Report of

RVIB Nathaniel B. Palmer Cruise 01-03

to the

Western Antarctic Peninsula

24 April to 5 June 2001

 

United States Southern Ocean

Global Ocean Ecosystems Dynamics Program

Report Number 2

 

 Report of

RVIB Nathaniel B. Palmer Cruise 01-03

to the

Western Antarctic Peninsula

24 April to 5 June 2001

                                                                                                                                               

 

Report prepared by Peter Wiebe, Eileen Hofmann, Bob Beardsley, Christine Ribic, Erik Chapman, Carin Ashjian, Scott Gallager, Cabell Davis, Wendy Kozlowski, Ari Friedlaender, Catherine Berchok, Howard Rutherford, Joe Warren, Karen Fisher with assistance from colleagues in the scientific party, and of the Raytheon Support Services.

                                                                                   

United States Southern Ocean

Global Ocean Ecosystems Dynamics Program

Report Number 2

 

Available from

U.S. Southern Ocean GLOBEC Planning Office

Center for Coastal Physical Oceanography

Crittenton Hall

Old Dominion University

Norfolk, VA 23529

 

Sponsored by the Office of Polar Programs, National Science Foundation

 


 

Acknowledgments

 

The success we enjoyed on this expedition is due in large part to the very excellent technical assistance we received from all nine members of the Raytheon Marine Technical support group. Led by Alice Doyle (Marine Project Coordinator), they responded in a very positive and experienced way to the technical problems that arose and they provided a steady professional hand on the day-to-day operations.  Likewise, the ship’s officers and crew provided excellent ship handling, enabling us to safely work through high winds and seas, through sea ice and around icebergs, and in shallow, uncharted topography.  The friendly atmosphere that was set by Captain Mike Watson was evident throughout the ship.  It made this expedition a pleasure to be on.

 

NBP01-03 Cruise Participants on the Bow of the RVIB N.B. Palmer

Back Row (L - R): Rebecca Conroy, Maureen Taylor, Matthew Burke, Erik Chapman, Cabell Davis, Sue Beardsley, Jim Dolan, Wendy Kozlowski, Mike Thimgan, Joe Warren, Baris Salihoglu, Karen Fisher, Howard Rutherford, David Green

Middle Row (L - R): Ari Friedlaender, Catherine Berchok, Carin Ashjian, Mark Dennet, Eileen Hofmann, Bob Beardsley, Jeff Otten, Jan Szelag, Jesse Doren, Christine Ribic, Scott Gallager, Andy Girard, Peter Wiebe

Front Row (L - R): Susan Howard, Aparna Sreenivasan, Rosario Sanay, Alice Doyle, Tom Bolmer, Mark Christmas

Not Shown:  Aaron Hunt

Photograph by Mark Christmas, National Geographic     

 

 

 

TABLE OF CONTENTS

 

PURPOSE OF THE CRUISE.............................................................................................................................................................. 9

CRUISE NARRATIVE...................................................................................................................................................................... 11

INDIVIDUALS PROJECT REPORTS............................................................................................................................................. 23

1.0  Report for Hydrography and Circulation Component........................................................................................................ 23

1.1 Introduction............................................................................................................................................................................. 23

1.2 Data Collection and Methods................................................................................................................................................... 23

1.2.1 Data Distribution........................................................................................................................................................... 23

1.2.2 CTD and Water Samples................................................................................................................................................ 24

1.2.3 Expendable Probes......................................................................................................................................................... 27

1.2.4 ADCP Measurements..................................................................................................................................................... 27

1.3 Preliminary Results.................................................................................................................................................................. 27

1.3.1 Water Mass Distributions............................................................................................................................................... 27

1.3.2 Distribution of Temperature Maximum Below 200 m.................................................................................................... 29

1.3.3 ADCP-derived Current Distributions.............................................................................................................................. 29

1.3.4 ADCP-derived Shear and Richardson Number Profiles.................................................................................................... 32

    1.4 Acknowledgments..................................................................................................................................................................... 32

2.0 Drifters Measurements............................................................................................................................................................ 33

2.1 Introduction............................................................................................................................................................................. 33

2.2 Drifter Deployments on NBP01‑03........................................................................................................................................... 34

2.3 Preliminary results................................................................................................................................................................... 35

2.3.1 Low‑frequency flow....................................................................................................................................................... 35

2.3.2 High‑frequency flow...................................................................................................................................................... 37

2.4 Summary................................................................................................................................................................................. 38

3.0 Meteorological Measurements................................................................................................................................................ 38

3.1 Introduction............................................................................................................................................................................. 38

3.2  Instrumentation....................................................................................................................................................................... 39

3.3  Data Acquisition and Processing............................................................................................................................................. 40

3.4 Problems and Solutions........................................................................................................................................................... 41

3.4.1  RVDAS recording format.............................................................................................................................................. 41

3.4.2.  PIR battery failure....................................................................................................................................................... 42

3.4.3 Icing and anemometer failures....................................................................................................................................... 42

3.4.4  "True" wind computation............................................................................................................................................. 43

3.4.5 Thermosalinograph contamination................................................................................................................................ 43

3.5 Description of Cruise Weather and Surface Forcing.................................................................................................................. 44

3.5.1 Surface Cooling ‑ Part 1................................................................................................................................................. 47

3.5.2 Surface Cooling ‑ Part 2................................................................................................................................................. 48

3.5.3  Charcot Bay................................................................................................................................................................. 50

4.0 Automated Weather Station Installation Report.................................................................................................................. 51

5.0 Nutrients.................................................................................................................................................................................... 52

5.1 Introduction............................................................................................................................................................................. 52

5.2 Methods................................................................................................................................................................................... 52

5.3 Data......................................................................................................................................................................................... 53

5.4 Preliminary Results.................................................................................................................................................................. 53

5.5 References................................................................................................................................................................................ 53

6.0 Primary Production.................................................................................................................................................................. 53

6.1 Introduction............................................................................................................................................................................. 53

6.2 Methods................................................................................................................................................................................... 54

6.2.1 Location........................................................................................................................................................................ 54

6.2.2 Depths........................................................................................................................................................................... 54

6.2.3 Sea Ice Sampling............................................................................................................................................................ 54

6.2.4 Equipment..................................................................................................................................................................... 55

6.3 Data Collected......................................................................................................................................................................... 55

6.4 Preliminary Results.................................................................................................................................................................. 55

7.0 Microplankton studies.............................................................................................................................................................. 59

7.1 Objectives................................................................................................................................................................................. 59

7.2 Methods................................................................................................................................................................................... 59

7.3 Brief Preliminary Results.......................................................................................................................................................... 60

7.4 References................................................................................................................................................................................ 60

8.0 Zooplankton Studies................................................................................................................................................................. 63

8.1 MOCNESS report..................................................................................................................................................................... 63

8.1.1 Introduction.................................................................................................................................................................. 63

8.1.2 Methods and Approach.................................................................................................................................................. 63

8.1.3 Findings......................................................................................................................................................................... 64

8.1.4 Net 0 sampling for Genetic and Stable Isotope studies.................................................................................................... 64

8.2 BIOMAPER-II Survey.............................................................................................................................................................. 67

8.2.1 Acoustics Data Collection, Processing, and Results........................................................................................................ 69

8.2.1.1 Introduction.............................................................................................................................................................. 69

8.2.1.2 Methods.................................................................................................................................................................... 69

8.2.1.3 Results....................................................................................................................................................................... 70

8.2.2 Video Plankton Recorder studies.................................................................................................................................... 73

8.2.2.1 Overview................................................................................................................................................................... 73

8.2.2.2 Methods.................................................................................................................................................................... 73

8.2.2.3 The VPR system........................................................................................................................................................ 76

8.2.2.4 Sampling Methods.................................................................................................................................................... 77

8.2.2.5 Results and Discussion.............................................................................................................................................. 77

8.3 ROV observations of juvenile krill distribution, abundance, and behavior................................................................................ 87

8.3.1 Objective and Methods.................................................................................................................................................. 87

8.3.2 Results........................................................................................................................................................................... 89

8.4 Simrad EK500 Studies of volume backscatter........................................................................................................................... 89

9.0  Seabird Distribution in the Marguerite Bay Area............................................................................................................... 90

9.1 Introduction............................................................................................................................................................................. 90

9.2 Methods................................................................................................................................................................................... 91

9.3 Daytime Surveys....................................................................................................................................................................... 92

9.3.1 Methods........................................................................................................................................................................ 92

9.3.2  Data Collected.............................................................................................................................................................. 92

9.3.3 Preliminary Results........................................................................................................................................................ 92

9.4 Seabird Nighttime Surveys........................................................................................................................................................ 93

9.4.1 Methods........................................................................................................................................................................ 93

9.4.2 Data Collected............................................................................................................................................................... 93

9.4.3 Preliminary Results........................................................................................................................................................ 93

9.5 Diet Sampling.......................................................................................................................................................................... 94

9.5.1 Methods........................................................................................................................................................................ 94

9.5.2 Data Collected............................................................................................................................................................... 94

9.5.3 Preliminary Results........................................................................................................................................................ 94

10.0 Cetacean Visual Survey and Biopsy..................................................................................................................................... 95

10.1 Introduction........................................................................................................................................................................... 95

10.2 Methods................................................................................................................................................................................. 96

10.3 Results.................................................................................................................................................................................... 96

10.3.1 Sightings...................................................................................................................................................................... 96

10.3.2 Biopsy......................................................................................................................................................................... 96

10.4 Preliminary Findings/Discussion................................................................................................................................................ 97

11.0 Passive listening..................................................................................................................................................................... 99

11.1 Introduction........................................................................................................................................................................... 99

11.2 Methods................................................................................................................................................................................. 99

11.3 Data Collected..................................................................................................................................................................... 100

11.4 Preliminary Results.............................................................................................................................................................. 101

12.0 Bathymetry of region and mooring surveys...................................................................................................................... 101

13.0 Science Writers Reports...................................................................................................................................................... 102

13.1 National Geographic Society................................................................................................................................................ 102

13.2 UCSC/NSF........................................................................................................................................................................... 102

CRUISE PARTICIPANTS.............................................................................................................................................................. 103

Appendix 1.  Event Log.................................................................................................................................................................. 105

Appendix 2:  Summary of the CTD casts........................................................................................................................................ 129

Appendix 3:  Summary of the water samples taken on each CTD cast............................................................................................. 131

Appendix 4:  Summary of expendable conductivity-temperature-depth (CTD) probe drops............................................................. 155

Appendix 5:  Summary of the expendable bathythermograph (XBT) drops..................................................................................... 156

Appendix 6:  AWS Installation and Repair Operations.................................................................................................................... 161

Appendix 7:  BIOMAPER-II Tape Log........................................................................................................................................... 164

Appendix 8:  Sonabuoy deployments............................................................................................................................................... 187

 


PURPOSE OF THE CRUISE

 

            The U.S. Southern Ocean Global Ocean Ecosystems Dynamics (U.S. SO GLOBEC) Program is in its first field year. The focus of this study is on the biology and physics of a region of the continental shelf to the west of the Antarctic Peninsula, that extends from the northern tip of Adelaide Island to the southern portion of Alexander Island and includes Marguerite Bay (Figure 1).  The primary goals of this program are:

 

1) to elucidate shelf circulation processes and their effect on sea ice formation and Antarctic krill      (Euphausia superba) distribution; and

 

            2) to examine the factors that govern krill survivorship and availability to higher trophic levels,        including seals, penguins, and whales.

 

            The field program began with a mooring cruise in March and April aboard the R/V L.M. Gould, during which a series of moorings were placed across the continental shelf off of Adelaide Island and across the mouth of Marguerite Bay, and a series of bottom-mounted moorings instrumented to record marine mammal calls and sounds were placed along the shelf.  This cruise aboard the RVIB N.B. Palmer, NBP01-03, is the first in a series of four broad-scale cruises.  A second cruise will take place later this year (July and August 2001) and the other two are intended to take place at the same times in 2002. Our effort is mainly devoted to developing a shelf-wide context for the process work being conducted during the same time periods aboard the R/V L.M. Gould and to providing data sets for input to a series of circulation and biological models. Our specific objectives were:

 


1)    to conduct a broad-scale survey of the U.S. SO GLOBEC study site to determine the abundance and distribution of the target species, Euphausia superba, and its associated flora and fauna;

2)    to conduct a hydrographic survey of the region;

3)    to collect chlorophyll data, nutrient data, and to make primary production measurements to characterize the primary production of the region;

4)    to collect zooplankton samples at selected locations and depths throughout the broad-scale sampling area;

5)    to survey the sea birds throughout the broad-scale sampling area and determine their feeding patterns;

6)    to survey the marine mammals throughout the broad-scale sampling area both by visual sightings and by passive listening techniques;

7)    to map the shelf-wide velocity field;

8)    to collect acoustic, video, and environmental data along the tracklines between stations using a suite of sensors mounted in a in a towed body;

9)    to collect meteorological data; and

10)    to deploy drifting buoys to make Lagrangian current measurements.


 


            The cruise track was determined by the locations of 84 stations distributed along 13 transect lines running across the continental shelf and perpendicular to the west Antarctic Peninsula coastline (Figure 1). The cruise consisted of a combination of station and underway activities (See Appendix 1, Event Log).  The along-track data were collected from the Bio-Optical Multifrequency Acoustical and Physical Environmental Recorder (BIOMAPER-II), the Acoustic Doppler Current Profiler (ADCP), the meteorological sensors, through-hull sea surface sensors, expendable bathythermograph (XBTs) probes, expendable conductivity-temperature-depth (XCTDs) probes, and Sonabuoys.  At the stations, a CTD/Rosette, with oxygen, transmissometer, and fluorometer sensors, was lowered to the bottom, and in depths greater than 500 m, a second cast to 50 m was made with a Fast Repetition Response Fluorometer (FRRF) until an electronic failure put it out of commission.  At selected stations, a 1-m2 Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS) was towed obliquely between the surface and the bottom or to 1000 m if the bottom was deeper for collection of zooplankton (335 Fm mesh).  A surface ring net tow was also made at some stations for collection of phytoplankton.  Satellite tracked drifters were deployed at selected stations.

   

   

Figure 1.  RVIB N.B. Palmer cruise track showing locations of stations and along-track observations.

 

CRUISE NARRATIVE

 

            We left the port of Punta Arenas, Chile around 0900 on 24 April 2001 and began the steam east down the Straits of Magellan.  Along the route, we conducted tests of the BIOMAPER-II handling system and conducted underway noise tests of the HTI acoustic system. In the early evening, members of the testing team, Bob McCabe, Terry Hammar, and Sam Johnston, along with the pilot, disembarked at the eastern approach to the straits, and we steamed in earnest for the Western Peninsula region of the Antarctic continent.

 

25 April

            On our second day out, we steamed along the eastern coast of Argentina and cleared the tip of South America, making about 12 kts.   The trip down along the east coast of Argentina was spectacular.  In the morning, there were high mountains to the west of our course with their tops shrouded with clouds.  Then in the afternoon, we steamed through a fairly narrow strait at the southern end of Argentina, where the mountains rose steeply out of the sea on both sides of the ship (really quite beautiful and wild looking). The winds were light and the seas quite flat.  There was a lot of sun mixed with clouds throughout the day.  The air was cool, around 5EC to 8EC.  There were many sea birds flying and the seabird ecologists were already at work counting them.  They used a small plywood enclosure (a wind break) out on the port wing of the bridge.  The marine mammal people were also active in surveying the area for whales.   They were using the bridge and the ice tower some two stories above the bridge.

 

26 April

            On the morning of 26 April, we were greeted with the roll of the ship in a long period swell.  Although the sea was only choppy in a 10+ kt wind, there was a large swell coming at the ship from the west.  The sky was heavily overcast all morning with the clouds coming down to the sea surface a few hundred meters out away from the ship. By afternoon, the relatively nice seas and weather disappeared and the seas were building along with the wind.  We had sustained winds around 40 kts out of the southeast for a good portion of the afternoon and early evening, and instead of a long period swell out of the west, we had a shorter period sea coming at us from off the port bow (133E) as we continued to steam nearly due south.  The air temperature also dropped from around 4EC or 5EC in the morning to -3.6EC in the evening.  Along with the wind was occasional mixed precipitation. A CTD was scheduled for the afternoon, but was scrubbed because of the wind and seas.  A Sonabuoy was deployed, however, about the time we left the 200-mile limit of Argentina.  Also starting at the 200 mile marker, Eileen Hofmann’s group began shooting XBTs at 10 nm intervals to get temperature/depth profiles to show when and where we crossed the Polar Front. We crossed the front in the evening at 60E 10.29 S; 66E 10.66 W. 

 

27 April

            Our course took us first to Palmer Station located on Anvers Island.  In the early morning daylight, we entered the channel leading to Palmer Station to rendezvous with the R/V Gould.  The silhouettes of mountains rising out of the sea illuminated by the first light of the sun still below the horizon were breathtaking.  For many of us, it was the first time that we had seen a piece of the Antarctic continent.  The sky was mostly clear for the first time in several days and there was just enough light to give the rugged snow covered mountains a blueish tinge.  The ship moved into a deep harbor area a few hundred meters from the station dock where the L.M. Gould was tied up, dropped anchor, and shut down the main engines. From the deck of the ship, we could look into the face of a glacier only a few hundred meters away.  The winds were very much reduced, down to about 15 kts, leaving the sea fairly calm.

            The stay at Palmer Station was short and we steamed back out into the open seas of the shelf region of west Antarctic Peninsula around noon and headed for our first station in the SO GLOBEC grid.  The sunny sky gave way to overcast and then heavier cloud cover.  The winds, however, stayed down until early evening and the seas had only a moderate swell. Snow squalls started in the evening.  During the day, bird and marine mammal observations were made. This was also the first full day of Seabeam data ping editing and the UNIX and MAC workstations in the computer room were fully utilized for a good portion of the day.

 

29 April

            Work commenced at Consecutive Station #1 early in the morning (grid location 499.251) with a couple of CTD casts, a shallow one with the Fast Repetition Rate Fluorometer (FRRF) and a deep cast without the FRRF.   BIOMAPER-II was deployed into the water shortly after the last CTD cast and was towyo’d in a sawtooth pattern between the surface and 200 to 250 m as the ship steamed at about 5 kts towards the next station. For this first deployment, wind was from about 260E at 20 to 25 kts and there was a large swell under white capped seas.  Skies were mostly overcast, but occasionally the sun almost broke through.

            BIOMAPER was taken out of the water around 1130 at station #2 after doing two good towyos because of electrical problems.  We continued to steam to station #3 and the CTD work was continued, along with the bird and marine mammal observations.  We arrived at station #3 by late afternoon and following the CTD, the MOCNESS was brought out on deck and made ready for the tow.  The seas were very rough and fairly frequently the stern would dip under the sea surface and water would flood the deck.  With a light snow swirling across the deck, the MOCNESS frame was outfitted with the deflector flaps, the car batteries for the strobe light system, net response, and net bar traps.  The system was then tested. The deployment of MOCNESS was hampered some because the seas were large and the ship was pitching a lot, but the net went in reasonably well. During the lowering of the net system, electrical problems developed but were corrected before the start of the oblique section of the tow, where nets were sequentially opened and closed successfully. Just at midnight, BIOMAPER-II was deployed with the ship pitching, the wind blowing 30 kts, and a light snow still swirling around us.

 

30 April

            Electronic problems again forced the return of BIOMAPER-II back on board for more trouble-shooting.  During the recovery in high winds and seas, the cable jumped the sheaves in the slack tensioner. The arduous job of getting the wire back on the sheaves in the slack tensioner ensued.  It took about more than an hour to fairlead the wire back in place and finally recover the towed body.  Damage to the electro-optical towing cable made it necessary to cut out the bad section and re-terminate the end, which required a substantial amount of time.  Work, however, continued throughout the day with CTD casts made at stations #5 through #9, and bird and mammal observations taken during the daylight hours. The CTD work was by no means easy, given the sea state.  On several occasions, waves breaking against the ship would flood into the Baltic Room and launch and recovery was often difficult because of the ship’s motion.

 

1 and 2 May

            We completed work at 4 stations on 1 May and 3 stations on 2 May.  The work included eight CTD profiles, three 1-m2 MOCNESS tows, twelve Sonabuoy deployments and three BIOMAPER II deployments.  In addition, the bird and mammal survey groups made a number of sightings. On 2 May, the wind slacked significantly over the previous highs in the 30 kt range during much of the previous days and was in the 5 to 10 kt range out of the west northwest (310E). The air temperature was about -0.1EC.  Large swells continued to make working on the stern difficult and wet, but with the reduced winds, they began to diminish.  During the late afternoon at station #15, we could see the rugged mountains of the western edge of Adelaide Island off to the east.

 

3 May

            This was a windy, cold, and snowy day.  Low clouds and fog dominated, cutting the visibility to a few hundred meters for much of the day.  More evidence of the impending winter conditions was the sighting of an iceberg as we approached station #19.  The station was offset to avoid coming to close to the iceberg and associated fledgling ice chunks.  None of us actually saw the iceberg; it was only visible on radar. Work was completed at stations #16, 17, 18 and 19.

 

4, 5, and 6 May

            On 4 to 6 May, we surveyed along transect leg #5, headed southeast into Marguerite Bay.  During 4 May, the weather was really foggy and wet.  The temperature hovered around freezing and snow was melting on the upper decks of the ship and the melt water was running over their edges, splashing on the lower decks. The wind picked up again too and the seas began to build up from the relatively calm conditions of yesterday and to some extent the day before.  A light snow was off and on all day and usually it came on stronger at night.  We completed work at stations #20, 22, and 23, which were deep stations off the shelf or at the shelf break. May 5th started out cloudy with low visibility, but the sun broke through the clouds and with moderate winds; it was a welcome change from the previous days overcast and snow.  During the evening, snow again fell. During the course of this day, work was completed at stations #24, 25, 26, and 27.  Early on 5 May, during the run to station #24, BIOMAPER-II suffered a failure of the echosounding system and was recovered a couple of hours later at station #24. Work to repair the echosounder took several days.  May 6th also started out with moderate winds and low visibility, but as we steamed into the area south and east of Adelaide Island around mid-day, the clouds lifted to expose more and more of the rugged coastline of the Island and the Western Peninsula, as we approached station #29 around mid-day. Black rock outcropping from snow and ice blankets which covered most of the earth here provided a stark contrast.  Shortly before coming onto station #29, we steamed past an iceberg, the first actually seen on this cruise.  We completed work at stations #28, 29, and 30.

            Late in the afternoon of 6 May, a zodiac was launched from the RVIB Palmer to carry a party of six over to the R/V Gould.  A spare MOCNESS underwater unit on the Palmer was “loaned” to the Gould to replace one that had stopped working. And in return, the Gould sent back some other parts that were needed on the Palmer.  Later in the evening, a second rendezvous took place to pick up another spare part from the Gould, this time one needed for the repair of the echosounder in BIOMAPER-II.

