

 

107

3

Tape Change

6

14-15

4/18

4/18

710

310

66

45.62

70

13.08

37

B1080310

108

 

71

72

 

107

3

Tape Change

6

15

4/18

4/18

754

354

66

46

70

11

 

 

108

 

 

 

 

107

3

End Tow

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

17-18

4/19

4/18

123

2123

67

130405

69

23.883

38

B1082123

108

B4182121

73

74

04190123.01

108

3-4

Start Tow 7

7

17-18

4/19

4/18

327

2327

67

21.949

69

33.723

39

B1082327

108

 

75

76

 

108

3-4

Tape Change

7

18

4/19

4/19

530

130

67

29.16

69

32.496

40

B1090132

109

 

77

78

 

108

4

Tape Change

7

18-19

4/19

4/19

731

331

67

24.795

69

45.225

41

B1090331

109

 

79

80

 

108

4

Tape Change

7

18-19

4/19

4/19

935

535

 

 

 

 

42

B1090535

109

 

81

82

 

108

4

Tape Change

7

19

4/19

4/19

1138

738

 

 

 

 

43

B1090738

109

 

83

84

 

108

4

Tape Change

7

19-20

4/19

4/19

1340

940

67

9.82

70

23.629

44

B1090940

109

 

85

86

 

108

4

Tape Change

7

19-20

4/19

4/19

1541

1141

67

3.85

70

43.302

45

B1091141

109

 

87

88

 

108

4

Tape Change

7

20-21

4/19

4/19

1741

1341

67

1.372

70

50.81

46

B1091340

109

 

89

90

 

108

4

Tape Change

7

20-21

4/19

4/19

1942

1542

66

55.6

71

10.24

47

B1091542

109

 

91

92

 

108

4

Tape Change

7

21

4/19

4/19

2132

1732

66

50.104

71

27.709

 

 

109

 

 

 

 

108

4

End Tow #7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

21-22

4/20

4/19

251

2251

66

47.876

71

35.652

48

B1092251

109

B4192249

93

94

04200252.01

109

4

Start Tow 8

8

21-22

4/20

4/20

504

104

66

42.283

71

57.569

49

B1100104

110

 

95

96

 

109

4

Tape Change

8

22

4/20

4/20

654

254

66

36.31

71

13.355

 

 

110

 

 

 

 

109

4

End Tow 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

22-23

4/20

4/20

1148

748

66

36.161

72

16.513

50

B1100748

110

B4200747

97

98

04201148.01

109

 

Start Tow #9

9

22-23

4/20

4/20

1203

803

 

 

 

 

 

B1100803

110

 

 

 

 

109

4-5

Sounder Transmit was off at startup

9

22-23

4/20

4/20

1350

950

66

39.745

72

38.362

51

B1100950

110

 

99

100

 

109

4-5

Tape Change

9

22-23

4/20

4/20

1508

1108

66

42.604

72

53.668

 

B1101108

110

 

 

 

 

109

4-5

Sounder Reboot Acoustics Crashed

9

22-23

4/20

4/20

1521

1121

66

43.187

72

55.895

 

B1101123

110

B4211121

 

 

0420152301

109

4-5

Full repower, ESS failed

9

22-23

4/20

4/20

1554

1154

66

43.631

73

1.997

52

B1101154

110

 

101

102

 

109

4-5

Tape Change

9

23

4/20

4/20

1713

1313

66

42.39

73

18.41

 

 

110

 

 

 

 

109

4-5

End Tow 9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

23-24

4/21

4/20

126

2126

66

38.874

73

15.369

53

B1102126

110

B4202124

103

104

04210127.01

110

5

Start Tow 10

10

23-24

4/21

4/20

331

2331

66

45.656

72

59.286

54

B1102331

110

 

105

106

 

110

5

Tape Change

10

23-24

4/21

4/21

533

133

66

52.42

72

41.81

55

B1110132

111

 

107

108

 

110

5

Tape Change

10

24-25

4/21

4/21

734

334

66

56.51

72

36.03

56

B1110332

111

 

109

110

 

110

5

Tape Change

10

24-25

4/21

4/21

936

536

67

2.51

72

16.33

57

B1110538

111

 

111

112

 

110

5

Tape Change

10

25

4/21

4/21

1138

738

67

7.17

72

1.17

58

B1110740

111

 

113

114

 

110

5

Tape Change

10

25-26

4/21

4/21

1342

942

67

11.609

71

48.903

59

B1110942

111

 

115

116

 

110

5

Tape Change

10

25-26

4/21

4/21

1544

1144

67

16.952

71

29.141

60

B1111144

111

 

117

118

 

110

5

Tape Change

10

26

4/21

4/21

1744

1344

67

20.55

71

16.79

61

B1111344

111

 

119

120

 

110

5

Tape Change

10

26

4/21

4/21

1945

1545

67

25.452

71

0.841

62

B1111545

111

 

121

122

 

110

5

Tape Change

10

26-27

4/21

4/21

2149

1749

67

31.16

70

41.16

63

B1111749

111

 

123

124

 

110

5

Tape Change

10

27

4/21

4/21

2242

1842

67

33.39

70

33.3

 

 

111

 

 

 

 

110

5

On Sta. 27

10

27

4/21

4/21

2351

1952

67

33.05

70

39.29

64

B1111953

111

 

125

126

 

110

5

Tape Change

10

27

4/22

4/21

18

2018

67

33.002

70

34.232

 

 

111

 

 

 

 

111

5

End of Tow

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

29-30

4/22

4/22

1333

933

67

35.756

69

22.88

65

B1120929

112

B4210931

127

128

04221332.041

111

5

Sta 29 after retermination

11

29-30

4/22

4/22

1347

947

 

