Overview

Asacomponent of the GLOBEC Northeast Pacific program moored
sensor arrays were maintained for up to 4 years on the continental
shelves of the California Current System (CCS) over an alongshore
distance of about 500 km. Moorings were equipped to sample water
properties and velocities throughout most of the water column at each
site. Thisis the first data set acquired in the CCS over such large
distances for more than a year. Note that:

= The moorings spanned the area of influence of the plume from the
Columbia River aswell as Cape Blanco, a coastal promontory where
the southward coastal jet frequently separates from the shelf.

= Moorings had different bottom depths, spanning the range from
40 m to 100 m.

= Upwelling-favorable wind stress varied by more than a factor of
three over the latitudinal range, decreasing to the north.

» |nspite of these latitudinal differences, seasonal cyclesaswell as
year to year differences in water properties were remarkably similar
at all sites, although south to north lags generally occur (see summary
below).

= The overal conclusion is that large scale processes overwhelm
local spatial scale differences on these time scales. The results reaffirm
the importance of remote forcing in the CCS on seasonal to interannual
scales.
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Summary

=  Year-to-year differencesin seasona water properties are very large
scale (>500 km along the shelf) and affect the whole shelf water
column; differences in the magnitude of the seasonal coasta jet have
significantly shorter alongshelf structure.

= Water property differences from year to year are much more
variable in winter (low S, high T) than in summer (high S, low T).

= A south to north lag of 1-3 months usually occurs in summer
properties (T, S, V), with greater alongshelf lags in maximum coastal
jet velocity.

=  Maximum aongshelf velocity (V) precedes S, T and maximum
local alongshelf wind stress at each location, with a greater lead in
summer than in winter.

= Year-to-year differencesin the speed of the summertime coastal
jet are not related to the strength of the local upwelling-favorable
wind stress.

= Year-to-year water property differences are not strongly related
to alongshelf velocity at the same depth.

= Freshwater influences are apparent in near surface water properties
at locations north and south of the Columbia River in both summer
and winter.

= Year-to-year winter-time whole water column salinity differences
are not related to regional freshwater input.

=  Year-to-year water property differences are strongly related to
alongshelf wind stress in winter but not in summer.

=  Winter water properties may be related to the degree of onshore
advection of warm, fresh, offshore water combined with downwelling
of deeper isopycnals.
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One Interpretation of
Winter Freshening and Warming
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