 

7 May

            We were greeted on 7 May by a magnificent sunrise and a grand view of the Western Peninsula’s mountains coming right down to the eastern edge of Marguerite Bay with its snow fields and glaciers.  The sun, still not quite up at 1000, backlit the mountains and gave them a golden halo in the region of sunrise. The air felt cold, although it was still right around 0EC, and there was ice on the helicopter deck - frozen melt water from the snow of the last few days.  Because of the calm seas, the aft main deck was dry, no water sloshing back and forth as was usually the case.  The wind was out of the northeast (075E) at 10 to 15 kts. The partly cloudy skies and considerable sunlight made for good visibility. This, combined with low winds and seas, made for an optimal work environment.  We completed work at stations #31, 32, 33, and 34 and along the trackline between the stations, including deployment of one satellite tracked drifter and five Sonabuoys, five CTD casts, one MOCNESS tow, and bird and marine mammal survey observations.  Steaming between stations was slowed significantly because Marguerite Bay has many shoal areas that are poorly charted.  The Seabeam bathymetry data being collected on this cruise will help remedy this, but the officers on the bridge exercised appropriate caution as we moved through the uncharted areas.

 

8 May

            May 8th was by far the roughest day of the cruise to this point.  Shortly after the deployment of BIOMAPER-II around 0100 at Station 35, the wind and seas began to build and continued building the entire day.  By early evening, sustained winds were over 40 kts, with frequent gusts in the 50-kt range and occasional gusts over 60 kts. CTD casts were not done at survey stations #37, 38, 39, and 40.  Instead,  XCTDs were substituted, but even they had to be deployed from the 01 deck because the main deck was awash.  BIOMAPER-II, however, was left in the water and continued to towyo between stations as we steamed along the survey line at speeds of 4 to 5 kts.

 

9 May

            It was not until the early morning of 9 May that the winds began to drop into the low 30-kt range and the seas started to lessen. At station #41, we were finally able to resume our normal station operations in spite of continued strong winds of 33 to 38 kts out of the north-northeast (020E). This was an improvement over the conditions that had prevailed the past 24 to 36 hours.  Skies were still darkly overcast with the clouds coming down to the sea surface such that visibility was only a few hundred meters.  There was a lot of sea spray as the ship quartered into the sea during the transect out across the shelf on survey transect 6 but very little precipitation. We completed work at the shelf stations #40 and 42 and the offshore deep station #41.  The station work included deployment of two sonabuoys, two XBTs, two XCTDs, two CTDs and one MOCNESS tow.  BIOMAPER-II was towyo’d between the stations, and bird and mammal observations were made along the trackline. The latter station had depths of about 3000 m, and the CTD to the bottom and the MOCNESS tow to 1000 m took about a quarter of the day (6 hours). 

 

10 and 11 May

            A near repeat of the day before yesterday, 10 May had sustained winds in the mid-40-kt range and gusts to 50 kts. We were again in a strong gale and it was a classic Antarctic stormy day.  The cloud cover was 100%. Although daylight came with the skies clear overhead, 100% cloud cover enveloped the area by the afternoon.  Before noon at station #44, a large iceberg was drifting some three miles from where the CTD was being deployed.  From the bridge, it looked like a ghost-ship out in the mists.  The winds intensified during late afternoon and into the evening, and most of the work was centered on drops of XCTDs and the towyoing of BIOMAPER-II between 30 to 40 m and 250 m, although we were able to do a CTD at station #44.   Problems with the BIOMAPER-II towing wire around midnight on 10 May and continued high winds and seas caused the cancellation of the CTD work at stations #45 to 48 and the use of XCTDs instead.  By mid morning on the 11th, however, the winds had died down and the seas were dramatically lower.  In part, this was because we had entered the southern end of Marguerite Bay.  Here, the sea surface was ice-covered and many smallish icebergs were present that dampened the underlying storm swell.  Low clouds and a fine mist, which froze to the metal surfaces of the ship, made visibility limited for most of the day.  Still, it was a spectacular introduction to the beauty of the Antarctic winter seascape. The calm conditions made for excellent Seabeam bathymetric data acquisition and the data exposed the steep walls of the canyon that cuts into the heart of Marguerite Bay.

 

12 and 13 May

            May 12 was a good day for making oceanographic observations.  It began with calm conditions and the steam between stations #52 and 53, which took about nine hours, was marked by sea ice, bergie bits, and icebergs.  By mid-afternoon, we had arrived at station #53, right in the middle of the most impressive ice field with huge icebergs that we had seen thus far this cruise. The ship had to thread its way through the monster icebergs for several hours and they increased with the approach to station #53.  Captain Mike Watson expressed the possibility that there might be a need to change the station location because of the “wall” of ice we seemed to be approaching. But we were able to reach the position and conduct the planned work. A large number of seals, whales, and sea birds were also present in the area around this station. As a result, in addition to a CTD, the Zodiac was used in an attempt to get close to one of the minke whales sighted in the area to do a biopsy and to deploy a sonabuoy, and to collect sea ice samples. 

            During the steam to station #54, while towyoing BIOMAPER-II, the calm conditions gave way to increasing winds and seas.  By the time we reached station #54, conditions had deteriorated to such a degree that we were unable to recover the towed body safely or to do a CTD and MOCNESS tow.  Only an XBT was deployed and a surface water sample was taken. BIOMAPER-II was put down to a safe depth and the ship commenced to steam into the seas for about 12 hrs while waiting for the gale (sustained winds of 40 to 45 kts) to blow through.

            In the early morning on 13 May, the winds had come down to a point where the ship could be turned and headed to station #55, although the recovery of BIOMAPER-II had to wait until we had nearly reached the station.  At station #55, we were able to do a CTD and MOCNESS tow, and then re-deploy BIOMAPER-II for the transit to stations #56 and 57. 

            In spite of the closely spaced wind events and a significant amount of down time, during the 12th and 13th, we were able to do five CTD casts, twelve sonabuoy drops, one MOCNESS tow, two surface water collections, and two ring net tows for phytoplankton.  Between stations, we continued to acquire acoustic, video, and environmental data with BIOMAPER-II and to make bird and mammal observations.

 

14 May

            May 14 began with BIOMAPER-II being towyoed to station #57 and the sea conditions again deteriorating.  A Terascan image of our region showed an intense low pressure system to our west and heading our way.  By the time we reached the station at about 0500, it was clear that the towed body should be brought on board because conditions were likely to get much worse.  Unlike the missed recovery at station #54, this time we were able to safely bring the towed body on board.  The MOCNESS scheduled for this station was scrubbed, but a CTD profile to the bottom was made.  Shortly after that as we started to steam out across the Antarctic Circumpolar Current,  the weather window closed and seas were too rough along the route to permit us to do our planned work with the CTD or BIOMAPER-II.   XBTs and XCTDs plus surface water samples were the only game in town for stations #58, 59, 60, 61, 62, and 63.  So we steamed on with BIOMAPER-II on deck while the offshore survey was being done in very rough seas. By late afternoon, we had reached the end point of the offshore stations and turned onto a much more comfortable course for the steam to the next shelf station # 64, some 37 miles away.

 

15 & 16 May

            May 15 was a relatively benign day compared to the preceding few days and a welcome respite from the marginal working conditions.  Winds were steady at 10 to 20 kts throughout the day and low clouds continued to prevail, but there was only limited precipitation in the form of snow flurries, usually at night. There was still a large swell running - a remnant from yesterday’s high winds. May 16th was the second day of reasonably good working conditions.  Winds for the most part remained under 20 kts until the evening when they began to increase, and the swell was down from yesterday.  Much of the day was spent near the coast of Alexander Island, working in the vicinity of stations #68 and 69 and steaming in between them. An entourage of about 80 seals stayed swimming alongside the ship for several hours after leaving station #68.

            Work over the course of these two days included seven CTDs, three MOCNESS tows, seven sonabuoy and one satellite-tracked drogue deployment, the bird and mammal surveys when possible, and BIOMAPER-II towyo’s between each of the stations.

 

17 May

            The good working conditions of the last two days gave way to less favorable conditions and a good portion of 17 May was spent with near gale conditions (28 to 33 kts) as we steamed out to the edge of the continental shelf on the tenth transect of the broad-scale survey.  The anemometers were not giving very accurate readings because of ice build-up on the propellor blades last night.  In the early evening, the winds dropped to 20-25 kts and working conditions improved enough to permit the CTD to be deployed.  BIOMAPER-II, which was deployed at station #69 on the 16th of May, remained in the water throughout the day and was towyo’d between the stations.  During the day, work was completed at stations #71 to 74 and included two CTDs, two XCTDs, four XBTs, two sonabuoy deployments, two ring net tows (one ended up in the ship’s propellor and the net was destroyed), three bird observation sessions, and the BIOMAPER-II towyo’s.

 

18 May

            By 18 May, a certain monotony had set in as the around-the-clock survey work at and between the stations continued along with the seemingly endless cloudiness and fog, often accompanied by freezing mist or snow flurries.  The shortness of the day was also the subject of conversation, especially for the bird and mammal surveyors, who need the ship to be steaming between stations during a period when there is daylight to make their observations. The weather had moderated significantly from yesterday and the seas were much reduced, enabling all of the programmed activities to take place. Winds were out of the southeast (137E) at about 20 kts and the air temperature was -1.5EC.  We came close to Alexander Island during the early afternoon, but it was cloudy and foggy and there were snow flurries falling, so there was not much to see.  From the bridge, it was possible to get a glimpse of the Island through binoculars while there was still some light (the sun was up for about 3.5 hours on the 18th).

 

19 and 20  May

            The weather continued to be overcast with no breaks to let a little blue sky through during the short daylight period. The winds, which were in the less than 20 kt range for most of the morning, were up around the 30 kt range in the afternoon, giving rise to a rougher sea and marginal working conditions.  Still no work was canceled. On 20 May, the weather was quite good for a change.  Some blue sky was even showing for a portion of the daylight hours. Winds were light and the temperature hovered around freezing.  In the early afternoon on the 20th, the broad-scale survey ended at station #84.  The last activity was a MOCNESS tow (#18).  Around noon from the bridge, Charcot Island was visible to the east with its black rock surfaces showing where it was not covered with a mantle of snow and ice.  Also barely visible was an ice shelf that extended out into the sea away from the island to the southeast.

            The end of the survey also brought an end to the systematic way in which the scientific effort was conducted.  The list of tasks to be completed in the remaining days was large, but when and where they could be accomplished depended to a large extent on finding the right conditions.  The first priority was to find an area with penguins and whales that could be approached using the Zodiac inflatable boats.  To this end, we decided to steam into an embayment east of Charcot Island, which offered some protection from the prevailing northeast wind and was a likely place for some pack ice.  On the way to the embayment east of Charcot Island, the CTD group took the opportunity to define the coastal current structure and hydrography a bit more by taking two CTDs along the way, including one at a location occupied by Stan Jacobs (Lamont-Doherty Earth Observatory) in March 1994, and a series of XBTs.  At the Jacobs’ location, patches of ice chunks coalesced around the ship.  By midnight, as we steamed into the bay from the Jacobs’ location, many large icebergs were visible on radar and the sea ice was thickening.

            During the 19th and 20th , work was completed at stations #79 to 84 of the survey and two additional stations on the way to the embayment east of Charcot Island, including eight CTDs, five XBTs, five sonabuoy deployments, three ring net and two MOCNESS tows, two sets of bird and one set of whale observations, and BIOMAPER-II towyos between each of the stations.

 

21 May

            The Antarctic is known for its snow- and ice-covered mountains, its grand ice shelves, and its frozen embayments, and on 21 May, we had the pleasure of working in the latter and having distance views of the former in remarkably good weather (easterly winds at less than 10 kts and an air temperature about -3.8EC).  Most of the effort was devoted to finding a site where bird and mammal observations could be made from Zodiac inflatable boats and where the first of the ROV deployments could take place for under-ice krill studies.  The area chosen was the embayment bounded by Charcot Island on its north, the Wilkins Ice Shelf to the east, and Latady Island to the south.  We had intended to do a station in the vicinity of the Wilkins Ice shelf edge where it was hoped that we might find whales and penguins, as well as do a CTD survey along its face.  In the early morning of 21 May, however, we found ourselves ploughing ahead at about 3.5 kts into heavier and heavier pack ice and we were still some distance from our intended destination.  Earlier in the transit as we entered the ice field around midnight, there were a lot of sea birds in the high intensity spot lights which are always on and focused ahead of the ship after dark, but in the early morning light we were not seeing any birds or mammals. The bird and mammal researchers did not see any sense in going further, so after entering a lead that had probably recently opened and then frozen, we stopped to take an XBT and get ice samples.  The latter were obtained by putting the personnel carrier with three people aboard over the side with the large main crane and landing it on the ice.  Then we turned around and headed back the way we came, but a mile or two to the north.  By about 1100 hours, we again reached open water and the ice edge. The zodiacs were readied and then the first was deployed for the whale group to use and the second ferried the bird party, after some delaying outboard engine problems were resolved.  During the Zodiac deployments, the ROV was being readied and upon their return, the ROV was deployed for testing and trial runs under the ice late in the afternoon.  Unfortunately, a leak developed in the underwater unit of the ROV and fried some of the electronics.  Fortunately, the parts that fried were not essential and could be by-passed.  By late evening as we were steaming to a new sampling location on the north side of the Wilkins Ice Shelf, the ROV was repaired and ready to again be used.

           

22 May

            This was another day for observing the grandeur of the Antarctic ice-scape. In the pre-sunrise light, we steamed towards the Wilkins Ice Shelf between the northern part of Charcot Island and the southern end of Rothschild Island. The first light was before 0900 and the glow in the sky was just behind the mountains of Rothschild Island, so that the mountains were silhouetted as black against a rose-hued band of light just above their crests and the dark grey of the water leading up to their base.  The visibility was very good with high thin clouds overhead and even a bit of clear sky. The winds remain light and out of the southeast and the air temperature was around -5.3EC.  It was an ideal period for looking for bird and mammal krill predators to study. At a pre-dawn (0845 local) meeting on the bridge of the Palmer, a consensus was reached that we should head towards the Wilkins Ice Shelf between the northern part of Charcot Island and the southern end of Rothschild Island in search of penguins and whales to study from the Zodiacs.  In spite of the good meteorological conditions, we spent most of the day in unconsolidated pack ice that was too thick to effectively operate the Zodiacs, yet too unstable to allow a person to walk on.  We did go deep into the ice pack and got to a place where there were few if any flying birds around the ship and only some occasional seals (leopards and crabeaters) lying on ice chunks.  So around noon, we headed towards Rothschild Island and the site where scientists on the R/V L.M. Gould reported seeing quite a few penguins and seals. Only a couple of penguins were sighted during the daylight period and also a pair of minke whales. 

            In the mid-afternoon, the ROV was again ready for deployment after its electronics had been repaired from the damage caused by a seawater leak. The ship’s track was altered to put us back into the heavier pack ice.  At a location just off some very large icebergs, we stopped and after clearing a hole in the ice pack, the ROV went into the water.  The ROV deployment went very well for an hour or so, and krill larval forms and adolescents were observed moving around on the underside of the ice pack.  The ROV was brought back on the deck in order to adjust the stereographic video cameras to provide a better view of the underside of the pack ice, but on deck, it was observed that the ROV again had leaked water in the electronics housing.  This put an end to the deployment.  We steamed at modest speed during the night through varying degrees of pack ice cover to a rendezvous point with the R/V L.M. Gould in Lazarev Bay.

 

23 May

            Lazarev Bay is bounded on the southwest by Rothschild Island, on the southeast by a small section of the Wilkins Ice Shelf, and on the northeast by Alexander Island.  It had been the work site for the R/V Lawrence M. Gould for the past several days.  Based on information from scientists on the Gould, the Bay provided us with the possible opportunity for conducting bird (especially Adélie penguin) and mammal studies, and ROV studies of under-ice krill abundance and behavior.  We arrived in the Bay late in the night on 23 May with winds out of the west-southwest (145E) at about 12 kts and the air temperature at -2.6EC.  Work began immediately with the ROV to study the distribution and abundance of krill living in the vicinity of the sea ice bottom surface.  This work went smoothly, in spite of a number of seals that found the ROV a subject of interest, until the operation was brought to a halt by water leaking into the underwater housing.  For the daylight operations, we were again in search of penguins and whales, but with the continuous pack ice in the Bay and the low possibility of finding whales present, the focus was on the penguins.  Based on information from Bill Fraser, the Adélie penguin expert on the R/V Gould, we decided to go deeper into the Bay where he said the ice was thicker and we might be able to get to an ice shelf where penguins were likely to come up out of the water around noon after having finished their daily feeding.  About 0900, we headed into the brash ice which flowed around large icebergs distributed throughout the Bay.  Along our route, we did encounter Adélie penguins in ones or twos, occasionally more, but the unconsolidated brash ice they were on was too thick for the Zodiacs and too unstable for a person to walk on. So we could not get to them. Finally about 1300, we got to a point where there were too many icebergs to maneuver around and so we turned to start the trek back toward the entrance of the Bay.  On the way, we came past an immature Emperor penguin on a small flow.  Also present in moderate numbers were several species of seals.  Late in the day, the ROV was again deployed and a series of transects originating from a central point were run under the ice to access krill distributions. The nighttime was used to steam to the next station approximately 50 nm northeast of Lazarev Bay, shooting XBTs at 10 nm intervals along the route.

 

24 May

            On 24 May, we worked in the vicinity of station #53, where we previously had observed many seabirds and seals and a number of whales and what we thought was a dense acoustic scattering layer of krill 80 to 120 m below the surface.  Humpback and minke whales were both heard (via sonabuoy) and sighted a couple of miles before reaching the station location, so we steamed back towards that site until we came across them again. By about 1000, both Zodiac inflatable boats were away, one headed to where the whales were to try to get biopsy samples and the other went over to a patch of brash ice where there was an attempt to catch petrels and see what they were eating. The weather was ideal with no wind, little swell, and for most of the day, a glassy sea surface.  Air temperature was -3.4EC.  Visibility was excellent with high clouds overhead and the work on this day was done with the looming peaks of the mountains of Alexander Island and a large glacier coming down to the shore line just a few miles to our east.  When we were here during the broad-scale survey, the clouds were down to the water and the mountains were not visible. It was a good day for the whale group.  Ari Friedlaender obtained biopsy samples from three humpbacks and one minke whale during the Zodiac forays out into the still waters where the whales were diving among the scattered patches of brash ice.  The bird people did not have as much luck. Chris Ribic and Erik Chapman went out to brash ice patches to try and trick petrels to come close to a cod liver oil-soaked red cloth out on a piece of sea ice so they could net them.  However, the petrels were too quick and none were caught. They did, however, make some interesting biological observations.

            The Zodiacs were out of the water as the last of the daylight faded around 1515.  BIOMAPER‑II went into the water shortly after that (1530) at a location centered where the work with the Zodiacs had been done in order to map a subsurface layer of krill that we had observed earlier in the cruise. This work went until 2130 and was followed by a CTD.  Around 2300, we got underway for the first Automated Weather Station (AWS) deployment site.

 

25 May

            The work on 25 May began with a XBT/CTD section from the northern part of Alexander Island across to the Kirkwood Islands to better define the origins of the coastal current which flows along the coast to the southwest of Marguerite Bay.  This section was finished in the area where the first of two Automated Weather Stations were to be installed (Appendix 6).  We arrived at the Kirkwoods about 0930 and in the dim first light, we started looking at the various islands through binoculars and assessing their prospects as the installation site.  There was only one big piece of rock and it was mostly ice- and snow-covered. We very slowly made our way into a position about a mile or so away from the biggest island after we ascertained that the other smaller pieces of exposed rock were almost certainly covered with water during periods of high winds and waves.  While we were making the observations from the bridge and coming up with a decision about the AWS prospects, the Marine Technicians were loading up the AWS equipment into the Zodiac to be ready if given the go.  The weather was cooperative with winds in the 10 to 15 kts range out of the south (170E) and good visibility (high broken clouds most of the day).  It was cold, however, with the temperature around ‑3.0EC.  Around 1000, the decision was made to launch the Zodiac and make the trip over to the largest island.   A party of six made the trip to the island with Bob Beardsley in the lead and after some difficulty, they found an acceptable landing site and made it onto land. Some five to six hours later, they returned having successfully moved the equipment to the top of the island and done the AWS installation. The second Zodiac was also launched to scout the area around the islands looking for whales and to launch a sonabuoy away from the Palmer, but no whales were seen.

            Once the Zodiac parties were back on board, we set sail for survey station #37, arriving about 2230.  A MOCNESS was tow was completed there just after midnight with winds in the 25 to 30 kts  range coming from the southwest.  This MOCNESS tow and a subsequent one was done to fill a gap in the broad-scale survey tows that resulted from cancellations caused by high winds and seas.

 

26 and 27 May

            The weather early on 26 May made working conditions difficult.  The winds were still around 30 kts during a MOCNESS tow that was completed at survey station #44.  They died down by 0900 and they remained in the 15 to 20 kts range during a survey of the bathymetry around the B-line of the current meter moorings spanning the canyon in the outer portion of Marguerite Bay, which took most of the daylight period.   Following the end of the mooring survey around 1830, a quick steam brought us to the position of survey station #27.  This location was where the BIOMAPER-II echosounder had failed a couple of weeks earlier. The towed body went into the water about 1930, but once in the water, one of the VPR cameras showed up as not being adjusted properly.  So the towed body was brought back on board to adjust the camera.  After the second launch, the towyo trackline went on a course from the vicinity of grid survey station #27 to station #28 and then over to station #31, a distance of about 50 nm.  There was a turn back towards the Faure Islands before it was brought back on board around 0700 on 27 May to make the steam over to the Islands where the second AWS was to be installed. The bathymetry along the transect line was extremely variable ranging from 700 meters to 140 meters. This made it impossible to towyo deeper than about 200 meters.

            The Faure Islands are located  in the northern end of Marguerite Bay and one of the largest is named Dismal Island.  Dismal Island was first charted in 1909 by Charcot and named in 1949 because of its desolateness and loneliness. On the day of the AWS installation, it fit that description.  The Automated Weather Station was installed at the top of a small island (approximately -68E05.5 S; -68E 48.75 W) just to the east of  Dismal Island (Appendix 6).  Winds during the day were in 18 to 22 kts range out of the north-northeast (020). While the heavy cloud layers and occasional snow kept the region looking gloomy during the short period of daylight, working conditions were reasonably good and the installation was done before the last light of the day had disappeared.  The small group of islands was also a good working site for those interested in the diet of penguins.  A couple of hours after the first Zodiac load of gear and people were offloaded onto the island, a second group was ferried over to a second small island adjacent to the first where penguins had been sighted. They managed to catch six Adélie penguins and obtain stomach samples before darkness forced their return to the Palmer. 