 

 

 

 

B1120947

112

 

 

 

 

111

5

Restart processing

11

29-30

4/22

4/22

1429

1029

 

 

 

 

 

B1121029

112

 

 

 

 

111

5

HTI auto restart UGH

11

29-30

4/22

4/22

1516

1116

 

 

 

 

 

 

112

 

 

 

 

111

5

Change start ESS to see if VPR Starts

11

29-30

4/22

4/22

1527

1129

 

 

 

 

 

 

112

 

 

 

 

111

5

Restart VPR

11

30

4/22

4/22

1635

1235

67

27.87

69

23.063

 

 

112

 

 

 

 

111

5

End Tow at Sta. 30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

31

4/22

4/22

2001

1601

67

50.276

69

2.774

66

B1121606

112

B4211534

129

130

04222207.01

111

5

Start Tow 12

12

31-33

4/22

4/22

2138

1738

67

52.96

68

48.52

66

B1121736

112

 

129

X

 

111

5

Accidently turn off sonar reboot computer

12

31-33

4/22

4/22

2213

1813

67

55.566

68

48.58

67

B1121811

112

 

131

X

 

111

5

Tape Change

12

33

4/22

4/22

2340

1940

67

59.71

68

47.84

 

 

112

 

 

 

 

111

5

End Tow 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

34-35

4/23

4/23

812

412

67

56.56

68

28.23

68

B1130407

113

B42030408

133

134

04230809.01

112

5

Tape Change

13

35

4/23

4/23

954

554

67

54.53

68

11.29

 

 

113

 

 

 

 

112

5

On station w/ Gould

13

35

4/23

4/23

1015

618

67

54.57

68

11.35

69

B1130615

113

 

135

136

 

112

5

Tape Change

13

35

4/23

4/23

1300

900

67

51.71

67

58.89

 

 

113

 

 

 

 

112

5

Leaving Rendevous, to St. 36

13

35-36

4/23

4/23

1216

816

 

 

 

 

70

B1130818

113

 

137

138

 

112

5

Tape Change

13

35-36

4/23

4/23

1419

1019

67

53.173

67

44.847

71

B1131019

113

 

139

140

 

112

5

Tape Change

13

36

4/23

4/23

1442

1042

67

57.633

67

41.916

 

 

113

 

 

 

 

112

5

End Run to 36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

37-38

4/23

4/23

2325

1925

68

11.19

68

12.35

72

B1131922

113

B4231919

141

142

04232323.01

112

 

start of Tow

14

37-38

4/24

4/23

125

2125

68

18.279

67

57.509

73

B1132125

113

 

143

144

 

113

5

Tape Change

14

37-38

4/24

4/23

328

2328

68

22.826

67

37.98

74

B1132328

113

 

145

146

 

113

5

Tape Change

14

38-39

4/24

4/24

530

130

68

28.25

67

29.28

75

B1140130

114

 

147

148

 

113

5

Tape Change

14

38-39

4/24

4/24

731

331

68

32.97

67

43.65

76

B1140331

114

 

149

150

 

113

5-6

Tape Change

14

38-39

4/24

4/24

935

535

68

40.59

67

59.07

77

B1140537

114

 

151

152

 

113

5-6

Tape Change

14

39

4/24

4/24

953

553

68

41.08

67

59.741

 

 

114

 

 

 

 

113

5-6

On Station

14

39-40

4/24

4/24

1132

732

68

38.55

68

6.93

78

B1140733

114

 

153

154

 

113

6

Tape Change

14

39-40

4/24

4/24

1335

935

68

32.282

68

27.1

79

B1140935

114

 

155

156

 

113

6

Tape Change

14

40

4/24

4/24

1540

1140

68

28.8

68

48.186

 

 

114

 

 

 

 

113

6

End Tow at Station 40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

15

40-41

4/24

4/24

2021

1621

68

29.691

68

40.457

80

B1141627

114

B4241621

157

158

04242025.01

113

 

Start Tow 15

15

40-41

4/24

4/24

2232

1832

68

25.12

68

58.81

81

B1141832

114

 

159

160

 

113

6

Tape Change

15

40-41

4/25

4/24

33

2033

69

19.86

69

19.769

82

B1142033

114

 

161

162

 

114

6

Tape Change

15

41

4/25

4/24

158

2158

68

16.478

69

34.91

 

 

114

 

 

 

 

114

6

End Tow 15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

114

6

 

16

41-42

4/25

4/25

154

534

68

13.3

69

42.44

 

 

115

B4250153

 

 

 

114

 

No Data Collected

16

41-42

4/25

4/25

159

559

68

13.13

69

47.83

 

 

115

 

 

 

 

114

 

Sonar Reverse Fault

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

43-44

4/25

4/25

1757

1357

67

46.537

71

10.452

83

B1151357

115

B4251400

163

164

04251800.01

114

6

Start Tow 17

17

43-44

4/25

4/25

1807

1407

 

 

 

 

 

B1151407

115

 

 

 

 

114

6

Test for Noise Source 43 only

17

43-44

4/25

4/25

1814

1414

 

 

 

 

 

B1151414

115

 

 

 

 

114

6

Test all *** off

17

43-44

4/25

4/25

1835

1435

 

 

 

 

 

B1151535

115

 

 

 

 

114

6

Transmitting all

17

44

4/25

4/25

2206

1806

67

37.46

71

52.7

85

B1150805

115

 

167

168

 

114

6

Tape Change

17

44-45

4/26

4/25

7

2007

67

37.388

71

51.454

86

B1152007

115

 

169

170

 