            The nighttime period was devoted to surveying the Lebeuf Fjord with BIOMAPER-II, looking for high concentrations of adult krill. Once located, an adaptive sampling approach was taken in an attempt to define the boundaries of the patch.

 

28 May

            During the 28th of May, the krill patch study continued in the northern portion of Marguerite Bay throughout the day and into the evening. The winds for the most part were in the 10 to 15 kts  range out of the north (011E) and air temperature was -0.7EC.  In addition to using BIOMAPER-II to define the krill patch structure with the acoustics and Video Plankton Recorder, two horizontal MOCNESS tows were done within a portion of the krill layer that was well defined.  A CTD profile was also made within the area where high concentrations of krill were observed.  During the day, the winds were a steady 25 kts out of the north-northeast (020E) and this precluded putting the Zodiacs over the side to enable the whale group to attempt additional whale biopsies.  There were several humpbacks in the area that were sighted from the vessel and were heard on the sonabuoy transmissions close to where the highest concentrations of krill were observed.

 

29 May

            Between midnight and 0500 on 29 May, the krill patch study was concluded with the completion of two additional MOCNESS tows.  Then the ship steamed over to the eastern side of Marguerite Bay to the San Martin Station manned by Argentina. Two days earlier, we received an invitation by Base Leader, Captain Carlos Martin, to visit the station. They had discovered our presence in the area by chance and welcomed the opportunity to have us see their station. We arrived around 1030 and anchored about a mile from the station (-68E08.765 S; -67E06.374 W).  Then the Zodiacs were used to ferry most of the scientists and a number of the crew to the base for a 3 to 4 hour visit.  The winds were quite light and the sea nearly smooth and the air temperature was -3.8EC.  But we could not see much of the mountains around the station because of the snow which was coming down in a light to moderate fashion. 

            The station has a series of reddish buildings which serve a variety of purposes and there are a number of antennas distributed as an array throughout the station area.  It has been in existence since 1951.  The work of the station is mainly geophysical and astrophysical. The nineteen personnel, all male, are there for a year, and they had just completed the first two months of their stay, which ends next March.  Most are in the military and the two civilians present represent the scientific contingent.  The others provide support and maintain the station. Communication now is by radio, but a satellite system will be in place by July to enable data telemetry and voice communication.

            Our hosts gave us a tour of the station that included the science laboratory space, living quarters, the game room, the food storage buildings (freezer and dry stores), the garage with the skidoos and 4-wheel drive snowmobile, the carpentry shop, and the helicopter pad.  All of their supplies come in once a year when the exchange of personnel takes place.  There is also a medium-sized two story structure which the Captain referred to as their “House”.  The downstairs portion had a “mud” room for taking off boots and winter outer clothing, an exercise room, and other storage spaces. Upstairs was a cozy environment for eating, socializing, and entertainment (movie viewing, etc.). Wood-lined ceiling and walls gave the place a warm feeling. And in the middle of the biggest room was a table filled with plates of specially prepared foods and an assortment of drinks. Filling this room were about 35 visitors from the Palmer and 15 or so of the residents.  Our host described highlights of Argentina (which he called our “temptation”), the history of the station, and its mission today.  Then about 1300, there was an exchange of small gifts, the eating of the food, and the cutting of a cake made for the occasion.  It was a very good time and it was clear that they were very happy to have us accept their invitation.  Likewise, our group very much enjoyed their hospitality and the opportunity to visit their station.

            With the light fading fast, the group started moving down to shore, a boat load at a time, and by 1530 or so, all had returned to the Palmer and the anchor was hauled up.  By 1600, we were back to steaming for the next station and the final few of days of work before we head for Punta Arenas.

            We steamed about 40 nm over to just north of the Faure Island group and began a CTD/BIOMAPER-II section that was intended to sample the coastal current along the southern end of Adelaide Island.   First, a CTD cast was done at consecutive station #91 in about 200 m of water and then BIOMAPER-II was put into the water for towyoing to the next station about 8 nm away.  The bottom topography, as we steamed to station #92, was very shallow and much like a roller coaster.  Most of the shallow topography was not on the charts and it was slow going. We reached the second CTD site around midnight on 28 May.  After the transects were started, word was received from the University of Wisconsin, Antarctic Meteorological Research Center that the software in the AWS on Kirkwood Islands that logs the wind speed was faulty and needed to be fixed to enable wind speeds above 5 m s-1 (10 kts) to be recorded.

           

30 and 31 May

            The series of short transects and CTD stations to define the coastal current off the southwestern portion continued during the early morning of 30 May with the weather a bit better than the previous day.  The winds were light, < 10 kts, and there was no snow, although it remained well below freezing, around -4.0EC.  High broken clouds allowed much better visibility. BIOMAPER-II was in the water and we were just finishing the CTD at station #94 when a facsimile transmission was received around 0900 that had the code to do the software fix for the ailing AWS wind speed logger.  The survey was discontinued and with the gear on board, we steamed for the Kirkwood Islands to repair the AWS.  By 1230, we had arrived at the Kirkwoods.  In spite of less than optimal conditions, a Zodiac with a party of six made its way through the choppy seas to the Island.  They had some difficulty finding a landing spot because the surf was up much more than 5 days earlier when the installation took place.  Eventually, a spot was found where they could get ashore.  Around 1415, as the light of the day was fading, the group finished the job and were picked up by the Zodiac, which had been waiting just offshore. While the island party was doing the AWS repair, a test of the track point system was being conducted on board the Palmer to see whether a repair of the cable was successful.  Jan Szelag had discovered at least one of the wires was broken in the base of one of the cable terminations and it may have been the reason for the poor performance of the track point system to date.  A final test was done when the Zodiac returned to the side of the Palmer.  A transducer was put at 3 m over the side of the inflatable and boat then drifted out away from the side of the ship while track point system tried to follow them.  This was done successfully.

            By 1600, the ship was back underway for the place where work had been stopped in the morning.  BIOMAPER-II was deployed when the break-off point was reached about 1930 and towyos were recommenced along the trackline to station #95 where the next CTD was done.  The last of the coastal current CTD stations (#99) in the section was completed about 1000 on the 31st after BIOMAPER-II was brought on board.

            We then steamed northeast to the location of mooring A1 (-67E01.134S; -69E01.217 W) in calm seas and light winds (about 10 kts out of south-southwest at 215E) and with an air temperature (-5.0EC) that was fostering the development of sea ice.  Large patches of sea ice occurred along the trackline. Early in the transit, the coastline of Adelaide Island was visible with the cloud line nearly down to the water in some places and peaks showing in others.  The sun, low in the sky, was out and casting shadows on the mountains and on the sea ice chunks as they flowed by.  The bright rays created a rainbow where snow showers were coming down between us and Adelaide Island. 

            During the Seabeam survey of the bathymetry around mooring A1 in the early afternoon, the skies cleared over the mountains of Adelaide Island and a magnificent view appeared.  The tall white snow-cloaked mountains with almost no rock showing merged at their base with the Fuchs Ice Piedmont. This tremendous ice sheet is 610 meters or so high at the top and 30+ meters tall where the ice shelf meets the ocean.  Many crevasses were evident along the margin of the shelf and it became evident why there were so many icebergs present in the local waters.  From our work site, the ice shelf edge was about 9 nm away and the mountain peaks were about 20 nm. During the period of the survey (1300 to 1430), the sun, which had shown so brightly at the beginning, was setting by the time we left the site and deep shadows developed on the mountain sides that disappeared a short time later, leaving only the peak tops lit  for a few minutes before they too faded into dusk.

            Following the Seabeam survey, we steamed to the near shore end of broad-scale survey transect #2.  But instead of stopping at survey station #6, the ship was moved in towards the ice shelf edge to where the water was about 100 m deep to define the inner edge of the coastal current in this area.  This depth occurred about 1.5 miles from the ice cliffs.  There a CTD profile was made around 1700 and then the ROV was deployed to look for krill under the sea ice, which was 10/10 in the area.  BIOMAPER-II was put back into the water after the station work was completed and the towyos along survey transect line #2 were started about 2200 on the 31st.  Along the trackline, XBTs were dropped at 10 nm intervals.

            The 31st of May was also noteworthy because of a visit from King Neptune.  Pollywogs, those who had never crossed the Antarctic Circle, were sought to attend his appearance, which included his entourage of experienced circle crossers. The induction process that ensued was interesting, some might say fun, and largely enjoyed by all who participated in it.

 

1 June

            June 1 was the final day for collecting data in the Southern Ocean GLOBEC broad-scale survey of research site. A BIOMAPER-II towyo section along transect line two was completed about 1430.  This line was re-run because during the original survey, technical problems caused us to miss getting data with the towed body along this line.  After a short steam, two deep CTD stations were completed at locations beyond the continental shelf that were extensions of the lines of stations on survey transects one and two. The CTD came back aboard after the final cast about 2230.  The weather during the day was ideal for surveying birds and mammals. Skies had a high cloud overcast and visibility was very good. Winds remained under 10 kts out of the east-southeast for most of the day and the air temperature was -5.0EC.  Thus, the seas were calm and once clear of the inshore area, free of sea ice.

 

2-6 June

            The RVIB N.B. Palmer left the Western Antarctic Peninsula continental shelf research site of the U.S. Southern Ocean GLOBEC program and began the trek back to Punta Arenas, Chile around midnight on 1 June.   During the first day of steaming into the Drake Passage, we were met with near gale winds of 28 to 34 kts out of the east (090E).  Although the last of the station work was completed yesterday, XBTs were taken at a number of locations as we crossed the Polar Front and sonabuoys were deployed as needed to listen for marine mammal calls and sounds until reaching the 200-mile limit of Argentina. During the transit, the scientific party packed samples and gear either for storage in Chile awaiting the next cruise which begins in mid-July 2001 or for shipment to the U.S.  Leaders of the research parties wrote up sections for the cruise report. We arrived in Punta Arenas on the afternoon of 5 June, some 18 hours ahead of schedule.

 

INDIVIDUAL PROJECT REPORTS

 

1.0  Report for Hydrography and Circulation Component

 

Hydrography Group Personnel: Eileen Hofmann, Robert Beardsley, Susan Beardsley, Mark Christmas, Susan Howard, Baris Salihoglu, Rosario Sanay, Aparna Sreenivasan

 

1.1 Introduction

 

            The overall goal of the U.S. Southern Ocean GLOBEC program is to elucidate circulation processes and their effect on sea ice formation and Antarctic krill (Euphausia superba) distribution and to examine the factors that govern Antarctic krill survivorship and availability to higher trophic levels, including penguins, seals, and whales.  Consequently, a primary objective of this first U.S. SO GLOBEC broadscale survey cruise (NBP01-03) is to provide a description of the water mass distribution and circulation on the west Antarctic Peninsula (WAP) continental shelf in the region of Marguerite Bay.

            Historical hydrographic data for the region covered  during NBP01-03 are limited.  However, these data show that the water masses in the area consist of Antarctic Surface Water (AASW) in the upper 100 m to 120 m, a cold Winter Water layer at 80 m to 120 m, and a modified form of Upper Circumpolar Deep Water (UCDW) that covers the shelf below the permanent pycnocline at 150 m to 200 m.  The UCDW, which is the source for the modified water on the WAP shelf, is found at the outer edge of the continental shelf at depths of 200 to 600 m.  Thus, the first objective of the hydrography component is to fully describe the water mass distribution on the WAP continental shelf.  The hydrographic distribution from this cruise will also provide a base line for assessing changes observed in subsequent cruises. 

            Circulation in the study region, which has been inferred from the limited hydrographic observations, suggests a clockwise gyre on the continental shelf near Marguerite Bay, upwelling of UCDW at specific sites in the study region, and across-shelf flow of UCDW into Marguerite Bay at depth.  However, the details of the circulation and the spatial and temporal variability of the flow remain to be determined.  Thus, the second objective of the hydrography component is to provide a description of the large-scale circulation for the portion of the WAP continental shelf included in the study region.  The resulting circulation distribution can then be compared with drifter measurements, moored current measurements, and circulation distributions derived from theoretical models.

 

1.2 Data Collection and Methods

 

1.2.1 Data Distribution

            The hydrographic data set was collected from individual stations that were aligned in across-shelf transects that ran perpendicular to a baseline situated along the coast.  The base survey grid consisted of thirteen across-shelf transects and 84 stations.  However, as described below, 17 of the original survey stations were not occupied due to weather, and survey station #21 was dropped from the grid after deciding it was not necessary to extend the survey grid further beyond the shelf break.  The stations were run from north to south, starting with the outer shelf station on survey transect one.  Spacing between transects was 40 km; station spacing along individual transects varied from 10 to 40 km.  As the cruise progressed, 18 additional stations were added to the survey grid to provide environmental data for specialized studies and to provide coverage in regions not included in the original survey grid.  As a result, a total of 84 hydrographic stations were occupied during the cruise, giving the same number of stations as originally planned. 

 

 

1.2.2 CTD and Water Samples

            The primary instrument used in the hydrographic work was a SeaBird 911+ Niskin/Rosette conductivity-temperature-depth (CTD) sensor system.  The CTD included dual sensors for temperature and conductivity.  Other sensors mounted on the CTD-Rosette system were for measuring dissolved oxygen concentration, transmission (water clarity), fluorescence, and photosynthetically active radiation (PAR).  All CTD profiles were done to within 5 to 20 m of the bottom, depending on weather and sea state conditions.  At stations where the bottom depth was more than 500 m, a second CTD cast was made to 50 m with a Fast Repetition Rate Fluorometer (FRRF) mounted on the Rosette.  In all, 102 casts were made with the CTD (Appendix 2).

            The 24-place Rosette was equipped with 10-liter Niskin bottles.  The number of discrete water samples taken on each cast was variable (Appendix 3).  However, samples were generally taken at the surface and bottom, above and below the oxygen minimum layer, at the oxygen minimum layer, and at a series of standard depths between 50 m and the surface. Additional water samples were taken in order to better resolve specific features seen in the vertical profiles.

            On each cast, water samples were taken at several depths for salinity determinations to be used for calibration of the conductivity sensors on the CTD (Appendix 3). A total of 431 bottle samples were collected for salinity analysis during the 102 CTD stations made on NBP01-03. The bottle conductivities were measured during the cruise using the NBP Guildline AutoSal 8400B No. 2 laboratory salinometer, and the values converted to salinity using the MATLAB program read_bot_data. The CTD primary and secondary temperature and conductivity sensors were compared to look at internal consistency, and the salinity values computed using the primary sensor set were then compared with the bottle salinities.  Figure 2 shows these comparisons for the 431 samples, and a summary of the mean difference and 95% confidence limit of the mean difference are as follows:

 

Differences between the CTD primary (0) and secondary (1) temperature (T) and salinity (S)  sensors,

T0 - T1 = 0.0013 +/- 0.0047 °C,  for N=399

S0 - S1 = -0.009 +/- 0.0047 psu, for N= 413

 

Differences between the primary sensor (0) and secondary (1) CTD sensors and bottle (b) salinity values,

 

S0 - Sb = -0.0002 +/- 0.0053, for N = 388

S1 - Sb = -0.0007 +/- 0.0053 psu, for N = 390

 

Difference values greater than +/- 0.01 were not included in the computation of mean and confidence limits.

            Overall, the NBP CTD worked well. The differences between the primary and secondary temperature and conductivity values were small throughout the cruise, with no indication of change with time in temperature and only a slight suggestion of drift in conductivity. The resulting primary and secondary salinities agree well, with a mean difference less than -0.001 psu for the entire cruise.

            The comparisons of the primary and secondary salinities with the bottle salinities suggest: 1) a small drift over time by both primary and secondary salinities relative to the bottle salinities, and 2) a small jump between the primary and bottle salinities starting about sample 350. The overall drift between CTD and bottle salinities is small.

            Linear regression between the primary minus bottle and secondary minus bottle values versus sample number gives a mean drift of -0.0014 psu and -0.0027 psu, respectively, over the first 350 samples (these two drifts are statistically different from zero, but not each other at 95% confidence). The shift between primary and bottle salinities around sample 350 is believed due to contamination of the conductivity cell during the cast at station #84. The salinity profile at this station exhibited both positive and negative jumps not noticed at any other station. The primary sensor set was flushed with distilled water after the station and the next CTD cast at station 85 appeared normal. However, Figure 2 suggests that there was a small shift in the primary conductivity cell, resulting in a mean difference of -0.0032 psu from the bottle values. The apparent lack of a similar jump in the secondary cell suggests that the jump observed with the primary cell was not due to any subtle change in the AutoSal accuracy and stability.  Even with these small drifts and jump, the CTD produced data of very high quality during the entire cruise.


             

Figure 2.  Comparisons between bottle salinity data and the difference in the primary (0) and secondary (1) temperature and conductivity sensors on the CTD (top two panels), the difference in salinity calculated from CTD conductivity (middle panel), and the difference between CTD-derived salinity

and bottle salinity for each sensor (bottom two panels).


            On most CTD casts, water samples were taken for determination of dissolved oxygen concentration (Appendix 3).  A total of 366 oxygen samples were taken during the cruise.  The oxygen samples were analyzed on board the ship, usually within 48 hours of collection, using an automated amperometric oxygen titrator developed at Lamont-Doherty Earth Observatory.  Comparison of the titrated oxygen values with the corresponding values from the oxygen sensor on the CTD (Figure 3) showed excellent agreement.   Also, the comparison of the titrated and CTD-measured oxygen concentrations did not show any drift or trend over time.  Thus, no corrections to the dissolved oxygen concentrations obtained from the CTD are indicated.  However, a more detailed look at the comparison data will be made to determine if any corrections are needed. 

 


Figure 3.  Comparison of dissolved oxygen concentration obtained from titration and

the corresponding value obtained with the oxygen sensor on the CTD.

 

 

            Preliminary processing of the CTD data was done during the cruise using the procedures and algorithms given in UNESCO (1983).  The temperature and salinity values were plotted and compared with historical data sets to check the accuracy of the data.  Additional checking of data quality consisted of comparing the temperature and salinity values obtained from the dual sensors on the CTD.  These comparisons showed deviations that were at the level of instrument precision. However, additional checking and post-cruise calibration of the sensors on the CTD by SeaBird remains to be done. It is anticipated that the final hydrographic data set will not differ substantially from what is described in this report. 

            Water samples for nutrient determination were taken from each Niskin bottle on each cast.  The methods and techniques used for this are described in section 5.0 of the cruise report.  Similarly, water for chlorophyll determination was taken on each cast and the methods and techniques used for this are described in section 6.0 of the cruise report.  The discrete chlorophyll samples provide calibration for the fluorometer on the CTD. 

                       

1.2.3 Expendable Probes

            The intent was to make CTD measurements at each survey station.  However, at 17 of the stations, the weather conditions were such that it was not possible to deploy the CTD.  At these stations, either an expendable CTD (XCTD) or expendable bathythermograph (XBT) probe was deployed.  The XCTD probes provide data to 1000 m.  The XBT data were collected using either T-4 (nominal depth of 460 m), T-7 (nominal depth of 760 m), or T-5 (nominal depth of 1830 m) probes.  The XBT probes were also used to increase the resolution of temperature measurements in specific sections of the survey grid.  The XCTD and XBT probe drops are summarized in Appendices 4 and 5, respectively. 

            The XCTD and XBT probes were deployed using a hand-held launcher, either from the main deck or the 01 deck of the ship, depending on weather conditions.  The XCTD and XBT probes were manufactured by Sippican and had a high failure rate.  It was frequently necessary to use several probes to get a single profile.  This was especially true for the XCTD probes, which had about a 25% failure rate.  Comparisons between the vertical profiles obtained with the XCTD and XBT probes and those obtained with the CTD show no appreciable differences.  Thus, no calibrations are necessary in order to merge the two data sets. 

 

1.2.4 ADCP Measurements

            The RDI 150 kHz Acoustic Doppler Current Profiler (ADCP) system mounted in the hull of the RVIB N. B. Palmer was set to begin collecting data at 0300 GMT on 25 April 2001 at the start of the SO GLOBEC cruise.  The system continued to collect data until 5 June 2001, when it was turned off at the end of the cruise.  Thus, the ADCP system ran continuously throughout the cruise without any instrument or software problems.  The ADCP system was configured to acquire velocity measurements using fifty eight-meter depth bins and five-minute ensemble averages.  This configuration provided velocity measurements from the first bin, at 31 m, to 300 m and sometimes 400 m.  Depth bins two through ten were used as the reference layer.

            The ADCP was run in bottom tracking mode during times when the survey was taking place in water with depths less than 500 m.  Because much of the area included in the survey grid is less than 500 m, the majority of the ADCP data were collected in this mode.  Bottom tracking was disabled during times when the survey extended beyond the continental shelf edge and into deeper water for several hours. 

            Preliminary processing of the ADCP data was done during the cruise using an automated version of the  Common Oceanographic Data Access System (CODAS) developed by E.  Firing and  J.  Hummon from the University of Hawaii.  Maps of the ADCP-derived current vectors along the ship track were generated at daily intervals.  Overall, the automatic data processing provided good quality data.  However, some editing of the ADCP data was needed to remove large current vectors that occurred during times of intense storms when the ADCP had trouble maintaining bottom track mode due to ship motion.  These periods account for the gaps that appear in the current velocity distributions.  It is anticipated that the final ADCP data set will not differ substantially from what is provided in this report. 

 

1.3 Preliminary Results

 

1.3.1 Water Mass Distributions


            The potential temperature-salinity (2-S) diagram constructed using all of the CTD and XCTD data (Figure 4) allows the water masses in the study region to be identified.  Temperatures of -1.5°C to 1.0°C and salinities of 33.0 to 33.7 at F2 values of less than 27.4 represent AASW.  The large scatter in these data indicates the temporal changes in the AASW that occurred as this water mass underwent seasonal heating and cooling.  The temperature minimum at about -1.5°C at salinities of 33.8 to 34.2 is associated with Winter Water.  The signature of Winter Water is eroded by mixing and seasonal heating and this is reflected in the 2-S diagram by the deviation of this water from -1.8°C and 34.0.

 


Figure 4.  Potential temperature-salinity diagram constructed using the CTD data collected

during NBP01-03. The contours represent lines of constant sq and the small box indicates the region characteristic of Circumpolar Deep Water.  The dashed line indicates the freezing point of water

as a function of salinity.

 

 

 

            The cluster of points on the 2-S diagram at temperatures of 1.0°C to 2.0°C and salinities of 34.6 and 34.7 represents Circumpolar Deep Water.  This water is composed of two varieties: Upper and Lower Circumpolar Deep Water.  The Upper CDW is characterized by a temperature maximum at a density of 27.72.  Lower Circumpolar Deep Water is characterized by a salinity maximum of 34.72 at a potential density of 27.8. 

            The majority of the points on the 2-S diagram are associated with a modified form of Upper CDW.  This water is the result of mixing of the Upper CDW with AASW on the shelf.  The modified CDW water is characterized by temperatures of -1.5°C to 1.5°C and salinities of 34.3 to 34.6.

            An additional water type seen on the 2-S diagram is characterized by temperatures of -1.6°C to -1.7°C and salinities of 33.4 to 33.0.  This water was observed in the CTD casts from inshore waters near the ice shelves on Adelaide Island.  The cold, fresh water is found at the surface and is the result of melting from the ice shelves. 

 

1.3.2 Distribution of Temperature Maximum Below 200 m

            An approach for determining the circulation in the study region is to map the distribution of the temperature maximum below 200 m (Figure 5), which tracks the movement of UCDW and modified CDW on the WAP shelf.  This approach assumes that the isotherm patterns can be used to approximate the current flow.

            The southern boundary of the Antarctic Circumpolar Current (ACC) is denoted by the 1.6°C isotherm and the southern ACC Front is denoted by the 1.8°C isotherm.  Both isotherms were present along the outer edge of the continental shelf over the entire survey grid.  This indicates that the ACC was situated along the shelf edge for the duration of the study.  There is no evidence of a shelf-slope front, which is as expected for this region.  Temperatures greater than 1.6°C were found extending onto the WAP shelf in two places.  The first is at the northern end of the survey grid and is associated with a meander in the southern ACC boundary.  This meander resulted in a bottom intrusion of warm CDW onto the shelf.  The onshore movement of the warm water at depth is aligned with a deep depression that connects the outer shelf and the inner portion of Marguerite Bay.


            The second occurrence of 1.6°C water on the shelf is near survey transect seven.  Again, a meander in the southern boundary of the ACC occurs which produces a bottom intrusion of upper CDW on the shelf.  This second meander is associated with a topographic feature that extends seaward from the continental shelf edge. 

            A third bottom intrusion of upper CDW is suggested by the occurrence of 1.3°C water inside of Marguerite Bay.  The isotherm pattern suggests that this event is separated from the intrusion that is occurring at the northern end of the survey grid.  The reduced temperature associated with this feature suggests that it is an older intrusion in which the upper CDW has been modified by mixing with the shelf water and AASW. 

            The isotherm pattern on the inner shelf in the northern part of the survey grid suggests a southerly flow along the coast that turns around Adelaide Island and enters Marguerite Bay.  This isotherm pattern continues around the southern portion of the inner Bay, extending into the far southern corner of the Bay.  The isotherm pattern in the southern portion of the Bay along the coast of Alexander Island suggests flow out of the southern end of the Bay onto the continental shelf.  The isotherms extend outward across the shelf where they spread and mix with the shelf waters.

           

1.3.3 ADCP-derived Current Distributions

            The ADCP-derived current distribution between 31 and 75 m over the survey grid (Figure 6) shows patterns that are consistent with those suggested by the distribution of the maximum temperature below 200 m.  The largest currents are at the shelf edge and are associated with the ACC.  These currents are to the north-northeast and deviations from this direction are in the areas where the southern boundary of the ACC meanders onto the WAP continental shelf.

 

 


 

 


Figure 5.  Distribution of the temperature maximum below 200 m constructed from CTD

temperature observations taken during NBP01-03.  Station locations are indicated by dots.

 

 

           

            The currents along survey transects one and two show reversals that coincide with the flow in the meander that produces the bottom intrusion of UCDW.  Currents associated with the second meander on survey transect seven are larger, reflecting the stronger flows associated with the southern ACC boundary.

            Currents over the shelf tend to be small, on the order of 8 to 10 cm s-1.  Shelf currents are predominately to the south-southwest.  The coastal current on the inner shelf is well resolved in the ADCP-derived current distribution.  This current flows south-southwest along the outer part of Adelaide Island and turns into Marguerite Bay around the southern tip of the Island.  Velocities associated with the current are on the order of 10 to 25 cm s-1.

 


Figure 6.  ADCP-derived surface currents plotted along the cruise track.  The velocity vectors

represent averages in both space (31-75 m vertical depth averages) and time (2 hr averages).

The 3000 m, 2000 m, 1000 m, and 500 m isobaths are shown as solid black contours.  The

heavy black line represents the edge of the ice shelves.

                       

 

 

            The flow out of Marguerite Bay around Alexander Island is seen as a coherent current along the inner shelf region until the end of the area included in the survey grid.  Velocities associated with this current are similar to those observed for the current flowing into Marguerite Bay. 

            The currents within Marguerite Bay appear to form two clockwise gyres.  The presence of the two gyres may be the result of bathymetry control on the flow in the Bay.  If Marguerite Bay does have two circulation cells, then this has implications for exchanges within the Bay and with the adjacent continental shelf.  Finer scale mapping of the current distribution in Marguerite Bay should be incorporated into the survey design of future Southern Ocean GLOBEC cruises.

                                                                       

1.3.4 ADCP-derived Shear and Richardson Number Profiles

            Large shears in velocity profiles obtained from the ADCP data were present at a number of CTD stations occupied during NBP01-03. To investigate if these shears were strong enough to cause active mixing in the water column, gradient Richardson numbers were estimated using the ADCP-derived shear and CTD density data. Gradient Richardson numbers smaller than 0.25 indicate active mixing, and values less than 1.0 suggest that mixing is probable.


            The gradient Richardson number is defined as Ri = N2/Shear2, where N is the buoyancy frequency and the Shear is the total vertical current shear. To calculate Ri, the x and y components of shear were first calculated between adjacent 8-m bins using the mean U and V profiles computed from the individual ADCP profiles collected during the CTD cast. The total shear was then:

 


and N was calculated from the density profile derived from the CTD temperature and salinity data collected at that station. The density data were then averaged into 8-m bins corresponding to the depths of the ADCP bins to give N at the center of the shear estimate.


            Plots of U, V, shear, density, buoyancy frequency, and gradient Ri numbers for CTD stations 3 and 15 are shown in Figures 7 and 8, respectively. These two figures illustrate different regimes found at stations along the survey grid. Station #3, having higher Ri numbers, appears to be much more stable than does station #15. To determine the cause(s) of the differences, we looked at both the stratification and shear. Although station #3 has a stronger peak in buoyancy frequency than station #15, the value of N is very similar below 100 m. The shear at station #15 is much greater below 100 m than the shear at station #3 and results in the lower values of Ri found at station #15. Station #3 was located at mid-shelf, while station #15 was located in the coastal current flowing along the coast of Adelaide Island. Whether there is a systematic pattern of lower Ri numbers in the fresher coastal currents as opposed to the more saline shelf water remains to be determined once similar analyses are done for all stations made during NBP01-03.

            One point of showing the shear and Ri profiles at these two stations is to illustrate the presence of both weak and strong shears in the SO GLOBEC study region. The cause of the strong shear found at station #15 is not clear at this time. Possible candidates include inertial motion and internal tidal motion. The inertial period is roughly 12.9 hours in this area, close to the M2 period of 12.42 hours, so differentiating inertial from tidal motion is difficult with short current records. A drifter deployed on this cruise exhibited inertial/tidal motion for about three days, with major and minor axes currents of 17 and 14 cm s-1, respectively. Identifying the sources of strong current shear is an important program goal, since they may cause significant mixing at depth in this area and play an important role in water mass formation and evolution.

 

1.4 Acknowledgments

 

Much of the credit for the high quality hydrographic data set collected during NBP01-03 is due to the efforts of Raytheon marine technicians, Matthew Burke and David Green, and electronics technicians, Jan Szelag and Jeff Ottern.  Their willing and cheerful response to all requests made the collection of the hydrographic data set a pleasure.  Their efforts are most appreciated. 

 


 


Figure 7.  Top panels (from left to right): Plots of U, V, and shear at station #3.  The heavy black

line represents the average of U and V on station.  Lower panels (from left to right): plots of the

density, buoyancy frequency, and Richardson number at station #3.  The dotted line marks the

location of the Ri=0.25.  The dashed line marks the 1.0 value.

 

 

 

2.0 Drifter Measurements  (Bob Beardsley and Dick Limeburner)

 

2.1 Introduction

 

            Surface drifters are being deployed and tracked via satellite to study the near‑surface Lagrangian currents in the SO GLOBEC study area on the western Antarctic Peninsula Shelf.  Each drifter has a small (~ 30 cm diameter) surface float with ARGOS transmitter and batteries tethered to a holey sock drogue centered at 15 m below the surface.  The drogue, about 10 m tall and 1 m in diameter, is designed to "lock" itself to the water so that the surface float follows the mean water motion at 15 m depth with very little slippage even in high winds.  Thus measuring the drifter's position as a function of time provides a Lagrangian measurement of the 15-m ocean current.  The drifter's signal is picked up by satellite and its position determined roughly 10 times each day with an accuracy of better than 1 km.  The raw time/position/water temperature/drogue data are sent daily to Dick Limeburner at WHOI, who edits and filters the data to remove tidal and higher frequency motions and then sends the resulting 6‑hourly time and position data for all drifters to date to the ship as a MATLAB file attachment in an email.

 


Figure 8. Top panels (from left to right): Plots of U, V, and shear at station #15.  The heavy black

line represents the average of U and V on station.  Lower panels (from left to right): plots of the

density, buoyancy frequency, and Richardson number at station #15.  The dotted line marks the

location of the Ri=0.25.  The dashed line marks the 1.0 value.

 

 

 

2.2 Drifter Deployments on NBP01‑03

 

            Eight surface drifters were deployed during NBP01‑03.  These drifters augmented the six drifters launched during the first SO GLOBEC mooring cruise LMG01‑03.  The drifters were obtained from ClearWater and NOAA. Table 1 gives the launch time and position for each drifter and its status as of 1 June 2001, the last day that drifter data were sent to the ship. 

 

 

 

 

 

Table 1.  List of launch times and positions and status as of 1 June 2001 for the 14 surface

drifters deployed to date as part of the SO GLOBEC program.  The month, day, and time of the

last good data for the three drifters that ceased operation early is also given.

 

 ID

Time (GMT)

Latitude

Longitude

Status 

a1

3 26 23.01

‑68 20.71

‑71 26.74   

Off (5 6 0:00)

a2

3 30  6.84

‑68 54.42

‑74 54.24

On

a3

3 30  7.78

‑69 09.82

‑75 21.40

On

a4

3 30 14.48

‑68 12.75

‑74 55.98

On

a5

3 31  1.63

‑66 30.99

‑71 08.87

On

a6

3 31 20.48

‑66 45.43

‑70 57.86

Off (4 5 18:00)

a7

5  3  6.65

‑68 23.71

‑67 18.94

On

a8

5  5 19.40

‑68 55.15

‑67 45.48

On

a9

5  7  6.82

‑69 00.27

‑68 50.45

On

a10

5  8  8.42

‑68 50.25

‑71 26.11

Off (5 22 0:00)

a11

5 16  1.00

‑69 01.29

‑75 42.43

 On

a12

5 26 18.25

‑68 22.86

‑70 37.92

On


a13

5 27  0.23

‑68 04.92

‑69 13.38

On

a14

6  1  6.87

-66 36.67

‑69  6.45

On

 

 

2.3 Preliminary results

 

2.3.1 Low‑frequency flow

            The low‑pass filtered trajectories of 13 of the 14 drifters are plotted in Figure 9.  Drifter a6 ceased transmitting shortly after launch and is not included in this summary.   The tracks are plotted for four 15‑day time windows, starting on March 31 (YD 90).  The last window ends on June 1 (YD 152), when drifter a14 was launched.  An asterisk is plotted at the last position for each drifter, showing the direction of the drifter motion. The drifter identification number is plotted to the right of the asterisk.  A brief analysis of these tracks is given next.

 

Panel A: YD 90‑105

            Drifter a1, deployed west of Adelaide Island (AdI), moved southwest along the island for two days (mean speed ~ 23 cm s-1) during strong southwest winds, then slowed and stopped transmitting and reappeared deep in Marguerite Bay (MB). Whether a1 lost its drogue and was blown into MB is not known, although its subsequent behavior suggests it still had its drogue. Drifter a2 moved into MB, turned clockwise and moved rapidly (2‑ day mean speed ~ 38 cm s-1) northwest near Alexander Island for about 3 days before slowing.  Drifters a3, a4, and a5 showed little net movement during this period, with typical speeds of less than 10 cm s-1.

 

 


Figure 9.  Satellite-tracked drogue movements on the Western Antarctic Peninsula

continental shelf region, including Marguerite Bay (April/May 2001).

Panel B: YD 105‑120

            Drifter a1, apparently still with drogue, began to leave MB, moving along the northeast side of Alexander Island, following the path taken by drifter a2. Drifter a3 moved in a clockwise loop towards the mouth of MB.  The other drifters showed little net movement, especially a5.

 

Panel C: YD 120‑135

            Drifters a7, a8, and a10 (deployed on NBP01‑03) moved into MB, while a9 moved deeper into MB.  Winds during much of this period were towards the south and quite strong starting around YD 130 and 133, when the wind speed jumped from near 0 to over 40 kts in 6 hours.  These four drifters accelerated towards YD 133 and had speeds of ~ 40(a8), 30(a7), 22(a9), and 22(a10) cm s-1 during the first half of YD 133.

            During this period, a1 continued northwestward out of MB to mid‑shelf, near where a1 and a4 were located.  Drifter a3 continued to move towards the southwest across the mouth of MB to the northwest coast of Alexander Island. This drifter passed very close to CTD station 53, located close to the coast of Alexander Island.  This station was made deep within brash and pancake ice, with many grounded icebergs around.  While drifter a3 did not get trapped in the ice and continued southwest along the coast of Alexander Island, drifter a10 later did move to this area and was stopped in the sea ice.

 

Panel D: YD 135 - 153

            Drifters a7, a8, and a9 continued to move deeper into MB.  Drifter a7 appears to have moved to the coast, while the other two drifters turned towards the south and continued along the coast.  Drifter a13 moved around the southern tip of Adelaide Island into MB, while drifter a12 moved southward towards Alexander Island.

            Drifter a10, which had entered MB earlier, moved quickly out of MB along the northeast side of Alexander Island with a mean speed of ~ 25 cm s-1, before turning around the northern tip of Alexander Island and moving along the coast, following closely the path of drifter a3.  Near CTD station #53, drifter a10 apparently became trapped in the ice and stopped moving.   Drifter a3 left station #53 and moved very rapidly (with maximum speeds 40‑50 cm/s) towards the southwest along the coast of Alexander Island, arriving off Lazarev Bay on YD 140. Then drifter a3 turned offshore and moved towards the northwest to mid‑shelf, where it joined drifters a11 and a2.  These three drifters continued to move towards the west along the shelf, with speeds varying from ~ 10 cm s-1 for a11 to 20 - 40 cm s-1 for a2.  Drifter a4 left this group and moved towards the shelfbreak at speeds around ~ 10 cm s-1.

            The lack of motion of drifter a5 is notable. Over the 61.4‑day period shown in Figure 9, drifter a5 moved a net distance of 62.9 km towards the northwest, with a mean vector speed of 1.2 cm s-1 and a mean scalar speed of 2.9 cm s-1.  While this drifter did reach a peak speed of 18 cm s-1 briefly, its overall movement (or lack of it) is quite different in character than the other drifters.  Is there a simple physical explanation for this?  The broad‑scale hydrographic survey suggests that drifter a5 was deployed in the center of a deep bubble of cooler shelf water surrounded on three sides by warmer slope water.  If this interpretation is correct, it would mean that the feature evolves slowly in time, keeping the drifter inside the feature for over two months. Further analysis is needed to check this interpretation and investigate its consequences for the shelf circulation.

 

2.3.2 High‑frequency flow


            The above summary is based on the low‑pass filtered drifter motion; however, the high frequency of ARGOS fixes per day (approximately 20 per day) allow some investigation of the higher frequency drifter motions. As an example, drifter a8 deployed near station #26 on 5 May moved in counterclockwise loops for the next 3 days while slowing moving towards the northeast.  This looping motion appears to be inertial.  The inertial period at the drifter latitude is 12.99 hours, close to the M2 period of 12.42 hours, so differentiating inertial from tidal motion is difficult with short current records. To quantify this motion, a simple model consisting of a mean current plus inertial component was fit in a least‑squares sense to the drifter position data.  During this 2.9‑day period, drifter a8 moved in a counterclockwise elliptical path towards the northeast with a mean speed of 3.5 cm s-1.  The elliptical motion had a major axis of 16.8 cm s-1 and a minor axis of 10.5 cm s-1, with the major axis oriented toward 28EN.

            While the looping motion of a8 could be a combination of inertial and tidal or tidal, this example illustrates the usefulness of the original unfiltered drifter position data to look for high frequency motions. A detailed analysis of both raw and filtered drifter data in combination with surface wind data collected by the Automated Weather Stations (AWSs) on Kirkwood and Faure Islands and by the ship will be made after the cruise, as additional drifter and meteorological data are obtained.

 

2.4 Summary

 

            The SO GLOBEC drifter data collected to date suggests that there is a strong surface current into Marguerite Bay around the southern end of Adelaide Island, with a return flow out of the Bay along the northeastern tip of Alexander Island.  The inflow appears to be both broad and surface intensified, with drifters crossing significant topographic variability as they pass around the southern tip of Adelaide Island. It is not clear how persistent this inflow is; however, all four drifters deployed upstream (a1, a7, a8, and a13) entered the Bay. Drifter 14 was deployed further upstream to help determine the origin of this inflow.  Hydrographic data collected west of Adelaide Island does suggest a surface layer of fresher water along the west and south coast of Adelaide Island; it is not clear if this alone could support the observed inflow.

            All three drifters (a1, a2, and a10) that exited the Bay did so along the northeastern tip of Alexander Island, suggesting the presence of a strong exit current centered there. Surface salinity data support the idea of a relatively fresh coastal current flowing out of the Bay initially trapped to the topography along Alexander Island. While two of the three drifters (a1 and a2) moved northwest towards mid‑shelf after leaving the tip of Alexander Island, drifter a10 followed the coast around the northern tip of Alexander Island and moved along the northwest coast.  Again, surface salinity data plus the path of drifter a3 suggests the presence of a coastal current towards the southwest along this side of Alexander Island. Whether this flow is a continuation or branch of the exit flow along the northeastern side of Alexander Island is not known, a purely geostrophic coastal current would follow this path.

            While the very slow movement of drifter a5 is unusual in a shelf region with such strong surface forcing, it seems likely that this drifter was deployed in a slowly evolving slope water intrusion that are known to occur on the west Antarctic Peninsula shelf.  The other drifters exhibit a range of speeds, especially within Marguerite Bay, that suggest an energetic surface current field in the SO GLOBEC study region.

           

3.0 Meteorological Measurements  (Bob Beardsley and Jeff Otten)

 

3.1 Introduction

 

            Underway meteorological data were collected during NBP01-03 to help document the surface weather conditions encountered during the cruise and to characterize the surface forcing fields in the SO GLOBEC study area during austral fall.  The N.B.Palmer (NBP) arrived near the start of the large‑scale physical/biological survey on April 27 (YD 117) and left the area to return to Punta Arenas on June 2 (YD 153). A full suite of meteorological data were collected during this 37‑day period.  This report provides a preliminary description of the meteorological data collected on NBP01-03 and some initial results concerning the surface forcing during fall.

 

 

3.2  Instrumentation

 


            The NBP was equipped with the following set of meteorological and surface oceanographic instrumentation to collect continuous underway data during NBP01‑03 (Table 2).  A pair of Belfort propeller/vane anemometers and sensors to measure incident short‑ and long‑wave radiation (SW, LW) and PAR were mounted on the top of the NBP's main "science" mast (Figure 10). The air temperature (AT) and relative humidity (RH) sensors and precision barometer (BP) were mounted near the base of the main mast on the 04 deck, aft of the bridge.  The heights of the anemometers and the air temperature and relative humidity sensors above sea level were estimated to be 33.5 and 17 m, respectively.  Sea surface temperature (SST) was normally measured using a remote sensor and intake in the stern thruster housing when the thrusters were not in use or on standby. Sea surface salinity (SSS) and raw fluorescence (FL) were measured using a thermosalinograph and fluorometer placed in the aft chemistry laboratory. Water for both instruments came from the intake in the stern thruster housing when it was not in use.  A second intake, from the ship's sea chest, was used when the thrusters were on standby or in use.


 

 

 


Figure 10.  The NBP “science” mast, with port and starboard anemometers and shortwave, longwave, and PAR sensors mounted to the railing, during pre-cruise service in Punta Arenas.

 

Table 2.  NBP01‑03 meteorological sensors, their calibration history, time of installation,

and conversion factors used to convert raw voltage output to scientific units.

 

Sensor

Model

Serial Number

Last

Calibration

Installed

Conversion

Starboard Anemometer thru 5/20/01

Belfort Model 5-122AHD

7957

04/18

04/18

 

Starboard Anemometer from 5/20/01

Belfort Model 5-122AHD

7956

04/18

05/20

 

Port Anemometer

Belfort Model 5-122AHD

92-2133

04/12

04/18

 

Anemometer north relative speed vector voltage

 

 

 

 

m s-1 = 7.553 x voltage

Anemometer east relative speed vector voltage

 

 

 

 

m s-1 = 7.553 x voltage

Air temperature

R. M. Young 41342C

2267

01/23

04/18

°C = 10 x voltage - 50

PIR Eppley Pyrgeometer

Eppley PIR

33023F3

06/23

01/28

W m-2 = 923.87 x voltage

PSP Eppley Pyranometer

Eppley PSP

33090F3

11/07

01/28

W m-2 = 194.53 x voltage

Relative Humidity Sensor

Rotonics MP-101A-C4

R45618

06/20

10/24

 

Temperature at the Relative Humidity Sensor

 

 

 

 

°C = 10 x voltage – 40

Relative Humidity

 

 

 

 

%RH = 10 x voltage

PAR Irradiance

BSI QSR-240

6356

02/15

04/18

mEi/m2s = 1662.24 x voltage


Barometer

AIR-DB-3A

7G3095

07/21

01/26

(none)

 

 

3.3 Data Acquisition and Processing

 

            The raw NBP shipboard meteorological data were collected using the ship's data acquisition system (RVDAS).  A 1‑minute subsample of the raw data was saved at the end of each day in a flat ASCII text file on the ship's DAS_DATA directory on drive Q (e.g., the data for YD=99 and YD=100 are located in Q:\NBP0103\geopdata\JGOF\ g099.dat and jg100.dat, respectively). This 1‑minute time series was produced using a JGOFS program that merged the meteorological data with navigation and other data and combined the ship's motion and the measured (relative to the ship) wind speed and direction data to make "true" wind speed and direction relative to the ground.