115

6

Tape Change

17

44-45

4/26

4/25

210

2210

67

31.367

72

10.872

87

B1152210

115

 

171

172

 

115

6

Tape Change

17

44-45

4/26

4/25

351

2351

 

 

 

 

 

 

115

 

 

 

04260351.01

115

6

VPR Computer Lock Up

17

44-45

4/26

4/26

410

10

67

25

72

32

88

B1160010

116

 

173

174

 

115

6

Tape Change

17

44-45

4/26

4/26

614

214

67

18

72

31

 

B1160214

116

 

175

176

 

115

6

Tape Change

17

45-46

4/26

4/26

1021

421

67

12.97

73

11.54

90

B1160418

116

 

177

178

 

115

6

Tape Change

17

46

4/26

4/26

930

530

67

8.6

73

21.7

 

 

116

 

 

 

 

115

6

On station 46

17

46

4/26

4/26

1024

624

67

6.84

73

13.71

91

B1160622

116

 

179

180

 

115

6

 

17

46

4/26

4/26

1225

825

67

8.938

73

20.081

 

 

116

 

181

182

 

115

6

Tape Change

17

46

4/26

4/26

1250

850

67

8.768

73

23.4

 

 

116

 

 

 

 

115

6

End of Tow at Station 46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

46-47

4/26

4/26

1608

1208

67

7.6752

73

22.55

92

B1161211

116

B4261206

183

184

04261610.01

115

 

Start Tow

18

46-47

4/26

4/26

1811

1411

67

11.44

73

46.33

93

B1161411

116

 

185

186

 

115

6-7

Tape Change

18

46-47

4/26

4/26

2017

1607

67

14.84

74

11.54

94

B1161614

116

 

187

188

 

115

6-7

Tape Change

18

47

4/26

4/26

2157

1757

67

14.61

74

31.89

 

 

116

 

 

 

 

115

6-7

End Tow, Station 47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

47-48

4/27

4/27

701

301

67

12

74

18

95

B1170301

117

B4270250

189

190

04270655.01

116

7

Start Tow to Station 48

19

47-48

4/27

4/27

900

500

67

19.17

74

7.43

96

B1170500

117

 

191

192

 

116

7

Tape Change

19

47-48

4/27

4/27

1102

702

67

25.87

74

50.82

97

B1170702

117

 

193

194

 

116

7

Tape Change

19

48

4/27

4/27

1141

741

67

28.57

73

49.35

 

 

117

 

 

 

 

116

7

On Station 48

19

48

4/27

4/27

1204

804

 

 

 

 

 

B1170804

117

 

 

 

 

116

7

Noise Test Receive Only

19

48

4/27

4/27

1221

821

 

 

 

 

 

B1170821

117

 

 

 

 

116

7

Noise Test

19

48

4/27

4/27

1228

828

 

 

 

 

 

B1170828

117

 

 

 

 

116

7

Back to Transmit and Receive

19

48-49

4/27

4/27

1305

905

67

28.433

73

45.268

98

B1170905

117

 

195

196

 

116

7

Tape Change

19

48-49

4/27

4/27

1507

1107

 

 

 

 

99

B1171107

117

 

197

198

 

116

7

Tape Change

19

49

4/27

4/27

1635

1235

67

40.9

73

11.6

 

 

117

 

 

 

 

116

7

End Tow 19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

51

4/28

4/28

845

445

68

7.52

71

42.44

100

B1180505

118

B4280445

199

200

04280858.01

117

7

Start Tow 20

20

51-52

4/28

4/28

915

515

68

7.79

71

39.65

 

 

118

 

 

 

 

117

7

End Tow 20, No Acoustics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

51-52

4/28

4/28

1218

818

68

15.276

71

9.947

101

B1180819

118

B4280818

201

202

04281220.01

117

7

Start Tow 21

21

52

4/28

4/28

1400

1000

68

20.396

70

57.25

 

 

118

 

 

 

 

117

7

End Tow 21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

52-53

4/28

4/28

1515

1115

68

20.553

70

55.573

102

B1181115

118

B1031106

203

204

04281518.01

117

7

Start Tow 22

22

52-53

4/28

4/28

1719

1319

68

29.532

70

37.379

103

B1181318

118

 

205

206

 

117

7

Tape Change

22

53

4/28

4/28

1728

1328

68

29.07

70

37.74

 

 

118

 

 

 

 

117

7

End Tow 22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

54-55

4/29

4/29

507

107

68

24.1

70

2.8

104

B1190107

119

B4290105

207

208

04290507.01

118

7

Start Tow 23

23

54-55

4/29

4/29

710

310

68

33.02

69

56.3

105

B1190310

119

 

209

210

 

118

7

Tape Change

23

 

 

 

723

323

 

 

 

 

 

B1190323

119

 

 

 

 

118

7

Passive Receive Test (200 m)

23

 

 

 

734

334

 

 

 

 

 

B1190334

119

 

 

 

 

118

7

Experimental Gain Change RCV Only

23

 

 

 

741

341

 

 

 

 

 

B1190341

119

 

 

 

 

118

7

Resume normal original settings

23

54-55

4/29

4/29

912

512

68

40.9

69

38.8

106

B1190513

119

 

211

212

 

118

7

Tape Change

23

54-55

4/29

4/29

1115

715

68

46.4

69

18.2

107

B1190716

119

 

213

214

 

118

7

Tape Change

23

54-55

4/29

4/29

1316

916

68

51.722

69

0.313

108

B1190916

119

 

215

216

 

118

7

Tape Change

23

55

4/29

4/29

1338

938

68

52.734

68

58.171

 

 

119

 

 

 

 