            The daily data were obtained from drive Q and converted into standard variables using the MATLAB m‑file read_palmer_met1m(yd).  This program also removed pad values (produced when the DAS recorded no data), edited several variables, and stored the new data set in a MATLAB mat‑file for each day (e.g., jg100.mat for YD=100). The SW signal and night‑time bias were comparable during most of the cruise, so the SW record was hand‑edited to remove the bias and make a positive‑only SW series.  Both the SST and SSS data included large spikes associated with the change in intake when the ship's stern thruster was placed on standby or being used.  For much of the cruise, these spikes were removed and the gaps filled by linear interpolation.

            The m‑file merge_palmer_met1m(first_yd,last_yd) was used to combine the 1‑day jgxxx.mat files into a single 1‑minute continuous time series for each variable.  The merged data were then stored in palmer_met1m.mat.

            For further analysis, the 1‑minute data in palmer_met1m were low‑pass filtered and subsampled using make_palmer_met5m into 5‑minute time series. The filter used is the pl66tn set with a half‑amplitude period of 12 minutes.  The 5‑minute data were then used to estimate the surface wind stress and heat flux components using bulk methods called by compute_palmer_wshf5m.  The surface wind stress and heat flux data were then added to the palmer_met5m, so that this 5‑minute time series contains best versions of the surface meteorological conditions and forcing for the cruise.  Both the 1‑minute palmer_met1m and 5‑minute palmer_met5m data are included on the cruise data CD-ROM.

 

3.4 Problems and Solutions

 

            Several problems with the meteorological and underway instrumentation or data logging became clear during the cruise.  These problems and suggested solutions are summarized next.

 

3.4.1  RVDAS recording format

            Some of the NBP met data were recorded using limited precision.  Whether this is a hardware limitation of the digitizers used or simply setting the record format with too few significant places is not clear.  Table 3 gives the record most significant place for each variable:

 

Table 3. Record increment for different variables.

 

Parameter

Resolution

Air Temperature

0.1 oC

Sea Surface Temperature

0.01oC

Sea Surface Salinity

0.01 PSU

Short‑wave Radiation

2.0 W m-2

Long‑wave Radiation

8.0 W m-2

PAR

16.666 mE (m2s) -1

Fluorescence

0.01 V

 

            The present meteorological measurement system on the NBP will be replaced in July 2001, so that some variables will be recorded with greater precision. In particular, it would be good to record SW and LW with 0.1 W m-2 resolution and PAR with 1 FE m-2. Comparison of the SST and SSS with near‑surface CTD data collected at stations with a deep surface mixed layer suggested that SST and SSS should be recorded with 0.001oC and 0.001 PSU resolution.  The air temperature sensor is normally calibrated to +/‑ 0.1 oC, so that it should be recorded with 0.01oC resolution.

 

 

3.4.2.  PIR battery failure

            The Eppley longwave pyrgeometer (PIR) uses an internal mercury battery to supply a precise and stable reference voltage in the measurement circuit.  A brief inter‑ship comparison of the L.M. Gould (LMG) and NBP PIR values while at Palmer Station on 28 April 2001 suggested that the NBP PIR was reading low (Table 4).  A second inter‑ship comparison made in northern Marguerite Bay on 6 May 2001 also showed the NBP longwave values were significantly lower than the LMG values.  Over the next several days, the NBP longwave values started to drop rapidly.  On 12 May 2001, Jeff Otten and Jim Dolan replaced the PIR mercury battery and the PIR readings jumped back up to values more consistent with those measured on the R/V L.M. Gould.

 

Table 4.  Comparison of PIR incident longwave radiation recorded on the LMG and NBP

during two periods when the ships were collocated, first in the morning of 28 April 2001


for about 3.23 hrs at Palmer Station, and second, during the evening of 6 May 2001 for

9.85 hrs in northern Marguerite Bay.

 

Comparison Site

Gould

Palmer     

Diff (G‑P)

A. Palmer Station LW

206.0

179.5

26.5 W m-2

B. Marguerite Bay LW

260.0

201.5

58.5 W m-2

 

            The PIR mercury battery has a very flat discharge curve, so that failure should occur rapidly.  The old battery measured about one‑half its rated voltage, indicating it was past its useful life. A visual inspection of the NBP longwave data suggests that data taken up to 7 May 2001 may be useable.  A detailed inter‑ship comparison of the LMG and NBP PIR data will be made after the cruise, in part to help determine how much of the early NBP longwave data are good (pre‑battery failure).

            The PIR battery can only be checked when the housing is opened. This is not normally done at sea due to the location of the PIR on the top of the mast.  One solution is to check the battery voltage prior to each cruise and develop a battery life history and replacement schedule. A second solution is to install new batteries prior to next year's SO GLOBEC cruises.  This will be requested.

            One unexpected benefit of making the inter‑ship comparisons of PIR data during NBP01‑03 and LMG01‑04 was the discovery that the LMG PIR values were being computed using the wrong calibration coefficients (actually the coefficients for the PIR used on LMG01‑03).  In hindsight, this was the reason for the initial offset in the inter‑ship longwave comparison. The subsequent differences were due to the battery failure. The LMG longwave radiation series was recomputed using the correct coefficients and these new data will be used in the post‑cruise analysis of the inter‑ ship comparison data.

 

3.4.3 Icing and anemometer failures

            The meteorological sensors on the mast collected ice during parts of this cruise.  For example, the starboard anemometer started to report near 0 wind speeds on 16 May 2001 while the port anemometer continued to report acceptable wind speeds and directions. Visual inspection of the anemometers from the bridge showed no difference, so the exact nature of this problem (e.g., icing, connections) was never determined. Whenever possible during or shortly after icing conditions, Jeff Otten (Electronics Technician) climbed the mast to "de‑ice" the sensors and check connections and wiring.

            Despite icing problems, the two anemometers appeared to give similar data for much of the cruise.  One failure mode of the port anemometer was for one of the two output voltage signals to be zero (presumably due to a connection problem), thus making both the wind speed and direction wrong.  Post‑cruise analysis of the raw anemometer data should allow a detailed comparison of the data from both units, which in turn should allow periods of poor performance to be identified and eliminated from the computation of "true" wind.

 

3.4.4  "True" wind computation

            There were several periods during the cruise when the JGOFS "true" winds were weak (under 5 m s-1) and exhibited jumps in wind speed caused by the motion of the ship.  This was especially obvious as the ship towed BIOMAPER-II at 4 kts between CTD stations.  The JGOFS format includes only "true" wind and direction (thought to be computed using the port anemometer data only), so it is not possible to re-compute true wind using just the JGOFS data.


            The raw anemometer and other underway data are archived on the cruise data CD‑ROM.  After the cruise, we plan to use the raw data to produce a final edited meteorological data set for this cruise.  This will include assessing the wind data from both anemometers and using both to compute "true" wind speed and direction.  This final data set will be posted on the SO GLOBEC website.

 

3.4.5 Thermosalinograph contamination

            The NBP SeaBird thermosalinograph (TSG) produced high quality data for most of the cruise; however, the data taken just before and on station were corrupted and should be used only with great care.

            When approaching a station, the thruster generator was first started and a servo system activated so that the thrusters could be used on demand. The TSG intake is located in the stern thruster housing.  During NBP01-03, the system to automatically switch the TSG intake to another location was broken, so that the switch was done manually, usually just after the generator was running smoothly.  This change in intake caused a pulse of warm water to pass thought the TSG, creating a large spike in temperature and salinity lasting 5‑10 minutes.  A similar spike occurred when the ship left station and the thruster generator was turned off.  While these two spikes had a characteristic shape, using the thrusters on station also caused jumps in the TSG temperature and salinity data. These jumps were irregular in shape and duration, making identifying them difficult.  The SST and SSS data included in the palmer_met1m and palmer_met5m data sets have been edited to remove the most obvious of these fluctuations; however, we suggest not using the SST and SSS data when the ship was nearing or was on station.

            During the cruise, two comparisons of TSG data were made with other data taken when the ship was steaming between stations.  The first comparison was between TSG and bottle salinities where the bottle samples were taken from the TSG exit flow and the TSG trace indicated steady conditions.  The second comparison was between the SST and TSG salinity and the T and S measurements made with BIOMAPER-II nearest the surface as it was toyoed along transect 6. The mean depth of BIOMAPER-II during the comparison values was 33 m.  

            The results from both comparisons are shown in Figure 11.  While preliminary, these results suggest that the TSG salinity was accurate to within +/‑ 0.002 psu on average with no clear bias.  The NBP SST and BIOMAPER-II T data have a clear offset of about 0.06EC, with the ship's sensor reading higher than BIOMAPER-II. Comparisons between the CTD surface temperature and SST show close agreement, to within 0.01EC, suggesting that the BIOMAPER-II temperature sensor may read low by order 0.06EC.  Additional comparisons need to be made to test these preliminary results.

            In view of the inherent high accuracy of the ship's SST and TSG data when the ship is underway, thought should be given to relocate the intake so that the problems associated with the thruster generator and intake switching could be eliminated.  If this is not possible, then perhaps the actual switch in intake could be postponed until the ship is actually on station. This would allow the TSG to collect good data for the 10‑15 minutes prior to each station.  At a minimum, the bridge could keep a log of times when the thruster generator was turned on and off.

 

 

 

 


            Figure 11.  Comparison of the NBP TSG salinity and sea surface temperature data with

bottle salinity and BIOMAPER-II temperature and salinity data collected along transect 6.


           

 

3.5. Description of Cruise Weather and Surface Forcing

 

            Time series of the 5‑minute surface meteorological data and surface forcing collected during NBP01‑03 are shown in Figures 12 and 13.  Figure 12 shows the wind speed and direction, air and sea surface temperatures, relative humidity, barometric pressure, and the incident short and longwave radiation. Figure 13 shows a vector plot of the surface wind stress plus stress amplitude and direction, the net surface heat flux (Qnet), and its four components, the shortwave (Qsw), longwave (Qlw), sensible (Qsen), and latent (Qlat) fluxes.  Note the period of very low longwave radiation data recorded from YD 127 to YD 132 when the battery was replaced.  These data were judged wrong and not used in the computation of the longwave heat flux component shown in Figure 13.

            Figures 12 and 13 cover the period 27 April to 3 June, when the NBP was working in the SO GLOBEC study area.  The large‑scale survey occurred during 27 April‑21 May (YD 117‑141), followed by visits to Charcot Bay and Lazarev Bay to 24 May (YD144), then work on the AWSs and additional survey work within Marguerite Bay and around the southern and western side of Adelaide Island to 1 June (YD 151), followed by a final cross‑ shelf transect, deep CTD stations, and an XBT survey across the Drake Passage, ending 3 June (YD 154).


Figure 12.  Meteorological data collected during NBP01-03

 

 


 

 


Figure 13.  Surface flux data for NBP01-03.

 

           

            Weather conditions experienced during the cruise ranged from severe gale (with peak winds above 50 kts and heavy seas) to one very clear sunny day with glassy seas. Winds were predominantly from the north, especially the stronger winds associated with the passage of lows from west to east over the WAP shelf. Late in the cruise, a large low pressure system remained centered east of the Peninsula, causing a westward flow of very cold and drier continental air over the WAP and generally clearer skies.  In general, however, the skies were cloudy or overcast, with relatively moist air from the Pacific flowing over the WAP.  Daylight decreased with time and more southern latitude, until the incident shortwave radiation became almost less than the resolution of the shortwave sensor.

            As the cruise progressed and more was learned about the surface weather and forcing conditions on the WAP, it became possible to prepare preliminary notes on several aspects of the surface heat flux occurring during this cruise.  Three of these notes follow here.

 

3.5.1 Surface Cooling ‑ Part 1

            The NBP left Palmer Station about noon (local time) on 28 April 2001 (YD 118) and headed west onto the shelf and south to the SO GLOBEC study area to begin the large‑scale physical/biological survey.  Over the next six days, the NBP sampled the shelf region between Adelaide Island and the upper slope until 6 May 2001 (YD 127), when the survey track line took the NBP into Marguerite Bay.  Here is a brief summary of the mean surface forcing conditions over the shelf during the six days (yd 119‑125) when the NBP made five cross‑shelf transects.

            During this period, the winds were mostly southward and eastward, with speeds varying from near zero to a maximum of 22 m s-1 (~44 kts).  The mean wind was 7 m s-1 towards 128T (SE), with an average scalar wind speed of 10 m s-1 (~20 kts).  The mean air temperature was ‑0.9EC, mean SST was ‑0.6EC, and the mean relative humidity was 92%. The skies were mostly overcast, with periods of fog and snow flurries and little direct sunlight.

            The shipboard met measurements were used to estimate the surface wind stress and heat flux components. The mean wind stress was 0.11 N m-2 directed towards 132T (SE), closely aligned with the mean vector wind. The net surface heat flux (Qnet) is composed of four components, the net shortwave radiation flux (Qsw) and net longwave radiation flux (Qlw) and the two air‑sea flux components, sensible heat flux (Qsen) and latent heat flux (Qlat).  The mean and standard deviations of Qnet and the four components for the six‑day period are given in units of N m-2 in Table 5:

 

Table 5. Qnet statistics.

 

Variable

Mean

STD

MIN

MAX

Qnet

‑108

38

-226

-32

Qsw

4

11

0

76

Qlw

-103

22

-165

-79

Qsen

-0

10

-32

29

Qlat

-9

13

-59

17

 

            Despite the relatively strong wind speeds, the air‑sea temperature difference is only 0.3EC, so that the mean sensible heat flux, Qsen, is essentially zero. The latent heat flux, Qlat, is also small due to the low air temperature and high relative humidity.  As austral winter proceeds, the incident shortwave radiation gets smaller, such that for this period the mean, Qsw, is also essentially zero.  Thus, the net heat flux, Qnet, is due primarily to the net longwave flux, Qlw.  For this six‑day period, 95% of the net heat loss was due to the longwave loss.

            While these estimates of the heat flux components include significant measurement uncertainty, the basic picture of persistent surface cooling over the shelf driven by net longwave radiation loss seems robust. During the pre‑ice fall, insolation essentially vanishes and the diminishing difference between air and ocean surface temperatures makes the sensible and latent heat loss relatively small.  Despite the high relative humidity, the sky re‑radiates little outgoing longwave radiation back into the ocean, causing the dominant heat flux to be longwave radiation.   To put a steady loss of 100 N m-2 into perspective, a 50‑m deep surface mixed layer would cool about 0.25EC over a 5‑day period.  Thus, it would only take ~ 20 days for the surface mixed layer to lose ~ 1.0EC.

 

3.5.2 Surface Cooling ‑ Part 2

            During the end of the large‑scale survey on 14-18 May 2001, the NBP made four cross‑shelf transects off Alexander Island after leaving Marguerite Bay. The first transect was made on 14 May 2001 during a gale, with winds towards the south and peak winds for several hours above 40 kts. This storm bought relatively warm air over the shelf, such that during the strongest winds, the sensible and latent heat fluxes were positive into the ocean, and the net surface flux, Qnet, was slightly positive for three hours (above 20 W m-2 for almost 2 hrs).  This was the only time of surface warming during this five‑day period.  Winds during the remaining transects were mostly south and southwestward and more moderate.  The air temperature dropped during this second period but remained above the ocean surface temperature, so that there were weak sensible and latent heat fluxes into the ocean.  These fluxes were too weak, however, to balance the large longwave heat loss, so that Qnet was negative for the remaining transects. The shortwave contribution to the surface heat flux was very small, due primarily to the more southern location of these transects made later in the month and the persistent overcast. The mean atmospheric conditions and surface forcing during the gale (14 May 2001) and the next four days (15‑18 May 2001) are summarized in Tables 6 and 7.

 

 

Table 6A.  Mean atmospheric conditions during 14 May 2001 (gale).     

 

Vector wind speed

16.0 m s-1

Vector wind dir

‑95.1E (counterclockwise from E)

Scalar wind speed

16.5 m s-1

Air temperature

0.16EC

Sea surface temp

‑1.15EC

Relative humidity

96%

   


Table 6B.  Surface forcing during 14 May 2001 (gale).

 

Variable

Mean

Std

Min

Max

Units

Wd Spd

16.5

3.3

2.8

23.9

m s-1

Stress

4.3

2.1

0.1

10.1

dynes cm-2

Qnet

‑46.0

35.7

‑113.8

35.5

W m-2

Qsw

1.7

4.2

0.0

19.1

W m-2

Qlw

‑88.3

29.9

‑143.4

‑61.8

W m-2

Qsen

27.2

14.1

0.5

57.4

W m-2

Qlat

13.4

7.8

‑0.0

32.4  

W m-2

                      

 

Table 7A.  Mean atmospheric conditions during 15‑18 May 2001.

 

Vector wind speed

10.1 m s-1

Vector wind dir

‑130.5E

Scalar wind speed

11.4 m s-1


Air temperature

-0.78EC

Sea surface temp

‑1.24EC

Relative humidity

98%

 

 

Table 7B.  Surface forcing during 15‑18 May 2001.

 

Variable

Mean

Std

Min

Max

Units

Wd Spd

11.4

3.3

2.3

19.4

m s-1

Stress

1.9

1.3

0.0

6.3

dynes cm-2

Qnet

‑69.0

22.4

‑156.1

‑25.1

W m-2

Qsw

0.4

1.3

0.0

9.0

W m-2

Qlw

‑82.2

18.5

‑148.3

‑57.0

W m-2

Qsen

8.4

6.9

-16.3

28.6

W m-2

Qlat

4.4

4.4

‑11.7

14.0

W m-2

           

 

            These tables suggest the following conclusions about the surface forcing during the cross‑shelf transects made 14‑18 May 2001:

 


a) Winds were generally strong and almost always southward, generating southward wind stresses that varied from near zero to about 0.8 N m-2 (8 dynes cm-2).

 

b) The combination of very strong winds and warm air from the north (during the gale) can produce large enough sensible and latent heat fluxes into the ocean that the net surface heat flux can be positive into the ocean for a short time.

 

c) Excluding the gale, the net surface heat was negative, cooling the ocean. The small sensible and latent fluxes into the ocean (due to the air being warmer than the ocean surface by ~ 0.5EC and mean winds near 20 kts) are more than offset by the roughly constant longwave heat loss (Qlw ~ ‑80 W m-2), resulting in a mean Qnet ~ ‑70 W m-2


 

            These results support the basic picture of persistent surface cooling over the shelf driven by net longwave radiation loss.  The shortwave flux becomes negligible with time and moving further southward, and the sensible and latent fluxes are generally small except during high wind/warm air events (e.g., the 14 May 2001 gale). The persistent overcast reduces the net longwave cooling, but it remains the dominant process in the surface heat flux.

 

3.5.3  Charcot Bay


            After completion of the large‑scale survey, the NBP made a transit around the western end of Charcot Island and into a large bay just south of the Island on 21 May 2001.  This area seemed a good place to look for whales and birds and was thick enough ice for ice sampling and the deployment of a ROV to sample the zooplankton under the ice.  The ship steamed slowly eastward towards the ice shelf, collecting some samples along the way, and eventually launched the Zodiacs to look for whales and birds.  After sunset, the ROV was tested, and the ship then left the bay and returned to the last CTD station (84) location and headed eastward towards Lazarev Bay where the LMG was working.  During the roughly 12 hours spent deep in the bay, the surface forcing conditions showed some of the strongest surface cooling during the entire cruise.  This note summarizes that period.

            The NBP was deep into the bay southeast of Charcot Island during the period YD 141.4‑ 142.05. Winds during this period were relatively weak, dropping from about 20 to 6 kts, primarily from the north.  The air temperature dropped as we entered the bay, from roughly ‑2EC to a minimum of ‑5EC.  The sea surface temperature also decreased as the ship got further into the ice and closer to the Wilkins Ice Shelf, from ‑1.40EC to a minimum of ‑1.73EC at our closest approach. The surface salinity decreased into the bay, with the minimum salinities being below 33 PSU.  The ice was thickest there, and the ship stopped to take ice samples and deploy the ROV.

            This bay appears to be protected from the strong southward winds that carry relatively warm and moist air over the shelf.   Instead, the air reaching the ship was quite cold and drier, suggesting it came from Charcot Island and the ice shelf.  The mean wind speed was 6.1 m s-1 and the mean air‑sea temperature difference was Ta ‑ SST = ‑2.2EC.  This negative air‑sea temperature difference, lower mean relative humidity (81%), and modest winds combined to produce sensible and latent heat losses of on average 19‑24 W m-2.  The sky was clear as the NBP entered the bay, resulting in a relatively large mean longwave heat loss of 111 W m-2.  With essentially zero shortwave heating, the mean net heat flux was Qnet = ‑153 W m-2 during the period the NBP was in the bay.

            A simple interpretation follows.  Charcot Island and the Wilkins Ice Shelf seem to shelter the Bay from the southward flow of warm, moist air that generally occurs over the continental shelf.  The air over the bay is colder and drier (from over land), leading to surface cooling by the sensible and latent components in addition to the longwave cooling. These three terms contribute to make the surface heat loss a regional maximum, causing more ice formation here. Whether this leads to a feedback process, whereby more ice means colder air leading to increased sensible and latent cooling and thus more ice, is not clear.

            After returning to the western side of Charcot Island, the NBP moved eastward to Rothschild Island and Lazarev Bay.  During this run, as the ship got into continuous ice, the air temperature continued to drop with larger sensible and latent cooling. The pattern of larger net heat loss within these more protected bays where ice is being formed seems robust, but needs to be examined with additional data collected during the rest of this cruise and data from LMG01‑04.

            Near the end of the cruise, the NBP made CTD station #100 in freshly formed ice within 5 nm of the ice cliffs of northwest Adelaide Island. The air was very cold and dry, gently flowing westward from the island over the near‑shore waters, and the sky was very clear.  These factors all contributed to a net surface cooling rate of Qnet = ‑ 197 W m-2 (with 83% due to longwave cooling and the rest equally to sensible and latent cooling). A moderate wind could increase this loss to over ‑300 W m-2. To put these cooling rates into perspective, surface cooling at 200 W m-2 over a 5‑day period will cause the temperature of a 25‑m deep mixed layer to drop by 0.84EC.  Considering that the nearshore surface temperatures were typically below ‑1.0 to ‑1.4EC, it is not surprising that active ice formation occurred near the coast during NBP01‑03, driven primarily by continuous radiative cooling combined with episodic sensible and latent cooling.

 

4.0 Automated Weather Station Installation Report  (Bob Beardsley and Jeff Otten)

 

            Two Automated Weather Stations (AWSs) were deployed within Marguerite Bay during NBP01‑03.  Each AWS measures wind speed and direction, air temperature and pressure, and relative humidity, using sensors mounted on a 10-foot mast.  The propeller anemometer is centered at an approximate height of 3.4 m above ground, the air temperature and relative humidity sensors at 3.1 m, and the barometer at 1.5 m.   A data logger collects data from the various sensors and sends reformed data to an ARGOS satellite transmitter. The AWS is powered by lead‑acid batteries that are recharged using a solar panel mounted on the mast oriented north. The AWS units were supplied by Dr. Charles Sterns and George Weidner at the University of  Wisconsin Antarctic Meteorological Research Center (AMRC), who receive the ARGOS AWS data and place edited data on the AMRC website (www.uwamrc.ssec.wisc.edu/aws) for public use. A summary of the two stations is given next.  See Appendix 6 for a more complete description of the AWS deployment and repair operations.

            AWS #8930 was installed on the main island in the Kirkwood Islands group on 25 May  2001. The AWS site is on a slab rock shoulder on a ridge heading approximately northwest on the northwestern tip of the island.  The site has open exposure from west through northeast; winds from the south may be distorted by the main snow cap. On 25 May 2001, the station was revisited and the AWS data logger was reprogrammed to fix a software error found in the initial wind speed data received at the AMRC.  Subsequent data received at AMRC indicate that the wind speed problem was fixed and the station was reporting good data for all variables.

            AWS #8932 was installed on a small rocky island just east of Dismal Island in the Faure Island group in Marguerite Bay on 27 May 2001.  The island is relatively low, with snow covered ridges and exposed rocky patches on top.  The AWS was installed on a small smooth rocky plateau on the north end of the island, with open exposure to the west through southeast.  Data received at AMRC indicate that the AWS is working properly.

            Background information about these islands was supplied by Dr. Colin Harris, Environmental Research and Assessment, British Antarctic Survey, Cambridge, England.

                        AWS # 8930 (Kirkwood Island)

                        Latitude: ‑68E 20.397 S

                        Longitude:  ‑69E 00.444 W

                        Height of site above sea level: ~ 75 ft (crude estimate) (25 m)

                        Station orientation: 77EN

                        Installation: 25 May 2001; reprogrammed 27 May 2001

 

                        AWS # 8932 (Dismal Island)

                        Latitude: ‑68E 05.243 S

                        Longitude:  ‑68E 49.480 W

                        Height of site above sea level: ~ 35 ft (crude estimate)  (12 m)

                        Station orientation: 124EN

                        Installation: 27 May 2001          

 

5.0 Nutrients  (Kent A. Fanning (project PI, not on cruise), Rebecca Conroy, E. Howard Rutherford)

 

5.1 Introduction

 

            It is reasonable to state that, after temperature and salinity, dissolved inorganic nutrients (nitrate, nitrite, phosphate, ammonia, and silica) are central to understanding the circulation of waters in and around Marguerite Bay.  Deeper water upwelling to shallower regions close to the Peninsula should be traceable by higher nutrient signatures.  Nutrient concentrations nearer to the sea surface are important to physical/chemical modeling of the fate of plankton in the region that sustain krill, both as "targets" to be explained by nowcasting and as starting points for forecasting.

 

5.2 Methods

           

            Analytical methods used for silica, phosphate, nitrite, and nitrate follow the recommendations of Gordon et al. (1993) for the WOCE WHP project.  The analytical system we employ is a five-channel Technicon Autoanalyzer II upgraded with new heating baths, proportional pumps, colorimeters, improved optics, and a computer-controlsystem (New Analyzer Program v. 2.40 by Labtronics, Inc.)  This Technicon is designed for shipboard, as well as laboratory, use.  Silica is determined by forming the heteropoly acid of dissolved orthosilicic acid and ammonium molybdate, reducing it with stannous chloride, and then measuring its optical transmittance.  Phosphate is determined by creating the phosphomolybdate heteropoly acid in much the same way as with the silica method.  However, its reducing agent is dihydrazine sulfate, after which its transmittance is also measured.  A heating bath is required to maximize the color yield.  Nitrite is determined essentially by the Bendschneider and Robinson (1952) technique, in which nitrite is reacted with sulfanilamide (SAN) to form a diazotized derivative that is then reacted with a substituted ethylenediamine compound (NED) to form a rose pink azo dye which is measured colorimetrically. Nitrate is determined by difference after a separate aliquot of a sample is passed through a Cd reduction column to covert its nitrate to nitrite, followed by the measurement of the "augmented" nitrite concentration using the same method as in the nitrite analysis.

            In the analytical ammonia method, ammonium reacts with alkaline phenol and hypochlorite to form indophenolblue. Sodium nitroferricyanide intensifies the blue color formed, which is then measured in a colorimeter of our nutrient analyzer.  Precipitation of calcium and magnesium hydroxides is eliminated by the addition of sodium citrate complexing reagent.  A heating bath is required.  Our version of this technique is based is based on modifications of published methods such as the article by F. Koroleff in Grasshoff (1976).  These modifications were made at Alpkem (now Astoria-Pacific International, Inc.) and at L.Gordon's nutrient laboratory at Oregon State University.

 

5.3 Data

 

            Nitrate, nitrite, phosphate, ammonia, and silica were measured in all hydrocasts on this cruise (Hydrography and Circulation Component, Appendix 3).

 

5.4 Preliminary Results

 

            Nutrient data show considerable structure along and across the Western Antarctic Peninsula continental shelf within the SO GLOBEC study region.  Regions of upwelling and downwelling are clearly evident in the nitrate and silicate distributions.  The ratio of silicate to nitrate was used to track the upwelling of Upper Circumpolar Deep Water within the study area. 

            Silica draw-down was also a feature observed along the shelf region.  One possible explanation may be due in part to nutrient-rich deep water upwelling into a region with a high relative abundance of diatoms.  The diatoms should start to consume nutrients faster than other, non-siliceous phytoplankton.  Therefore, there would be a greater consumption of silica than if diatoms were in low abundance.  If the ship passed through after the silica consumption started, lower silica:nitrate ratio would be observed than at depths from which the water originally upwelled.  Support for this explanation is dependent on determining phytoplankton species composition within the regions where silica draw-down was observed.

            High ammonia concentrations were observed at stations closer to land and further south along the shelf region.  Highest ammonia values, greater than 4.5 Fmol, were measured from stations within Marguerite Bay.  Reduced NO3 and NO2 values were also associated with the stations mentioned above.  Since all of these components are in dynamic balance moderated by microorganisms, the answer to why ammonia is so abundant could relate to its production rate being enhanced, possibly by large Antarctic krill populations or its consumption rate slowing down.  The two most likely ways that ammonia is consumed are uptake by primary producers (maybe low now that it's almost winter) and nitrification, in which bacteria oxidize ammonia to nitrite and nitrate.  Final analysis of Antarctic krill distribution patterns, along with nitrifying bacteria studies, during NBP01-03 are essential in determining processes contributing to the high ammonia measured.

 

5.5 References

 

Gordon, L.I., J.C. Jennings, Jr., A.A. Ross, and J.M. Krest, A Suggested Protocol For Continuous Flow Automated Analysis of Seawater Nutrients, in WOCE Operation Manual, WHP Office Report 90-1, WOCE Report 77, No. 68/91, 1-52, 1993.

Grasshoff, K., Methods of Seawater Analysis, Verlag Chemie, Weinheim, Germany, and New York, NY, 317 pp, 1976.

 

6.0 Primary Production  (Maria Vernet (project PI, not on cruise), Wendy Kozlowski, and Michael Thimgan)

 

6.1 Introduction

 

            The estimation of primary production has three main objectives: (1) estimation of primary productivity rates during fall and winter in the area of study as a possible source of food for Antarctic krill and other zooplanktors;  (2) understanding the mesoscale patterns of phytoplankton distribution with respect to physical, chemical and biological processes; and  (3) obtaining insight into the over-wintering dynamics of phytoplankton, including their interaction with sea ice communities.  For this purpose, primary production was measured with three methods during this cruise: Photosynthesis versus Irradiance (PI) curves to estimate potential primary production and information on the dynamics of light adaptation; simulated in situ (SIS) experiments to estimate daily primary production; and finally, profiles with a Fast Repetition Rate Fluorometer (FRRF), with the aim to increase resolution in the sampling of phytoplankton activity and the expectation of modeling primary production with this method using 14C experiments as comparison.  Additionally, measurements of chlorophyll and particulate carbon (POC) were taken for estimates of phytoplankton biomass and data collected from surface and profiling Photosynthetically Available Radiation (PAR) sensors.

 

6.2 Methods

 

            For production and POC sampling, stations were broken up into three different categories.  At Priority 1 stations, both PI and SIS experiments were done, and POCs were collected at all the primary depths (see below).  At Priority 2 stations, PI experiments were done, and POCs were collected at two other depths; and at Priority 3 stations, PI experiments were again done, and POCs were sampled only at one depth.   Priority 1 stations were wherever SIS experiments were done (see below).  Priority 2 stations were those that ran along the outermost line, the innermost line along the coast, and the 460.xxx, the 340.xxx, the 260.xxx and the 140.xxx lines.  All remaining stations were Priority 3.

 

6.2.1 Location

            PI experiments were done at all stations, except consecutive stations #58, 59, 85, 86, and 100.  When the weather did not allow deployment of the Rosette or if it was too rough to collect a surface sample with the Rosette, water was collected from the surface with a bucket and processed.  SIS experiments were done approximately once per day, with an attempt to sample evenly both inshore and off, and in the northern and southern parts of the grid and within the Marguerite Bay.  The FRRF was deployed at all stations where the Rosette was used, through consecutive station #49.  Chlorophylls were sampled from all stations where the Rosette was deployed, as well as from the bucket samples when necessary.

 

6.2.2 Depths

            For the PI curves, water was collected from the Rosette bottle that corresponded most closely to a depth of 5 m.  For the SIS experiments, water was collected at what was called the primary depths: surface, and at 5, 10, 15, 20, and 30 m.  While it was working, the FRRF was deployed as part of the CTD Rosette, to a depth of 50 m, with a descent rate of only 10-15 m per minute, somewhat slower than the standard CTD casts.  At stations where only PI curves were done, POC samples were taken from at least the 5 m depth and along.  At stations where SIS experiments were done, POC samples were collected from at least the surface, 5, 10, 15, 20, and 30 m.  Chlorophylls were collected at the same depths as those for the SIS experiments, plus an additional standard depth of 50 m.  Occasionally,  when the CTD fluorometer trace showed deep water fluorescence, additional samples were taken at depths between 50 and 210 m (see Section 1.2, Appendix 3).

 

6.2.3 Sea Ice Sampling

            Sea ice sampling took place whenever it was in the vicinity of the ship and reasonably accessible.  This was done by one of the following methods:  1)  when open water was available, off the side of a deployed zodiac;  2) from personnel carrier placed on large pancake type ice; or 3) using a weighted bucket lowered directly off the side of the ship.

 

6.2.4 Equipment

            Chlorophylls were measured using a Turner Designs Digital  10-AU-05 Fluorometer, serial number 5333-FXXX, calibrated using a chlorophyll a standard from Sigma Chemicals, dissolved in 90% acetone.  The “Fast Tracka” Fast Repetition Rate Fluorometer, serial number 182037,  is made by Chelsea Instruments and was outfitted with independent depth and PAR sensors.  All data were recorded internally to the instrument and data were downloaded directly to a computer after ever few casts.  Incubations for the SIS experiments were done in Plexiglas tubes, shaded to simulate collection light levels with window screening, incubated in an on-deck Plexiglas tank, which was outfitted with running seawater in order to maintain in situ temperatures.  PI curves were done in custom built incubators, designed to hold 7ml vials, irradiate at light levels between zero and 460 µE (m2s)-1, and were attached to water baths to maintain in situ collections temperatures.  POC samples will be analyzed upon return to the United States.  Light data were collected using a Biospherical Instruments GUV Radiometer, serial number 9250, mounted on the science mast and configured with a PAR channel, as well as channels for 305, 320, 340, and 380 nm wavelengths.  Additional PAR data were collected on six days using a Biospherical Instruments QSR-240 sensor, serial number 6357, which was also mounted on the science mast.

 

6.3 Data Collected

 

            Over the course of the 35 science days of this trip, we have carried out a total of 139 PI experiments at 96 of the 101 stations sampled.  Thirteen of those experiments were done on samples taken from buckets at 12 different locations.  An additional nine PI curves were done on seven different sea ice samples (Table 8).  A total of 23 SIS experiments were completed (Table 9), and the FRRF was deployed at a total of 40 stations before an electrical failure occurred, causing damage to at least one internal card in the instrument.  Though the RPSC  Electronics Technicians worked diligently fix it, it proved to be unrepairable and the instrument will be returned to Chelsea for repair and return before the July cruise.

            For estimations of biomass (standing carbon stocks), both POC and chlorophyll samples were taken.  A total of 101 POC samples were taken (plus blanks), of which nine were sampled from buckets and eight were from sea ice samples.  Seven hundred chlorophyll samples were taken from 82 different CTD stations,  17 bucket stations, and eight ice stations.  For a summary of the bucket stations, see Table 10.

            Surface PAR data were collected on all days that primary production experiments were done (Table 11).  Due to a combination of a loose connection and high winds, no GUV data were collected on 14 May 2001.  GUV data were collected at one minute intervals and logged directly to a computer.  QSR data were collected two ways:  1) as part of the meteorological data set, logged as raw voltage; and 2) onto a LICOR LI-1000 data logger, also logged as raw voltage, but with four additional decimal points for increased resolution.  A comparison of the two instruments was done to determine collection differences between the two types (scalar vs. cosine) of sensor.  PAR data were also collected during each daylight CTD cast using a profiling PAR sensor and will be used in conjunction with surface PAR data for the analysis of water column production.

 

6.4 Preliminary Results

 

            Final analysis is yet to be completed on the majority of the data collected on this cruise.  However, there appears to be a stronger North-South trend in the chlorophyll data than an onshore-offshore trend, with noticeably higher chlorophyll levels in the northern, offshore part of the grid.  There also was a high chlorophyll spike on the northern, inshore portion of the grid, as well as slightly higher levels in the northern part of Marguerite Bay.  Water column primary production levels seem to mirror this, with the highest production matching the location of the highest chlorophyll values, in the areas of consecutive stations #23 through 25.

 

Table 8.   Summary of stations where sea ice was sampled.

 

Sample #

Latitude

(ES)

Longitude

(EW)

Sample Description

Collection Method

Samples Taken

Ice 1

-68.738

-70.983

slush around early pancakes

zodiac

chl, POC, CHN, PI, nutrients

Ice 2

-68.738

-70.983

early pancakes

zodiac

chl, POC, CHN, nutrients

Ice 3

-70.325

-75.155

slush between large pancakes

personnel carrier

chl, POC, CHN, nutrients

Ice 4

-70.295

-75.299

slush between large pancakes

personnel carrier

chl, POC, CHN, PI, nutrients

Ice 5

-70.295

-75.299

large pancake

personnel carrier

nutrients

Ice 6

-70.302

-75.618

formed pancake

zodiac

chl, POC, CHN, PI, nutrients

Ice 7

-79.587

-74.607

early pancakes

bucket

chl, POC, CHN, PI, nutrients

Ice 8

-69.257

-72.492

early pancakes

bucket

chl, POC, CHN, PI, nutrients

Ice 9

-68.763

-71.408

crystalline slush

zodiac

chl, POC, CHN, PI, nutrients

 

 

Table 9.  Summary of SIS stations, and preliminary primary production estimates, with

values integrated to 30 m.  PAR is as measured by the GUV, over the duration of each

experiment (except consecutive station #99, where PAR numbers are estimates based on the

QSR240 sensor). Note that these values are only preliminary (*) estimates and further refinement

and QC will be done upon return to the United States.

 

Consecutive Station Number

Location

Primary Production* (mgC/m2/day)

PAR (µE/cm2/expt)

3

500.180

15.0

49.3

9

460.220

36.7

193.9

14

420.145

19.1

66.2

23

340.253

171.9

171.1

28

335.060

9.5

53.7

33

300.-020

4.5

46.1

41

260.295

5.5

47.4

51

215.-015

1.6

26.3

53

220.075

2.1

40.9

55

220.140

3.3

not available

57

220.220

4.0

not available

68

180.100

0.2

7.6

69

140.100

1.4

10.7

72

140.220

1.0

11.7

77

100.140

0.9

12.5

81

060.255

0.6

11.4

84

020.180

1.2

10.7

87

062.122

0.6

7.6

89

239.057

1.2

17.4

90

367.036

0.3

6.0

91

338.044

1.4

14.4

95

344.052

4.2

44.0

99

353.099

3.2

44.8

101

372.110

5.6

49.2

 

 

Table 10.  Summary of stations where samples were taken from a bucket, either in addition to,

or instead of, sampling with the Rosette on the CTD. 

 

Sample #

Grid Location

Reason

Samples Taken

Bucket 1

300.140

No CTD

chl, POC, PI

Bucket 2

300.180

No CTD

chl, POC, PI

Bucket 3

300.220

No CTD

chl, POC, PI

Bucket 4

300.265

No CTD

chl, POC, PI

Bucket 5

260.180

No Surface Bottle

chl

Bucket 6

260.140

No CTD

chl, POC, PI

Bucket 7

260.100

No CTD

chl, POC, PI

Bucket 8

255.080

No CTD

chl, POC, PI

Bucket 9

267.057

No CTD

chl, POC, PI

Bucket 10

220.100

No CTD

chl, POC, PI

Bucket 11

220.220

No Surface Bottle

chl , POC, SIS

Bucket 12

220.250

No CTD

chl

Bucket 13

220.265

No CTD

chl

Bucket 14

220.280

No CTD

chl

Bucket 15

220.295

No CTD

chl, POC, PI

Bucket 16

140.255

No CTD

chl, POC, PI

Bucket 17

100.255

No CTD

chl, POC, PI


 

 

Table 11.    PAR (Photosynthetically Available Radiation, 400 – 700 nm) data, from

BSI GUV500 mounted on Science Mast.  Day lengths and daily irradiance values are calculated

using PAR values above 0.0 µE/cm2*sec.  Values for 14 May (*) are missing due to instrument

failure, and values for 30 May (**) are estimated from the BSI QSR240 sensor.  A correction

factor was applied to the QSR data to accommodate the difference between the cosine and

scalar sensor types.

 

Date

Sunrise

Sunset

Day Length

µE/cm2

29 Apr

12:21

20:57

8.60

295.06

30 Apr

12:26

20:35

8.15

49.26

1 May

12:25

20:55

8.50

193.91

2 May

12:38

20:38

8.00

171.82

3 May

12:46

20:29

7.72

61.61

4 May

12:54

20:38

7.73

89.87

5 May

12:47

20:28

7.68

171.10

6 May

13:12

20:05

6.88

53.71

7 May

12:51

19:56

7.08

57.47

8 May

13:12

20:10

6.97

47.93

9 May

13:16

20:26

7.17

69.49

10 May

13:13

19:58

6.75

47.40

11 May

13:23

19:46

6.38

49.63

12 May

14:18

19:29

5.18

26.27

13 May

13:37

19:52

6.25

40.93

14 May*

13:54

not available

not available

not available

15 May

14:01

19:52

5.85

23.88

16 May

14:08

19:19

5.18

7.80

17 May

14:19

19:40

5.35

10.73

18 May

14:23

19:12

4.82

7.75

19 May

14:27

19:28

5.02

12.50

20 May

14:34

19:18

4.73

11.42

21 May

14:41

19:10

4.48

6.94

22 May

14:35

19:18

4.72

10.78

23 May

14:35

19:06

4.52

7.63

24 May

14:22

19:00

4.63

8.46

25 May

14:02

19:11

5.15

17.43

26 May

14:06

19:15

5.15

17.58

27 May

14:16

18:49

4.55

6.53

28 May

14:14

18:43

4.48

9.43

29 May

14:15

18:42

4.45

5.83

30 May

14:14

18:59

4.75

14.42

31 May**

13:59

19:17

5.30

44.05

1 Jun

13:55

19:27

5.53

28.74

2 Jun

13:31

19:32

6.02

49.17

 

 

 

 

7.0 Microplankton studies  (Scott Gallager, Karen Fisher, Susan Beardsley)

 

7.1 Objectives

 


1. To provide an additional perspective on the microplankton prey field utilized by larval and adult Antarctic krill by quantifying abundance and motion characteristics, (i.e., swimming behavior) in relation to particle size distribution.

2. To determine the vertical and horizontal distribution of microplankton including pelagic ciliates and heterotrophic dinoflagellates along the western Antarctic Peninsula during austral autumn and winter.

3. To relate microplankton distributions to vertical gradients in density, salt, mixing intensity, and light distribution, and horizontal gradients in water mass distribution and surface currents.


 

7.2 Methods

 

            Ten-liter Niskin bottle samples were taken at 84 predetermined CTD stations along a grid extending about 20 nm both north and south of Marguerite Bay and 20 nm offshore.  Bottles for microplankton sampling were chosen keeping the following vertical regions of the water column in mind: the upper mixed layer, a fresher water lens (if present usually <20 m), the halocline beneath the mixed layer, and chlorophyll maxima and minima. Four samples were taken at each CTD station, while more were taken if specific regions or strata seemed interesting  based on the CTD data or data from the BIOMAPER-II and the VPR.  Samples were removed from the top of the Niskin bottles by gently siphoning through wide bore tubing.  This procedure has been shown to minimize damage during sample transfer particularly to large protists and marine snow aggregates (Gallager, 1996).  Each sample depth was processed by preserving 200 ml in 5% Acid Lugol’s fixative and by observing swimming behavior on live, unconcentrated samples by the technique of Gallager (1996).

            For the purpose of distinguishing between heterotrophs and autotrophs, 200 ml samples were fixed in 10% buffered formalin at stations where the chlorophyll maximum was particularly marked.  In addition, 1-liter samples were taken at a number of stations and processed by filtration onto 0.8 Fm black polycarbonate filters. These samples were held at 0oC in the dark for a few hours until observed under epifluorescence microscopy using a chlorophyll filter set on a Zeiss Axiophot upright microscope with 40x and 100x objectives. Digital images were saved for further counting and processing of 30 fields along a grid line on each  filter. Although heterotrophic protists were not counted by this live procedure, diatoms, dinoflagellates, auto and mixotrophic and other pigment-containing cells were easily enumerated. 

            Live samples were siphoned directly into 500 ml tissue culture flasks and then placed into a refrigerated incubator at 1oC.  Each flask was placed sequentially in a recording box with a dark field illumination source and video camera equipped with a macro lens.  The fiber optic light source was filtered to about 700 nm with a dark red filter.  About 10-minute video records were made for each sample.  All records were recorded on SVHS recording tape, while some were processed in real time.