118

7

End Tow 23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

55-56

4/29

4/29

1625

1225

68

53.3

68

59.3

109

B1191225

119

B4291225

217

218

04291624.01

118

7-8

Start Tow 24

24

55-56

4/29

4/29

1829

1429

69

0.43

69

5.08

110

B1191428

119

 

219

220

 

118

7-8

Tape Change

24

55-56

4/29

4/29

2033

1633

69

6.88

69

10.32

110

B1191633

119

 

221

222

 

118

7-8

Tape Change

24

56

4/29

4/29

2210

1810

69

9.31

69

12.72

 

 

119

 

 

 

 

118

7-8

End Tow

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

56-57

4/30

4/30

937

537

68

58.9

69

10.04

112

B1120534

120

B4300530

223

224

04300934.01

119

8

Start Tow 25

25

56-57

4/30

4/30

1133

733

69

0.063

69

25.084

 

 

120

 

 

 

 

119

8

End Tow 25 due to Ice

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

57-58

4/30

4/30

1817

1414

68

54.1

69

35.8

114

B1201417

120

B4301416

225

226

04301820.01

119

8

Start Tow 26

26

58

4/30

4/30

2000

1600

68

53

69

54.8

 

 

120

 

 

 

 

119

8

End Tow 26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

58

5/1

4/30

325

2325

68

50.341

69

56.56

115

B1202332

120

B4302325

227

228

05010327.01

120

8

Start Tow 27

27

58-59

5/1

4/30

342

2342

 

 

 

 

 

B1202342

120

 

 

 

 

120

8

Acoustics Auto File Change

27

58-59

5/1

5/1

530

130

68

44.36

70

10.3

116

B1210130

121

 

229

230

 

120

8

 

27

59

5/1

5/1

651

251

68

43.2

70

22.6

 

 

121

 

 

 

 

120

8

End Tow 27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

59

5/1

5/1

830

430

68

42.44

70

25.48

117

B1210426

121

B5010424

231

232

05010826.01

120

8

Start Tow 28

28

59-60

5/1

5/1

914

514

 

 

 

 

 

B1210513

121

 

 

 

 

120

8

New Acoustics File, C Drive Full

28

59-60

5/1

5/1

918

518

 

 

 

 

 

B1210517

121

 

 

 

 

120

8

Acoustics Program not Scanning

28

59-60

5/1

5/1

947

547

68

41.92

70

42.43

 

B1210547

121

 

 

 

 

120

8

Restart Acoustics

28

59-60

5/1

5/1

1034

634

68

42.93

70

48.51

118

B1210633

121

 

233

234

 

120

8

Tape Change

28

60

5/1

5/1

1208

808

68

45.709

71

3.661

 

 

121

 

 

 

 

120

8

End Tow 28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

60

5/1

5/1

1340

940

68

44.91

71

6.102

119

B1210939

121

B5010937

235

236

05011341.01

120

8

Start Tow 29

29

60-61

5/1

5/1

1543

1143

68

39.68

71

10.092

120

B1211143

121

 

237

238

 

120

8

Tape Change

29

61

5/1

5/1

1610

1240

68

38.001

71

28.9

 

 

121

 

 

 

 

120

8

End Tow 29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

61

5/1

5/1

1815

1415

68

36.2

71

34

121

B1211415

121

B5011414

239

240

05011816.01

120

8

Start Tow 30

30

61-62

5/1

5/1

2021

1621

68

30.36

71

54.63

122

B1211621

121

 

241

242

 

120

8

Tape Change

30

61-62

5/1

5/1

2222

1822

68

24.19

72

15.05

123

B1211823

121

 

243

244

 

120

8

Tape Change

30

62

5/1

5/1

2242

1842

68

24.02

72

17.96

 

 

121

 

 

 

 

120

8

End Tow 30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

62

5/2

5/2

433

33

68

26.33

72

6.85

124

B1220029

122

B5020028

245

246

05020429.01

121

8

Start Tow 31

31

62-63

5/2

5/2

633

233

68

20.943

72

27.522

125

B1220232

122

 

247

248

 

121

8

Tape Change

31

62-63

5/2

5/2

837

437

68

14.53

72

46.97

126

B1220435

122

 

249

250

 

121

8

Tape Change

31

63

5/2

5/2

1000

600

68

10.76

73

3.02

 

 

122

 

 

 

 

121

8

End Tow 31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

63

5/2

5/2

1144

744

68

9.61

73

7.21

127

B1220741

122

B5020738

251

252

05021142.01

121

8

Start Tow 32

32

63-64

5/2

5/2

1346

946

68

3.334

73

27.332

128

B1220946

122

 

253

254

 

121

8

Tape Change

32

64

5/2

5/2

1554

1154

67

57.366

73

47.24

 

 

122

 

 

 

 

121

8

End Tow 32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

64

5/2

5/2

1731

1331

67

56.912

73

49.722

129

B1221328

122

B5021328

255

256

05021928.01

121

8

Start Tow 33

33

65

5/2

5/2

1827

1427

67

53.9

73

57.6

 

 

122

 

 

 

 

121

8

End Tow 33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34

65

5/2

5/2

2006

1606

67

53.4

74

0.7

130

B1221555

122

B5021556

257

258

05021956.01

121

8

Start Tow 34

34

66

5/2

5/2

2125

1725

67

49.94

74

12.64

 

 

122

 

 

 

 

121

8

End Tow 34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

66

5/3

5/2

140

2140

67

50.266

74

12.88

131

B122152

122

B5022140

259

260

05030142.01

122

8

Start Tow 35

35

67

5/3

5/2

245

2245

67

46.961

71

19.792

 

 

122

 

 

 

 

122

8

Fly by station 67

35

67-68

5/3

5/2

349

2349

67

43.58

74

30.08

132

B1222349

122

 

261

262

 

122

8

Tape Change

35

68

5/3

5/3

421

21

67

41.84

74

35.34

 

 

123

 

 

 

 

122

8

End Tow 35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

69

5/3

5/3

712

312

67

40.725

74

38.132

133

B1230310

123

B5030310

263

264

05030711.01

122

8

Start Tow 36

36

69-70

5/3

5/3

914

514

67

34.46

74

57.56

134

B1230514

123

 

265

266

 

122

8

Tape Change

36

70

5/3

5/3

1022

622

67

30.61

75

68.15

 

 

123

 

 

 

 

122

8

End Tow 36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

70

5/3

5/3

1411

1011

67

31.974

75

8.306

135

 

123

B5031011

267

268

5031414.01

122

8-9

Start Tow 37

37

70-71

5/3

5/3

1427

1027

67

32.915

75

9.882

 

B1231027

123

B5031026

 

 

5031421.01

122

8-9

Total reboot for HTI

37

70-71

5/3

5/3

1621

1221

67

41.641

75

10.86

136

B1231221

123

 

269

270

 

122

8-9

Tape Change

37

70-71

5/3

5/3

1821

1421

67

50.49

75

2.88

137

B1231422

123

 

271

272

 

122

8-9

Tape Change

37

70-71

5/3

5/3

2027

1627

68

0.26

74

56.73

138

B1231626

123

 

273

274

 

122

8-9

Tape Change

37

71

5/3

4/3

2218

1818

68

6.095

74

47.77

 

 

 

 

 

 

 

122

8-9

End Tow 37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

71

5/4

5/4

430

30

68

10

74

57

139

B1240030

124

B5040029

275

276

05040430.01

123

9

Start Tow 38

38

71-72

5/4

5/4

545

145

68

9.58

74

44.71

 

B1240147

124

B5040143

277

278

05040548.01

123

9

Restart, BM ESS Failed

38

71-72

5/4

5/4

600

200

69

9.68

74

41.51

 

B1240200

124

B5040159

 

 

05040600.01

123

9

Restart, BM ESS Failed

38

72

5/4

5/4

640

240

68

11.2

74

32.9

 

 

124

 

 

 

 

123

9

End Tow 38, ESS not working

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

72

5/4

5/4

1042

642

68

22.03

73

58.58

140

B1240643

124

B5040640

277

278

05041039.01

123

9

Start Tow 39

39

73

5/4

5/4

1236

836

68

27.12

73

40.96

 

 

124

 

 

 

 

123

9

End Tow 39

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

73

5/4

5/4

1820

1420

 

 

 

 

141

B1241923

124

B5041420

279

280

05041819.01

123

9

Start Tow 40

40

73-74

5/4

5/4

2025

1625

68

37.98

73

7.6

142

B1241624

124

 

281

282

 

123

9

 

40

74

5/4

5/4

2142

1742

68

40.91

72

55.22

 

 

124

 

 

 

 

 

 

End Tow 40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

74-75

5/5

5/4

110

2110

68

41.245

72

52.56

143

B1242110

124

B5042108

283

284

05050113.01

124

9

Start Tow 41

41

74-75

5/5

5/4

313

2313

68

46.303

72

34.28

144

B1242313

124

 

285

286

 

124

9

Tape Change

41

74-75

5/5

5/5

515

115

68

50.3

72

17

145

B1250115

125

 

287

288

 

124

9

Tape Change

41

75

5/5

5/5

642

242

68

53.9

72

7.06

 

 

125

 

 

 

 

124

9

End Tow 41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

75

5/5

5/5

815

415

68

55.4

72

9.9

146

B1250417

125

B5050415

289

290

05050817.01

124

9

Start Tow 42

42

75-6

5/5

5/5

1043

643

69

2.61

72

27.26

147

B1250643

125

 

291

292

 

124

9

Tape Change

42

75-76

5/5

5/5

1244

844

69

8.976

72

41.323

148

B1250844

125

 

293

294

 

124

9

Tape Change

42

76

5/5

5/5

1331

931

69

11.032

72

46.03

 

 

125

 

 

 

 

124

9

End Tow 42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43

76

5/5

5/5

1836

1436

69

9.7

72

45.4

149

B1251436

125

B5051436

295

296

05051837.01

124

10

Start Tow 43

43

76-77

5/5

5/5

2042

1642

69

4.5

72

5

150

B1251642

125

 

297

298

 

124

10

Tape Change

43

76-77

5/5

5/5

2106

1706

 

 

 

 

 

B1251705

125

 

 

 

 

124

10

Auto Reboot

43

76-77

5/5

5/5

2243

1843

69

0.2

72

22.2

151

B1251843

125

 

299

300

 

124

10

Tape Change

43

77

5/6

5/5

6

2006

68

57.34

73

33

 

 

125

 

 

 

 

125

10

End Tow 43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44

77

5/6

5/5

325

2325

68

57.188

73

31.68

152

B1252326

125

B5052325

301

302

05060328.01

125

10

Start Tow 44

44

77-78

5/6

5/6

529

129

68

51.7

73

50.3

153

B1260129

126

 

303

304

 

125

10

Tape Change

44

77-78

5/6

5/6

731

331

68

45.7

74

9.37

154

B1260330

126

 

305

306

 

125

10

Tape Change

44

78

5/6

5/6

830

430

68

43.69

74

18.58

 

 

126

 

 

 

 

125

10

End Tow 44

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45

778-79

5/6

5/6

948

548

68

43.72

74

19.5

155

B1260548

126

B5060545

307

308

05060949.01

125

10

Start Tow 45

45

78-79

5/6

5/6

1155

755

68

36.68

74

40.4

156

B1260755

126

 