            The fully automated particle tracking of microplankton from video data requires capturing a 30 s video sequence at 30 frames per second into an AVI file, followed by importing the AVI into MATLAB one frame at a time (refer to Figure 14 as an example of data processing).  Each frame is binarized against a threshold and each particle’s centroid, maximum, and minimum axes are recorded in a matrix. The next frame is imported and a second matrix of pixel locations is produced.  A simple nearest-neighbor algorithm is then used to determine if there are particles within a certain displacement window between matrix one and matrix two.  If the centroids are within the window, a particle path is created.  After all paths have been created the ensemble mean velocity vector for all particles in each frame is subtracted from the instantaneous velocity vector of each particle in the field.  This process removes any common mode movement associated with ship roll.  The result of the processing is a table of data for each particle in the field for calibrated diameter, displacement, speed, motion vector, NGDR (net to gross displacement), and energy dissipation (calculated  by the Lagrangian integral length scale technique developed by Gallager et al. (in press)).  These statistics are used as characteristics in a discriminant analysis to determine associations between the swimming behavior of microplankton.  The result is a description of the prey field from the perspective of the energy, frequency of motion, and size distribution of the microplankton community.

 

7.3 Brief Preliminary Results

 


            Microplankton in the size range of 20 to 100 Fm were divided into four functional groups: Mesodinium sp., tintinnids, oligotrichs (includes Strombidium, Strobilidium, Lohmaniella, and Laboea), and dinoflagellates.  Observations discussed here are based on viewing the video of swimming behavior for each station and  taking a quick look at slides prepared for epifluorescence microscopy.   A full description will await processing all video data, settling and counting of  Lugol’s samples, and quantifying slides.  The microplankton community was remarkably different as we traveled through various water masses.  Offshore, the surface mixed layer was dominated by large oligotrichous ciliates, such as Loboea , Strombidiium, and a Balanion-like protist. Nearshore, the mixed layer was often blanketed with a fresher, colder layer only 10 to 20 m thick., presumed to be melt water from the previous summer.  These surface waters were teaming with small flagellates and ciliates, including the obligate mixotroph Mesodiniumm sp. (this may be Mesodimium rubrum, but appeared not to be Myronecta rubrum due to the conspicuous lack of anterior “antenna”).  A plot of the surface salinity (Figure 15) shows the distribution of coastal waters within Marguerite Bay and to the north and south.  Where salinity was less than 33.2 psu, the possibility of finding Mesodinium in the surface lens was high.  No Mesodinnium were observed below 20 m at any of the CTD stations.  It was also noticed, but not quantified as yet, that the swimming speed of Mesodinium was markedly reduced as the water became colder near shore.  In addition to being an interesting physiological response, this could have important implications for predator/prey interactions if Mesodinium becomes a carbon source for young Antarctic krill feeding in the surface waters.  Further observations will be made on the next cruise (NBP01-04) to test this hypothesis. Samples below the mixed layer were almost exclusively dominated by dinoflagellates, which appeared not to fluoresce under chlorophyll filter set, suggesting these dinoflagellates were heterotrophic rather than autotrophic.  Large diatoms were present in the mixed layer, while small pigment containing cells dominated below 100 m.

 

 

7.4 References

 

Gallager, SM., Microplankton behavior and its contribution to the prey field of larval cod on GLOBEC process Cruise EN267. Cruise report for Northwest Atlantic GLOBEC cruise EN267, 1996. 

Gallager, S.M., H. Yamazaki, and C.S. Davis,  The contribution of fine scale vertical structure and swimming behavior to the formation of plankton layers on Georges Bank. Mar. Ecol. Progr. Series (in press).

 

 

 

 

 

 

 

 

 


 


Figure 14.   Example of an analysis for microplankton motility for station #78, surface sample.

Top left: raw video sequence; top right: particle paths for both non-motile and motile particles; bottom left: centroids of motile particles only; bottom right: size distribution (in mm) of motile particles only.

 


 


Figure 15.  Surface salinity and distribution of Mesodinium sp. in the surface waters less

than 20 m.  Green: <=33.2; Blue: >33.6 and <=33.7; Yellow: >33.4 and <=33.6;

Cyan: >33.2 and <=33.4; Black: >33.7.

           

                       

                                                           

8.0 Zooplankton Studies  (Peter Wiebe, Carin Ashjian, Cabell Davis, Scott Gallager)

 

            The winter distribution and abundance of the Antarctic krill population throughout the west Antarctic Peninsula continental shelf study area are poorly known, yet this population is hypothesized to be an especially important overwintering site for Antarctic krill in this geographical region of the Antarctic ecosystem. Thus, the principal objectives of this component of the program are to determine the broad-scale distribution of larval, juvenile, and adult krill throughout the study area; to relate and compare their distributions to the distributions of the other members of the zooplankton community; to contribute to relating their distributions to mesoscale and regional circulation and seasonal changes in ice cover, food availability, and predators; and to determine the small-scale distribution of larval krill in relation to physical structure of sea ice. To accomplish these objectives, three instrument platforms were used on this cruise.  A 1-m2 MOCNESS was used to sample the zooplankton at a selected series of stations distributed throughout the survey station grid.  A towed body, BIOMAPER-II, was towyoed along the trackline between stations to collect acoustic data, video images, and environmental data between the surface and bottom in much of the survey area. A ROV was used to sample under the ice and to collect video images of krill living in association with the ice under surface, and environmental and current data.  This section of the cruise report will detail the various methods used with each of the instrument systems, or in the case of BIOMAPER-II, its sub-systems.

 

8.1 MOCNESS report (C. Ashjian)

 

8.1.1 Introduction


            The net sampling of zooplankton portion of the project had two main objectives.  The first was to sample the vertical distribution, abundance, and population structure (size, life stage) of the plankton at selected locations across the broad-scale survey grid.  The second objective was to collect information on the size distribution of the plankton, especially Antarctic krill, in order to ground-truth the acoustic data collected using the BIOMAPER-II multi-frequency acoustic system.  Using the size distribution of planktonic taxa from different depths and locations, we plan to calculate the acoustic intensity that should result from insonification of that water parcel as a check and ground-truthing of the acoustic backscatter from the BIOMAPER-II.

 

8.1.2 Methods and Approach

            Sampling was conducted using a 1-m2 MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System) equipped with nine 333 Fm mesh nets and a suite of environmental sensors including temperature, conductivity, fluorescence, light transmission, and dissolved oxygen probes (Figure 16). The MOCNESS was also equipped with a strong strobe light, which flashed at 2-second intervals.  Because Antarctic krill are strong swimmers and likely can see slow moving nets such as the MOCNESS, they frequently avoid capture by net systems.  The rationale behind the strobe system was to shock or blind the krill temporarily so that the net would not be perceived and avoided. 

            We conducted tows at 24 locations (Figure 17). For most tows, oblique tows were conducted from near bottom to the surface, sampling the entire water column on the downcast and selected depths on the upcast with the remaining eight nets.  The deepest tows sampled to 1000 m.  Typically, the upper 100 m was sampled at 25 m intervals, with 50 m intervals in the intermediate depth ranges and greater intervals (150, 200 m) in the deepest depth ranges.  Samples were preserved upon recovery in 4% formalin, except for the first net (water column sample) which was preserved in ethanol to be utilized for genetic analyses.

            At three locations (Figure 17), we conducted studies to determine the efficacy of the strobe system in capturing large krill.  We first determined that the location would be favorable for capture of large krill by locating a patch of elevated acoustic intensity using the BIOMAPER-II acoustic system.  After the BIOMAPER-II was recovered and the MOCNESS deployed, we monitored the patch by observing the acoustic backscatter from the Simrad EK500 Scientific Sounding System installed on the ship (additional detail is in Section 8.4).  Each tow consisted of a series of paired down and upcasts through a set depth interval (e.g., 50-90 m), with each successive net sampling both a down and upcast.  The strobe light was set to either “on” or ‘off” while each net was open.  Four of the eight nets sampled with the strobe flashing and four sampled with the strobe off.  The order in which the strobe was turned on or off was determined by blindly drawing successive ballots from a box that contained four “off” ballots and four ‘on” ballots.  These samples will be examined to determine if large krill were sampled more effectively with the strobe flashing than with no strobe.

 

8.1.3 Findings

            Abundant adult krill were observed at some locations, especially within Marguerite Bay.  This corresponded to the patchy distribution observed in the acoustic backscatter.  Juvenile krill (calyptopis and furcilia stages) were abundant in the upper 50 m at most locations across the shelf and in Marguerite Bay.  The presence of larval krill, especially the calyptopis stage, indicated late spawning this year.  Post-larval krill were seen infrequently at depth (>100 m). Pteropods were observed at some locations between 50 and 100 m and at deeper depths.  Large copepods were abundant below 100 m with smaller copepods above, including Metridia gerlachi.  Zooplankton abundance was markedly reduced at locations off of the shelf in deep (1000 m) water, which were offshore of the Southern Antarctic Circumpolar Current Front.  Krill abundances were reduced at the offshore locations, as well.  Patches of intense acoustic backscatter observed with the BIOMAPER-II and VPR were sampled with the MOCNESS.  The deep patches consisted of post-larval krill, while near-surface patches consisted of copepods and larval krill.  Small fish (2.5 cm length) were frequently observed in the upper 25 m, while larger fish (10 cm) were captured in deeper nets (400 m).  The larval and postlarval stages of krill appear to have different depth distributions.

 

8.1.4 Net 0 sampling for Genetic and Stable Isotope studies (Karen Fisher)


            DNA Analysis:  Samples were taken for population studies using DNA to pinpoint relationships among euphausiids.  Animals were obtained from Net 0 (downward integrated net) of the MOCNESS, a small ring net, and bucket samples taken from zodiacs in brash ice.  Krill were collected at the following stations for Dr. Ann Bucklin at the University of New Hampshire:  STN 22 (juv); STN 25 (juv); STN 34 (adult); STN 41 (juv); STN 55 (mixed juv and adult); STN 64 (adult); STN 69 (mixed juv and adult); STN 76 (juv); STN 53 (juv); STN 37 (juv); STN 44 (mixed juv and adult); and the Krill Patch Experiment (adult).  The goal was to obtain 10 to 20 individuals at 5 to 10 stations during the cruise.  Due to the patchiness in distribution we encountered, we have four tows that yielded 9 to 20 animals at three locations.  An additional four stations yielded four or five animals in good enough condition to warrant collection.  Over all, 108 samples were collected and frozen immediately at ‑80EC. Additional samples from all 24 MOCNESS stations were preserved in ethanol for later study. 

            Stable isotope analysis:  Samples were taken for natural abundance stable isotope analysis at the CoBSIL facility at Cornell University.  Zooplankton and particulate samples will be analyzed on a mass spectrometer to determine the ratio of  15N to 14N and 13C to 12C.  Particulate samples were taken from 4‑6 depths of the CTD and filtered onto precombusted 25 mm GFC filters.  Zooplankton samples were obtained from Net 0, the downward integrated net of the MOCNESS.  All samples were then frozen in cryo-vials in a ‑80EC freezer.  Samples were obtained at the following stations: 22, 25, 34, 41, 49, 55, 64, 69, 76, 84, the southernmost ice station (70E 18.5 S, 75E 40.3 W, bucket samples only), 53, 37, the Krill Patch Experiment 3, and the CTD at 102.  Samples included juvenile and adult euphausiids, amphipods, copepods, cladocerans, ctenophores, salps, chaetognaths, pteropods, and larval fish.

 

 

 

 


Figure 16.  The 1-m2 MOCNESS being deployed from the stern of the N.B. Palmer during cruise 01-03.  Note the aluminum battery cases mounted on each side of the top frame assembly containing

12-volt batteries to power the strobe light unit.

 

 

 


 


Figure 17.  Locations for the oblique MOCNESS tows taken as part of the broad-scale survey

(solid dots) and the horizontal tows taken to test the efficacy of the strobe light unit (asterisks).

 

            The goal of this sampling is to determine baseline stable isotope relationships of fall communities in Marguerite Bay.  Phytoplankton exposed to deep water sources of nutrients tend to become lighter (depleted in the heavy isotope 15N relative to 14N) when compared to ambient levels. These variations then travel up the food chain.   Predators are generally heavier than their prey, allowing construction of rough trophic relationship diagrams among the zooplanktors.  Spatial or temporal variation within a species is potentially useful as an indicator of changes in prey fields.  As animals tend to integrate their food sources into body mass in a variety of ways, they represent tracers of varying duration.  This study hopes to contribute baseline values for a number of species, examine the relationships of whole community stable isotope composition in light of the composition of individual contributors, and determine the extent of spatial variation within the study grid. This project is funded by a grant from the Research Training Grant in Biogeochemistry at Cornell University and is being jointly carried out with M.S. student, Jennifer Whiteis, and B.S. student, David Rosenberg. Support of the Scripps phytoplankton group is also gratefully acknowledged. 

 

8.2 BIOMAPER-II Survey

 

            The BIO-Optical Multi-frequency Acoustical and Physical Environmental Recorder, or BIOMAPER II, is a towed system capable of conducting quantitative surveys of the spatial distribution of coastal and oceanic plankton/nekton (Figure 18A). The system consists of a multi‑frequency sonar, a video plankton recorder system (VPR), and an environmental sensor package (CTD, fluorometer, transmissometer). Also included are an electro‑optic tow cable, a winch with slip rings, and van which holds the electronic equipment for real‑time data processing and analysis.  The towbody is capable of operating to a depth of 300 m at 4 to 6 kts, while near the surface it may be towed at speeds up to 10 kts.  The system can be operated in a surface towed down-looking mode, in a vertical oscillatory "towyo" mode, or in a sub-surface up/down looking horizontal mode.  To enhance the performance and utility of BIOMAPER II in high sea states, a winch, slack tensioner, and over-boarding sheave/docking assembly are used.        

            The harsh late Antarctic fall weather conditions and the prospect of spending a significant amount of time surveying in areas with sea ice required that the handling system be modified so that BIOMAPER-II could be deployed from the stern of the RVIB N.B. Palmer instead of from the starboard quarter as the system was designed to do.  The A-frame on the Palmer is too tall to simply put the over-boarding sheave in the normal position at the top of the frame. This would have resulted in a cable run of 10 to 12 m from the sheave to the water and with any kind of ship motion, the 1500 lb towed body could not have been restrained from crashing into the ship once it left the water.  A stiff arm was designed and constructed at WHOI to lower the over-boarding sheave/docking assembly to a level that would minimize the distance that BIOMAPER-II needed to be hauled up to be docked and still clear the stern rail when the A-frame was boomed in (Figure 18B).  The stiff arm was a right triangle (width = 2.2 m; height of stiff arm= 5.5 m; height of stiff arm plus sheave/docking assembly = 6.94 m), constructed from heavy gauge square steel tubing. It was oriented vertically so that the hypotenuse of the triangle faced to port.  The short triangle leg had pad eyes that were shackled to pad eyes on the top of the A-frame and the sheave/docking assembly was attached to the lower end of the arm. The over-boarding sheave articulated and was equipped with a hydraulic ram, so that its position could be adjusted to keep the docking mechanism vertical during launch and recovery and to move it inboard of the wire when towing.

            This system worked reasonably well under all but the roughest of sea conditions.  During high seas, however, the pitch of the ship caused BIOMAPER-II, once clear of the sea surface, to swing forward and ram the stern or to turn sideways before any handling lines could be attached and hit the ship.  Under these sea conditions, the towed body was left in the water and it was lowered to sufficient depth to allow the slack tensioner to damp the motion of the ship without topping or bottoming out. The slack tensioner has a dynamic range of about 8 m and under most towyoing conditions, the pitching motion at the stern of the Palmer was less than that.  There were, however, sea conditions which exceeded the motion compensating capacity of the tensioner with the current system to provide the nitrogen gas pressure to the accumulators.  In addition, the pressure in the nitrogen cylinders had to be adjusted to compensate for the motion at the sea surface and once the towed body was deployed below 30 to 40 m, the tensioner was bottomed out and no more compensation was possible. Although the pitching motion was moderated by those depths, it still influenced the motion of the towed body with a resulting degradation in the quality of the acoustic data.  This was a recognized problem with the starboard handling configuration, but it became more significant because of the increased pitching motion experienced as a result of the stern towing.  A method is needed to automatically adjust the pressure in the compensating system so that the system is usually running in an optimal position at the surface and at depth.  Such a system had been under design at WHOI but has not yet been constructed.

            In anticipation of the high winds, cold temperatures, and wet working conditions on the stern deck of the Palmer, a shipping container was modified into a working “garage” for BIOMAPER-II and also as a place where it could be stored when not being used. The van was located on the port side of the vessel centerline forward of the A-frame.  The van was outfitted with 40 KVA step-down transformer (input power is 440-480 VAC, single phase), high output radiant and fan-driven heaters, and electrical outlets.  At the rear of the van was a work bench.  Longitudinally down the middle of the van, suspended from the ceiling, was an aluminum I-beam on rollers equipped with a motor drive hoist.  The I-beam could be rolled out the container doors until a stop about halfway was reached and the hoist could be positioned anywhere along the I-beam.  This setup enabled BIOMAPER-II to be hoisted up from in front of the van and rolled into the van for service, repair, or dry storage.  The van proved to be essential to the operation and maintenance of the vehicle.

            The BIOMAPER control van is another ISO container finished off on the inside as a lab. This van was located on the 03 level inside the helicopter hanger.  The van has seating for four or five individuals and computers for four operations: acoustic data acquisition and processing, VPR data acquisition and processing, ESS acquisition, and hardware monitoring.  In the center is a set of 19" rack mounting rails hung from the ceiling on shock isolators.  The rack has three adjacent bays, 21" inside height. The 19" rack holds the BIOMAPER DC power supply, which is an Electronic Measurements, Inc. EMS300-8-2-D.  Also, the 19" rack holds two color monitors and a VHF radio base station.  The two deck cameras are for observing the winch and slack tensioner, and for observing launch and recovery of the towed body. For this work, the van was equipped with additional heaters, in addition to a Sanyo air conditioner/heat pump which is mounted at the far end in a recessed box. Power for this van is also 440-480 VAC, single phase and it has a 10 KVA step-down transformer.panel. Inputs to the van from the Palmer’s navigation and bathymetry logging system included P-code GPS (9600 baud), Aztec GPS (4800 baud), Bathy bottom depth information, and an ethernet connection to the ship’s network.

            The cable used to tow BIOMAPER-II has a diameter of 0.68 inches. Its specifications are: outer armor: 36 wires GEIPS; weight in air: 747 lb/kft; weight in water: 608 lb/kft; specific gravity (seawater): 5.6; temperature range: -30EC to +80EC; breaking strength: 46,000 lbf; and working load @ 3% strain: 10,000 lbf.  The tow cable contains three single mode optical fibers and three copper power conductors.  Data telemetry occupies one fiber (using two colors) and the video, the second.  The third fiber is a spare for now.  A cable termination matched to meet the strengths of the towing cable and the towed body's towing bail was designed and built at WHOI.  It is a poured fitting using Cerrobend, a low melting point synthetic metal.

            During the first three weeks of the cruise, BIOMAPER-II experienced a series of electronic problems and component failures.  These involved both the HTI echosounder and the VPR.  For reasons that are still unknown, the echosounder stopped working on 5 May 2001 because of the failure of several electronic components (an integrated chip and several mercury relays). Fortunately, a spare parts board on the R/V L.M. Gould, coupled with the superb electronic skills of Scott Gallager with assistance from Andy Girard and Joe Warren, resulted in a repair to the system that served for the rest of the cruise.  Problems with the VPR, detailed below, stemmed in part from a modification to the fiber optics telemetry system that was done prior to the cruise to enable two VPR cameras to be used.  Among the problems were the new transceivers used to convert video signals for transmission on optical fibers.  These introduced noise into the video data stream that significantly degraded the quality of the video images.  Attempts to reduce the noise were only partially successful.  Other problems were associated with the towing cable, which twice had to be terminated after the outer armor was damaged during work in heavy seas.

 


 


Figure 18.  A) BIOMAPER-II being launched from stern of the N.B. Palmer on cruise 01-03.

B) Engineering drawing of BIOMAPER-II stiff arm and over-boarding sheave with docking

mechanism designed and built for use with the stern A-frame on the N.B. Palmer.

 

 

 

8.2.1 Acoustics Data Collection, Processing, and Results   (Joe Warren and Peter Wiebe)

8.2.1.1 Introduction    A wealth of acoustic backscatter data were collected by BIOMAPER-II during the six-week survey of Marguerite Bay and the surrounding shelf-break area.  Approximately 380 GB of raw acoustic data were recorded despite a series of instrument complications and failures during the first two weeks of the cruise.

 

8.2.1.2 Methods   BIOMAPER-II collects acoustic backscatter echo integration data from a total of ten echosounders (five pairs of transducers with center frequencies of 43 kHz, 120 kHz, 200 kHz, 420 kHz, and 1 MHz).  Half of the transducers are mounted on the top of the tow-body looking upward, while the other half are mounted on the bottom looking downward.  This arrangement enables acoustic scattering data to be collected for much of the water column as the instrument is towed vertically through the survey track.  Due to differences in absorption of acoustic energy by seawater, the range limits of the transducers are different.  The lower frequencies (43 and 120 kHz) collect data up to 300 m away from the instrument (in 1.5 m range bins), while the higher frequencies (all with 1 m range bins) have range limits of (150, 100, and 35 m respectively).

            The acoustic data were recorded by HTI software and stored as .INT, .BOT and .RAW files on a computer hard drive. Data were transferred and backed up on Jaz disks and CDs. They were also compressed before transfer using the PKZIP utility. The .INT and .BOT files were further post-processed to combine the information from the upward and downward looking transducers to make maps of acoustic backscatter of the entire water column (or at least to the range limits of the transducers). The .RAW files were processed to look at target strength data collected from individual scatterers in the water column.  The acoustic backscatter data from the HTI system were then integrated with environmental data from the ESS (Environmental Sensing System) onboard BIOMAPER-II. These data included depth of the towed body, salinity, temperature, fluorescence, transmittance, and other parameters. In addition, information about the three-dimensional position of BIOMAPER-II (pitch, roll, yaw) and data from the winch (tension, wire out, wire speed) were also recorded.

            Acoustic data were processed using a series of MATLAB files contained in the HTI2MAT toolbox (written by Joe Warren, Andy Pershing, and Peter Wiebe). These files patch together the upward and downward looking data, integrate the environmental sensor information and concatenate the acoustic records into typically half-day (am or pm) chunks. Larger files (of the entire survey track for instance) are possible but become unwieldy to plot due to file and memory size. Files containing a half-day of information are approximately 30 MB. These files were saved as d123_am_sv.mat and d123_am_sv_w.mat, in addition a tiff image of a plot of all the acoustic data were included.  The d123_am_sv.mat file is in the correct format for looking at environmental information and can be plotted using the pretty_pic* series of m-files.  The data in d123_am_sv_w.mat are in New Wiebe format and can be viewed using the curtainnf.m program.