309

310

 

125

10

Tape Change

45

79

5/6

5/6

1405

1005

68

30.341

75

0.5226

 

 

126

 

 

 

 

125

10

End Tow 45

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46

79

5/6

5/6

1524

1124

68

29.507

75

3.583

157

B1261126

126

B5061124

311

312

05061527.01

125

10

Start Tow 46

46

79-80

5/6

5/6

1733

1333

68

22.671

75

24.891

158

B1261332

126

 

313

314

 

125

10

Tape Change

46

80

5/6

5/6

1901

1501

68

17.6

75

39.3

 

 

126

 

 

 

 

125

10

End Tow 46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

80

5/6

5/6

2230

1830

68

18.1

75

40.88

159

B1261832

126

B5061830

315

316

05062232.01

125

10-11

Start Tow 47

47

80-81

5/7

5/6

35

2035

68

25.771

75

56.999

160

B1262035

126

 

317

318

 

126

10-11

Tape Change

47

81

5/7

5/6

250

2250

68

32.988

76

18.2

 

 

126

 

 

 

 

126

10-11

End Tow 47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

48

81

5/7

5/7

438

38

68

37.7

76

17.4

161

B1270038

127

B5070039

319

320

05070439.01

126

11

Start Tow 48

48

81-82

5/7

5/7

639

239

 

 

 

 

 

B1270239

127

 

321

322

 

126

11

Tape Change

48

81-82

5/7

5/7

752

352

68

43.9

75

45.9

 

 

127

 

 

 

0500752.01

126

11

GPS Hung up on DAC, Restarted

48

82

5/7

5/7

824

424

68

45.67

75

42.07

 

 

127

 

 

 

 

126

11

End Tow 48

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49

82

5/7

5/7

1055

655

68

46.22

75

38.55

163

B1270657

127

B5070655

323

324

05071058.01

126

11

Start Tow 49

49

82-83

5/7

5/7

1302

902

68

53.009

75

18.16

164

B1270902

127

 

325

326

 

126

11

Tape Change

49

83

5/7

5/7

1505

1105

68

59.675

74

58.62

 

 

127

 

 

 

 

126

11

End Tow 49

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

83

5/7

5/7

1903

1503

69

1.3

74

58.1

165

B1271503

127

B5071504

327

328

05071905.01

126

11

Start Tow 50

50

83-84

5/7

5/7

2111

1711

69

5.97

74

37.91

166

B1271711

127

 

329

330

 

126

11

Tape Change

50

83-84

5/7

5/7

2317

1917

69

11.5

74

18.65

167

B1271918

127

 

331

332

 

126

11

Tape Change

50

84

5/8

5/7

0

2000

69

19

74

11.81

 

 

127

 

 

 

 

127

11

End Tow 50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51

84

5/8

5/8

417

17

69

14.6

74

12.6

168

B1280017

128

B5080017

333

334

05080420.01

127

11-12

Start Tow 51

51

84-85

5/8

5/8

620

220

69

23.1

74

20.49

169

B1280220

128

 

335

336

 

127

11-12

Tape Change

51

84-85

5/8

5/8

822

422

69

30.5

74

25.3

170

B1280422

128

B5080017

337

338

 

127

11-12

Tape Change

51

85

5/8

5/8

905

505

69

31.21

74

25.75

 

 

128

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52

85

5/8

5/8

1539

1139

69

28.584

74

30.74

171

B1281146

128

B5081139

339

340

05080547.01

127

11-12

Start Tow 52

52

85-86

5/8

5/8

1752

1352

 

 

 

 

 

B1281352

128

 

 

 

 

127

11-12

Tape Change

52

86

5/8

5/8

1757

1357

69

24.4

74

49.6

 

 

128

 

 

 

 

127

11-12

End Tow 52

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53

86

5/8

5/8

1923

1523

69

28.7

74

52.2

172

B1281523

128

B5081524

341

342

05081925.01

127

12

Start Tow 53

53

86-87

5/8

5/8

2130

1730

69

23.28

75

15.49

173

B1281730

128

 

343

344

 

127

12

Tape Change

53

86-87

5/8

5/8

2333

1933

69

16.93

75

31.56

174

B1281932

128

 

345

346

 

127

12

Tape Change

53

87

5/9

5/8

5

2005

69

16.04

75

36.37

 

 

128

 

 

 

 

128

12

End Tow 53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

54

87

5/9

5/8

221

2221

69

15.006

75

39.386

175

B1282222

128

B5082220

347

348

05090224.01

128

12

Start Tow 54

54

87-88

5/9

5/8

246

2246

 

 

 

 

 

B1282246

128

 

 

 

 

128

12

Acoustics Crash, Reboot

54

87-88

5/9

5/9

430

30

69

9.536

75

58.375

176

B1290029

129

 

349

350

 

128

12

Tape Change

54

87-88

5/9

5/9

630

230

69

3.116

76

18.435

177

B1290231

129

 

351

352

 

128

12

Tape Change

54

88

5/9

5/9

650

250

69

1.99

76

21.12

 

 

129

 

 

 

 

128

12

End Tow 54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

55

88

5/9

5/9

1110

710

68

59.75

76

23.15

178

B1290708

129

B5090705

353

354

05091108.01

128

12

Start Tow 55

55

88-89

5/9

5/9

1320

920

68

54.004

76

45.387

179

B1290920

129

 

355

356

 

128

12

Tape Change

55

89

5/9

5/9

1453

1053

68

49.13

76

59.6

 

 

129

 

 

 

 

128

12

End Tow 55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56

89

5/9

5/9

1850

1450

68

52.6

77

10.4

180

B1291446

129

B5091447

357

358

05091850.01

128

12-13

Start Tow 56

56

89-90

5/9

5/9

2058

1658

68

58.72

77

31.34

181

B1291657

129

 

359

360

 

128

12-13

Tape Change

56

90

5/9

5/9

2240

1840

69

2.95

77

46.49

 

 

129

 

 

 

 

128

12-13

End Tow 56

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

57

90

5/10

5/9

16

2016

69

2.65

77

45.619

182

B1292016

129

B5092015

361

362

05100017.01

129

13

Start Tow 57

57

90-91

5/10

5/9

218

2218

69

9.169

77

27.903

183

B1292218

129

 

363

364

 

129

13

Tape Change

57

90-91

5/10

5/9

421

21

69

15.55

77

8.232

184

B1300020

129

 

365

366

 

129

13

Tape Change

57

90-91

5/10

5/10

425

25

69

15.9

77

7.2

 

B1300025

130

 

 

 

 

129

13

Restart File

57

91

5/10

5/10

445

45

69

16.84

77

4.86

 

 

130

 

 

 

 

129

13

End Tow

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

58

91

5/10

5/10

611

211

69

17.2

77

2.8

185

B1300211

130

B5100213

367

368

05100613.01

129

13

Start Tow 58

58

91-92

5/10

5/10

817

417

 

 

 

 

186

B1300415

130

 

369

370

 

129

13

Tape Change

58

91-92

5/10

5/10

1017

617

69

29.07

76

26.26

187

B1300617

130

 

371

372

 

129

13

Tape Change

58

92

5/10

5/10

1125

725

69

31.97

76

19.12

 

 

130

 

 

 

 

129

13

End Tow 58

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

END GRID

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

59

51

5/11

5/11

2053

1653

68

7

71

42.75

188

B1311653

131

B5111653

373

374

05112055.01

130

7

Start Tow 59

59

51-50

5/11

5/11

2258

1858

68

1.57

72

2.89

189

B1311858

131

 

375

376

 

130

7

Tape Change

59

51-50

5/12

5/11

59

2059

67

55.54

72

22.23

190

B1312059

131

 

377

378

 

131

7

Tape Change

59

50

5/12

5/11

132

2152

67

54.3

72

27

 

 

 

 

 

 

 

 

7

End Tow 59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

43

5/12

5/12

712

312

67

51.6

71

4.3

191

B1320312

132

B5120311

379

380

05120715.01

131

6

Start Tow 60

60

43-41

5/12

5/12

928

528

67

58.22

70

42.34

192

B1320528

132

 

381

382

 

131

6

Tape Change

60

43-41

5/12

5/12

1133

733

67

5.17

70

18

193

B1320731

132

 

383

384

 

131

6

Tape Change

60

43-41

5/12

5/12

1333

933

68

10.255

69

59.975

194

B1320933

132

 

385

386

 

131

6

Tape Change

60

41

5/12

5/12

1600

1200

68

14.53

69

34.3

 

 

132

 

 

 

 

131

 

End Tow 60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61

28

5/13

5/13

416

16

67

45

69

49.3

195

B1330016

133

B5130015

387

388

05130420.01

132

5

Start Tow 61

61

28-27

5/13

5/13

620

220

67

38.8

70

8.52

196

B1330219

133

 

389

390

 

132

5

Tape Change

61

28-27

5/13

5/13

819

419

67

32.71

70

28.71

197

B1330419

133

 

391

392

 

132

5

Tape Change

61

27

5/13

5/13

845

445

67

31.33

70

34.33

 

 

133

 

 

 

 

132

5

End Tow 61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

62

10

5/14

5/14

958

558

66

16.4

70

22.13

198

B1340612

134

B5140558

393

394

05141006.01

133

2

Start Tow 62

62

10/8

5/14

5/14

1207

807

66

22.889

70

2.372

199

B1340807

134

 

395

396

 

133

2

Tape Change

62

10/8

5/14

5/14

1408

1008

66

29.139

69

41.514

200

B1341008

134

 

397

398

 

133

2

Tape Change

62

10/8

5/14

5/14

1611

1211

66

35.29

69

20.996

201

B1341210

134

 

399

400

 

133

2

Tape Change

62

10/8

5/14

5/14

1813

1413

66

40.324

69

0.81

202

B1341413

134

 

401

402

 

133

2

Tape Change

62

8

5/14

5/14

1830

1430

66

10.9

68

54.2

 

 

134

 

 

 

 

133

2

End Tow 62

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

63

6

5/14

5/14

2158

1758

66

28.9

68

2.69

203

B1341759

134

B5141758

403

404

05142250.01

133

 

Start Tow 63 to Crystal Sound

63

6-Crys

5/14

5/14

2233

1833

66

29.17

67

56.49

 

B1341824

134

 

 

 

 

133

 

Restart Acoustics Computer

63

6-Crys

5/15

5/14

4

2004

67

38.779

66

31.363

204

B1342004

134

 

405

406

 

134

 

Tape Change

63

6-Crys

5/15

5/14

207

2207

67

26.098

66

38.399

205

No new file

134

 

407

408

 

134

 

Tape Change

63

Crys

5/15

5/14

238

2238

67

25.93

66

40.094

 

 

134

 

 

 

 

134

 

End Tow 63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64

CS3

5/15

5/15

1706

1306

66

28.8

67

2.63

206

B1351323

 

B5151314

 

 

 

 

 

Start Tow 64 - Calibration

 

 

 

 

 

 

 

 

 

 

 

B1351325

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351330

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351353

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351359

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351402

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351406

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351419

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351436

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351446

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351459

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351508

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351523

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351542

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351558

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1351606

 

 

 

 

 

 

 

 

64

CS3

5/15

5/15

1615

2015

66

28.9

67

2.36

 

 

 

 

 

 

 

 

 

End Tow 64

 


Appendix 12. Cetacean Sightings NBP0202 9 April to 21 May 2002

 

 

LATITUDE

S

 

LONGITUDE

W

 

SPECIES CODE

 

SPECIES scientific

 

SPECIES common

GROUP SIZE BEST

WHOLE SURVEY SIGHTING #

53.07.30

70.50.59

15

unidentified dolphin

unidentified dolphin

3

1

52.38.01

69.51.85

58

cephalorhynchus commersonii

Commerson's dolphin

1

2

60.34.43

65.11.90

15

unidentified dolphin

unidentified dolphin

1

3

64.08.27

69.14.53

67

unidentified large whale

unidentified large whale

1

4

65.52.83

70.11.52

76

unidentified small cetacean

unidentified small cetacean

1

5

66.18.94

68.39.03

76

unidentified small cetacean

unidentified small cetacean

1

6

66.14.09

71.18.06

94

like Baleanoptera musculus musculus

like blue whale (true)

1

7

66.57.30

69.32.33

92

like Balaenoptera acutorostrata

like minke whale

1

8

67.00.69

69.21.51

60

like Balaenoptera borealis

like sei whale

3

9

67.10.12

70.22.65

7

Megaptera novaeangliae

humpback whale

2

10

67.03.01

70.45.30

91

undetermined Balaenoptera acutorostrata

undetermined minke whale

2

11

67.00.92

70.52.42

73

unidentified baleen whale

unidentified baleen whale

3

12

67.00.08

70.55.25

7

Megaptera novaeangliae

humpback whale

3

13

66.56.62

71.06.69

7

Megaptera novaeangliae

humpback whale

4

14

66.55.23

71.11.56

71

like Megaptera noveangliae

like humpback whale

2

15

66.53.06

71.19.03

7

Megaptera novaeangliae

humpback whale

5

16

66.43.77

73.00.33

71

like Megaptera noveangliae

like humpback whale

2

17

66.69.76

73.35.20

71

like Megaptera noveangliae

like humpback whale

5

18

67.50.53

71.07.31

7

Megaptera novaeangliae

humpback whale

1

19

67.52.87

72.32.23

7

Megaptera novaeangliae

humpback whale

4

20

68.29.34

70.37.73

9

Unidentified whale

unidentified whale

3

21

68.54.09

69.41.26

10

Orcinus orca

killer whale

4

22

68.00.66

73.35.25

71

like Megaptera noveangliae

like humpback whale

1

23

68.32.10

73.29.64

7

Megaptera novaeangliae

humpback whale

1

24

68.36.42

73.12.74

7

Megaptera novaeangliae

humpback whale

4

25

68.37.03

73.10.78

7

Megaptera novaeangliae

humpback whale

2

26

68.37.29

73.09.91

7

Megaptera novaeangliae

humpback whale

2

27

68.37.56

73.09.06

7

Megaptera novaeangliae

humpback whale

1

28

68.29.43

75.02.44

71

like Megaptera noveangliae

like humpback whale

3

29

68.28.54

75.07.24

63

unidentified small whale

unidentified small whale

1

30

68.28.54

75.07.24

71

like Megaptera noveangliae

like humpback whale

1

31

68.26.17

75.13.21

71

like Megaptera noveangliae

like humpback whale

2

32

68.25.19

75.15.84

71

like Megaptera noveangliae

like humpback whale

3

33

68.22.23

75.25.93

7

Megaptera novaeangliae

humpback whale

3

34

68.21.48

75.28.19

64

unidentified large baleen whale

unidentified large baleen whale

1

35

68.19.78

75.33.09

7

Megaptera novaeangliae

humpback whale

1

36

68.17.35

75.40.34

71

like Megaptera noveangliae

like humpback whale

3

37

69.15.575

75.38.431

92

like Balaenoptera acutorostrata

like minke whale

1

38

68.52.62

76.49.37

92

like Balaenoptera acutorostrata

like minke whale

1

39

68.53.32

77.12.53

91

undetermined Balaenoptera acutorostrata

undetermined minke whale

2

40

68.52.54

72.50.87

9

Unidentified whale

unidentified whale

1

41

68.18.11

71.51.64

91

undetermined Balaenoptera acutorostrata

undetermined minke whale

1

42

68.13.22

69.48.69

10

Orcinus orca

killer whale

3

43

67.12.34

70.16.44

7

Megaptera novaeangliae

humpback whale

1

44

66.29.78

69.39.80

7

Megaptera novaeangliae

humpback whale

2

45

66.31.18

67.40.69

7

Megaptera novaeangliae

humpback whale

2

46

64.53.58

64.41.70

7

Megaptera novaeangliae

humpback whale

2

47

64.43.75

63.04.21

91

undetermined Balaenoptera acutorostrata

undetermined minke whale

1

48

64.42.26

64.00.57

7

Megaptera novaeangliae

humpback whale

1

49

64.37.78

62.51.48

7

Megaptera novaeangliae

humpback whale

2

50

64.33.52

62.33.42

91

undetermined Balaenoptera acutorostrata

undetermined minke whale

1

51

64.32.59

62.30.33

7

Megaptera novaeangliae

humpback whale

3

52

64.32.40

62.27.40

71

Like Megaptera novaeangliae

like humpback whale

3

53

64.29.47

62.16.07

7

Megaptera novaeangliae

humpback whale

3

54

 

TOTALS

 

 

 

 

 

112

 

54