            Due to a series of near-catastrophes (cables fraying, relays welding closed, and impact between the instrument and the ship transom) and the related near-miraculous repairs (led by Scott Gallager and Andy Girard with assistance from HTI personnel and Mark Dennet, Cabell Davis, and Joe Warren), there were a variety of transducer configurations used on this cruise. The original (and standard) configuration and MUX assignments were used for approximately 10 days. There was then a half-week period where data were only collected from the three lower frequency pairs of transducers. Finally, a stable configuration was obtained where data were collected from nine transducers (the upward looking 1 MHz was not used) with a different MUX assignment protocol. The processing of these data required constant modification of both the HTI software and the HTI2MAT toolbox; however, the majority of the survey track contains data from the 43, 120, 200, and 420 kHz transducers (both up and down looking).

 

8.2.1.3 Results   A preliminary analysis of the acoustic data is limited to a qualitative overview of the different features and phenomena observed in the scattering record due to the need for calibration of some of the transducers before any quantitative analysis can be done. A plot of the survey track from the 120 kHz echosounder shows several interesting patterns (Figure 19).  In general, nearshore scattering was stronger than offshore scattering. This was true on essentially all transects in spite of the fact that the survey itself took nearly 4 weeks to complete.  During that time, many small time-scale processes (diurnal migration, mixing of the water column by storms) took place which would effect the distribution of the plankton, but this pattern remained.  One interesting observation is that adult krill patches were, for the most part, only observed in the nearshore shoal areas with widely varying topography.  These areas occurred off the northern portion of Alexander Island, particularly in the vicinity of Stations #53, 68, and 69, and around the southern end of Adelaide Island.  High concentrations of adults were also observed in some sections of Marguerite Bay and one area, Labeuf Fjord, was the subject of a patch study described below.

           



 

 

 


Figure 19.  A preliminary 3-D image of the 120 kHz volume backscattering data collected on

the N.B. Palmer cruise 01-03 broad-scale survey.

 

 

 

            BIOMAPER-II was kept in the water, near the surface, during a CTD cast to try and observe any avoidance or reaction of the zooplankton layers to the presence of a lowered instrument. This was done to see if it was likely that there was an avoidance behavior exhibited by the zooplankton to the presence of BIOMAPER-II as it was lowered through dense aggregations of animals. The acoustic transducers cannot collect meaningful data in the acoustic near field (on the order of several meters above and below the towed body), so it is difficult to see this when BIOMAPER-II is the vehicle disturbing the layers.  As is easily seen, the aggregation of animals at 100 m avoided the CTD/Rosette system as it was lowered and raised through the water column (Figure 20). However, the plankton quickly filled in the gaps caused by the intruding instrument. This suggests that the avoidance behavior caused by the presence of an instrument is temporary and not likely to cause permanent changes in the distribution of the animals.

 


Figure 20.  Avoidance of the CTD as it was lowered and raised through a layer of krill, as viewed

in the BIOMAPER-II 120 kHz volume backscattering echogram.

 

 

 

 

 

            A phenomenon noticed regularly on this cruise (and on previous BIOMAPER-II cruises) is that different layers or patches have different scattering strength spectra – that is, they show up stronger or weaker at certain frequencies.  For example, smaller animals (juvenile krill or copepods approximately 1-3 mm long) will have weaker scattering at the lower frequencies and will be strongest on the 420 kHz record, while large adult krill (approximately 4-5 cm long) will have similar scattering at 120, 200, and 420 kHz with weaker scattering at 43 kHz.  These differences suggest that it may be possible to remotely size zooplankton if the aggregations are mono-specific and have a normal size distribution. An example of this occurred on 1 May 2001 in the afternoon, where a layer of zooplankton was seen moving upward in the water column at approximately the time of the local sunset (Figure 21). This layer is seen quite clearly on the 420 kHz acoustic record, but is very weak (or non-existent) on the lower three frequencies.  The scattering spectra of this upward migrating layer is consistent with that of small animals (on the order of several millimeters in length).  This upward migrating layer remains at the surface of the water column for the rest of the evening, exhibiting the same scattering characteristics.  Later in the day, a separate aggregation of animals were seen in a series of small patches located at 175 m depth.  The scattering from these aggregations is quite strong on the 120, 200, and 420 kHz transducers and is also visible on the 43 kHz echogram.  This suggests that the animals in these deeper and smaller patches are larger animals (of the order of several centimeters in length).

            After the broad-scale survey was completed, several smaller surveys were undertaken to determine the size and extent of some of the zooplankton patches that were observed during the earlier survey.  A series of crossing transects was undertaken in order to fully map an aggregation of krill. One of these patches was later sampled using the MOCNESS to determine the usefulness of running the strobe lights during tows to reduce avoidance behavior of the animals. It is difficult to arrive at a single size estimate of the krill patches; however, some initial conclusions are that patches can have an enormous range in size, from hundreds of meters to over 3 kilometers (Figure 22).  Even with a fairly well mapped region (Figure 22), it is difficult to say whether or not there is one or more patches observed due to the irregular shape of the patches and the movement of the water during our survey.  Without synoptic acoustic coverage of the area, it is difficult to estimate the dimensions of these aggregations.

            These results are still preliminary and have undergone only the briefest of analysis. More thorough conclusions can be drawn after the acoustic transducers are calibrated by HTI and the contents of the MOCNESS tows are enumerated and identified. Combination of the acoustic and VPR data will also provide further insight into the ecosystem of Marguerite Bay.

 

8.2.2 Video Plankton Recorder studies (C. Davis, C. Ashjian, and S. Gallager)

8.2.2.1 Overview   The Video Plankton Recorder (VPR) is an underwater video microscope that images and identifies plankton and seston in the size range 0.5–25 mm and quantifies their abundances at sea in real time.  As part of the Southern Ocean GLOBEC Program, the goal of the VPR studies is to quantify the abundance of larval krill, as well as krill prey, including copepods, large phytoplankton, and marine snow. 

 

8.2.2.2 Methods   For this program, the VPR group (Davis, Gallager, Ashjian) is collaborating with the BIOMAPER-II group (Wiebe et al.) by using BIOMAPER-II as a platform for deployment of the VPR.  In this way, the VPR video data are augmented by high-resolution acoustical backscatter data that better quantifies abundance patterns of adult krill.  The two systems together allow high-resolution data to be obtained on adult and larval krill and their prey.  The range-gated acoustical data provides distributional data at a higher horizontal resolution than is possible with the towyoed VPR sled, while the video data provides high-resolution taxa-specific abundance patterns along the towpath of the VPR.  In addition to generating high-resolution taxa-specific distributional patterns, the VPR allows for direct identification, enumeration, and sizing of objects in acoustic scattering layers, so that the VPR data are used to calibrate the acoustical data.  The BIOMAPER-II sled also includes a standard suite of environmental sensors (CTD, fluorometer, transmissometer, PAR sensors).


 

 


Figure 21.  Frequency dependent variation in the scattering strength of a vertical migration layer observed on YD121 during the broad-scale survey on N.B. Palmer cruise 01-03.


Figure 22.  Two views of the patchiness in a layer of adult krill that was observed off the northern

end of Alexander Island in a location where there were also a number of whales, seals, and sea birds.

 

 

 

 

 

8.2.2.3 The VPR system   Cameras and strobe(s):  A two-camera VPR was mounted on the BIOMAPER-II towfish for this cruise.  (Previous BIOMAPER-II cruises employed a single-camera VPR, but a second, higher-magnification camera was added for the present cruise.)  The cameras and strobe were mounted on top of BIOMAPER-II, forward of the tow point.  In order to add a second camera, the fiber optic telemetry system in BIOMAPER-II was changed to include a four-channel modulator pair for digital transmission of video and raw acoustical data over the fiber optic tow cable.  The cameras are set for field acquisition mode and synchronized at 60 HZ with a 16-watt strobe.  Due to high-frequency noise problems generated by the BIOMAPER-II telemetery system (caused by the new modulator), a second strobe was added halfway through the survey grid to boost the signal to noise ratio in the video images.

            Calibration:  The two cameras were calibrated in the laboratory prior to the cruise to determine the dimensions of the imaged volume.  Fields of view (width and height of the video field) were determined for each camera using a translucent grid placed at the center of focus.  The field width and height of the high magnification camera was 8.4 and 6.5 mm, respectively, while the low magnification camera had a field of view of 24 by 31 mm.  Depths of field also were quantified by videotaping a tethered copepod as it was moved into and out of focus along the camera-strobe axis using a micropositioner, while recording (on audio track) the distance traveled by the copepod in mm.  The depth of field was determined in the center of the field of view and at each of the four corners. These video recordings were subsequently processed using the automated focus detection system described below together with the audio recordings to objectively determine the positions of the near and far edges of focus.  Since depth of field is dependent on the settings in the focus detection program and these settings had to be changed during the cruise, the VPR system will be shipped back to Woods Hole for a follow-up calibration.

            Video Recording and Processing: The analog video signals (NTSC) from the two cameras were sent from the fiber optic modulator (receiver) in the winch drum through coaxial slip rings and a deck cable to the BIOMAPER-II van.  The incoming video was stamped with VITC and LTC time code using a Horita Inc. model GPS time code generator.  Horita character inserters were used to burn time code directly on the visible portion of the video near the bottom of the screen.  The two video streams with time code were then recorded on two Panasonic AG1980 SVHS recorders and looped through these recorders to two image processing computers. 

            The software package, Visual Plankton (WHOI developed and licensed), was used to process the VPR video streams. This software is a combination of MATLAB and C++ code and consists several components, including focus detection, manual sorting of a training set of in-focus images, neural net training, image feature extraction, and classification.  Visual Plankton was run on two Dell Inc. Pentium 4 1.4GHZ computers (Windows 2000 operating system) containing Matrox Inc. Meteor II NTSC video capture cards.  The two video streams (=camera outputs) were processed simultaneously using the two computers (one stream per computer).

            The focus detection program written in C++ was executed either from within the Visual Plankton main GUI (a MATLAB figure window) or as a stand-alone unit.  The focus program interfaces with the Matrox Meteor II board using calls to the Mil-Lite software written by Matrox Inc.  The incoming analog video stream first was digitized by the Meteor II frame grabber at field rates (i.e., 60 fields per second).  Each field was digitized at 640 by 207 pixels, cropping out the lower portion of the field to remove the burned-in time code.  The digitized image then was normalized for brightness and segmented (binarized) at a threshold (150) so that the pixels above the threshold were set to 255 and ones below the threshold were set to 0.  The program then ran a connectivity routine that stepped through each scan line of the video field and to determine which of the “on” pixels (those having a value of 255) in the field were connected to each other.  Once these clusters, termed “blobs”, were found, it was determined whether they were above the minimum size threshold, and if so, they were sent to the edge detection routine to determine the mean Sobel edge value of the blob.  If the Sobel value was above the focus threshold, the region of interest (ROI) containing the blob was expanded by a specified constant and saved to the hard disk as a TIFF image using the time of capture as the name of the file.  The digitized video, as well as the segmented image, Sobel subimages, and final ROIs were all displayed on the computer monitor as processing took place.  ROI files were saved in hourly subdirectories contained in Julian day directories.

            Once a sufficient number of ROIs were written to hourly directories, a subset of the ROIs was copied to another directory for manual sorting of the images into taxa-specific folders using an image-sorting program (Compupic or ThumbsPlus).  This program was run to extract the features and sizes from these sorted ROIs and set up the necessary files for training the neural network classifier.  At this point, the training program was executed which built the neural network classifier.  Once the classifier was built, all the ROIs collected thus far were processed by the feature extraction and classification programs, after which the incoming ROIs were processed as soon as they were generated. 

            These automatic identification results were written to taxa-specific directories containing hourly files, the latter comprising lists of times when individuals of a taxon were observed.

            Real-time Data Display: Real-time distributional plots of larval krill were produced by binning the times when these krill were observed into the time bins (4-second intervals) of the navigational and physical data from the environmental sensors.  In this way, the number of animals observed in four-second intervals was known and divided by the volume imaged during that period.  These data (from the towyos) then were mapped to a regular grid (using NCAR ZGRID routine) and plotted in real time in MATLAB as a color curtain plot. 

            The same style color curtain plots were generated for the environmental data using the standard VPR plotting software.  A multi-panel display allowed direct comparison of the three-dimensional distributional patterns of the krill larvae and the environmental variables.

 

8.2.2.4 Sampling Methods   Two types of sampling were done: grid sampling and patch mapping.  VPR data were collected along the survey grid between CTD stations as the BIOMAPER-II was towyoed between depths of 15 and 250 m or to within what was deemed a safe distance from the bottom.  The bottom was largely uncharted and irregular in many places with shoals that rose several hundred meters over a few kilometers.  The ship steamed at 5 kts during the grid sampling. 

            After the grid sampling was completed, patches of adult krill were sampled at selected locations near Alexander and Adelaide Islands.  During the first krill patch study, BIOMAPER-II was initially towed at the surface, using only the downward looking acoustics to map the patch.  A geographically fixed 3-km square hourglass pattern was used to map the area.  The VPR then was towyoed through the patch along the same path.  Subsequent patch mapping involved similar initial small-scale surveys, followed by attempts to locally map a patch.

 


8.2.2.5 Results and Discussion   Overall the cruise was marginally successful with regard to VPR sampling, largely due to the failure of the BIOMAPER-II system as a reliable platform for acquisition of VPR data during the first half of the survey.  Several portions of the grid could not be sampled due to repairs being made to BIOMAPER-II and to the tow cable.  The poor quality of data telemetry resulted in a noisy video signal that degraded the quality of the data obtained and precluded acquisition of suitable data from the high-magnification camera for image analysis (using the software available on board).  An attempt will be made to analyze the high-magnification videotapes in the laboratory if funding permits.

            Despite these problems, we were able to obtain good data from the low magnification camera for the second half of the survey.  To counteract the noisy data telemetry, a second strobe was added to the VPR halfway through the grid survey (just prior to tow 12).  Addition of the second strobe boosted the signal-to-noise ratio and allowed capture of in-focus ROIs (from the low-magnification camera) that could be automatically classified into major taxonomic groups.  Larval krill distributions then were plotted in real time.

            In total, nearly 400 two-hour videotapes were collected during the cruise.  All of this 60 Hz analog video was digitized at 640 by 207 pixels per field and processed in real time during the cruise, representing a total processing of over 20 terabytes of digital data.

 

            Planktonic Taxa Observed with the VPR:  Dominant groups observed in the video included larval and adult euphausiids, copepods, pteropods, polychaetes, and marine snow.  For automatic plankton identification, these dominant groupings were used. In addition to these dominants, numerous 1-cm medusae were observed that appeared to be of the same species.

            Both larval and adult euphausiids were observed in the low magnification camera, spanning a broad size range (Figure 23).  The most numerous euphausiid life stage observed was late furcilia about 15 mm long.  Many adult krill were observed at the times when the VPR passed through dense swarms.  These adult krill were ~5-6 cm long, so that only half of their bodies actually fit in the field of view.  The larval krill often were observed with feeding baskets and swimming upside down.

            The polychaetes observed appeared to be tomopterid worms and dominated by a single species.  The body postures of these worms either were serpentine (Figure 24), indicating active swimming, or straight and vertically oriented, indicating passive drifting.  We have seen similar behavior when observing polychaetes swimming in the well at the WHOI dock.

            Within the copepod category, at least four genera were observed (Figure 25).  These genera included Oithona (some with egg sacs), Calanoides, large Calanus (probably acutus), and Metridia (which were observed to emit bioluminescent flashes from the side of the prosome).  Oithona were largely oriented in the typical head-down position and often possessed double egg sacs.  The observation of the light organ on Metridia was unexpected and provides a distinguishing characteristic for identification of this genus.

            Other plankton taxa also were distinctive in the video (Figure 26).  Pteropods appeared similar to Limacina and were observed in both cameras (Figure 26).  Radiolarians with long spines also were seen (Figure 26).  Marine snow particles were relatively small aggregates (~5 mm diameter) and were distinguished by their typically opaque character.  The most common medusae observed were very distinctive and appeared to be of one type (Figure 26).  They had a bell diameter of 1-2 cm.

 

            Distributional patterns of larval krill:   The most striking and surprising finding of this first U.S. Southern Ocean GLOBEC survey was that the larval krill are distributed across the entire shelf from the offshore edge adjacent to the Antarctic Circumpolar Current all the way in to the coast.  Prior krill studies in the Southern Ocean have, for the most part, been carried out during summer.   These prior studies found that adult krill spawn offshore during late summer and, that when the research resumed the following spring, the juvenile krill were found near the coast.  Thus the question was:  How do the krill larvae move from offshore to near the coast during the winter?  The working hypothesis of the Southern Ocean GLOBEC program is that the larval krill migrate under the ice toward shore during the winter months reaching the coast as young adults by spring.

            After completion of this first Southern Ocean GLOBEC survey during late fall, it is clear from the VPR data that late stage krill larvae are already distributed broadly throughout the region from the shelf edge to the coast.  Data from the middle of the grid (offshore from central Marguerite Bay) to the end of the grid to the southwest reveal this pattern clearly (Figure 27).  It is seen that highest abundance of these krill larvae, which are primarily late stage furcilia (10-15 mm), is subsurface.   The larvae were found most abundant in the pycnocline region, which was located between 50 and 100 m. High abundance was found along the offshore edge of the survey near the ACC, and it is not clear how far offshore the larvae were distributed since time constraints precluded sampling further offshore to obtain biological end points.  High subsurface abundance is seen to extend from offshore regions to near the coast.  Examination of individual tows reveals the association of krill larvae with the pycnocline more clearly (Figure 28).  Tows 18-19 comprised three transects and reveal the low-density (due to low salinity) coastal current.  In the nearest transect shown in Figure 28, krill larvae can be seen to lie along the pycnocline, as it deepens from offshore to onshore.  Given the long development times of the krill (months) and the typical current velocities across the shelf (3-5 cm s-1), it is not surprising that the krill larvae are broadly distributed across the study area.  It will be interesting to determine the krill distributions under the pack ice during the next cruise.  It should be noted there were substantial concentrations of larval krill under the brash ice during the present cruise which could not be sampled effectively with any our present instrumentation.

 


Figure 23.  Mosaic of krill images from the VPR low magnification camera (upper) and

high magnification camera (lower) (scale bars apply to all sub-images).


Figure 24.  Polychaetes from the low magnification camera.


Figure 25.  Calanoid copepods from low (upper) and high (lower) magnification VPR cameras.  

            After completion of this first Southern Ocean GLOBEC survey during late fall, it is clear from the VPR data that late stage krill larvae are already distributed broadly throughout the region from the shelf edge to the coast.  Data from the middle of the grid (offshore from central Marguerite Bay) to the end of the grid to the southwest reveal this pattern clearly (Figure 27).  It is seen that highest abundance of these krill larvae, which are primarily late stage furcilia (10-15 mm), is subsurface.   The larvae were found most abundant in the pycnocline region, which was located between 50 and 100 m. High abundance was found along the offshore edge of the survey near the ACC, and it is not clear how far offshore the larvae were distributed since time constraints precluded sampling further offshore to obtain biological end points.  High subsurface abundance is seen to extend from offshore regions to near the coast.  Examination of individual tows reveals the association of krill larvae with the pycnocline more clearly (Figure 28).  Tows 18-19 comprised three transects and reveal the low-density (due to low salinity) coastal current.  In the nearest transect shown in Figure 28, krill larvae can be seen to lie along the pycnocline, as it deepens from offshore to onshore.  Given the long development times of the krill (months) and the typical current velocities across the shelf (3-5 cm s-1), it is not surprising that the krill larvae are broadly distributed across the study area.  It will be interesting to determine the krill distributions under the pack ice during the next cruise.  It should be noted there were substantial concentrations of larval krill under the brash ice during the present cruise which could not be sampled effectively with any our present instrumentation.

            Distributional patterns of other plankton groups will be examined in the laboratory.  Adult krill were observed in the video within dense swarms that were also mapped acoustically during the patch studies.  The VPR images have been extracted and sorted for these tows and subsequent analysis in the laboratory will be carried out to compare the VPR and acoustically derived estimates of krill densities and body sizes in the patches.

 

            Distributional Patterns of Environmental Data:  The standard VPR plotting software (developed in MATLAB) was used to generate real time three-dimensional plots of the environmental data from the sensors on BIOMAPER-II.  The survey data reveal that the water column was sharply stratified in both temperature and salinity throughout the study area (Figure 29). A temperature minimum layer, corresponding to the winter water, can be seen in the upper 100 m across the shelf throughout the northeastern portion of the survey region and in the offshore areas of the southwestern half of the grid.  It is clear from the plot that winter cooling is occurring over the entire region, causing a sharp transition between colder surface water and warmer bottom water.  The penetration of Upper Circumpolar Deep Water (warm) onto the shelf is seen in the lower portions of the water column in the northerly transects.  This water extended quite far into Marguerite Bay  in the deep trough that intersects the shelf.  Note the absence of UCDW across transects in the southern portion of the survey.

            Salinity stratification also was present over the whole shelf but was intensified near the coast in association with the coastal current (Figure 29).   Lowesmat salinity was found in the coastal plume in southern Marguerite Bay and Alexander Island.  Lower salinity was also found in the northeastern portion of the survey near the coast.  Relatively low surface salinities extended to the outer reaches of the surveyed area.  Upper Circumpolar Deep Water on the shelf at depth was evidenced by the very high salinities along the outer edges of the transects in the northern portion of the survey.

 

 

 

 

 

 

 

 

 


Figure 26.  Radiolarian (A) and Pteropod (B) images from the high magnification camera.  Medusae

(1-2 cm diameter bell; C,D) and ctenophore (E) images from low magnification camera).


 


Figure 27.  Three-dimensional distribution of larval krill over southwestern half of survey grid during May 2001 (NBP01-03), based on VPR data.  These krill were late stage furcilia (10-15 mm; see Figure 23).  The view is looking toward the south.  High near-bottom concentrations near the coast of Alexander Island are a mixture of adult krill (and possibly large copepods, requiring further analysis).  Note also that the dark blue area in the center of the data set is due to a lack of processed data in this area.

 

 

 

 

 


Figure 28.  Comparison of seawater density (top) and krill abundance determined from the VPR (bottom).  Note the layer of krill along the pycnocline in the nearest transect.  High near-bottom abundance is due to a combination of adult krill and large copepods, requiring further analysis. 

The dark blue areas in the second and last transects are due to lack of processed data in

these regions.  The view is from the north.

 


 


Figure 29.  Three-dimensional distribution of temperature (top) and salinity (bottom) over the

survey area.  View is from the south.

 

 

 

 

            Density stratification was largely driven by salinity, as evidenced by the similar distributional patterns for the two variables (Figure 30).  The low salinity coastal water is clearly seen in the density stratification.  The relatively lower surface salinity extending to the shelf edge is also reflected in the density structure.  Even though the surface waters are colder, they are also fresher, leading to the lower surface sigma-t values throughout the region.

            Fluorescence values were generally higher in the southwestern half of the surveyed region (Figure 30).  High fluorescence occurred along two transects (transects 10 and 11) west of Alexander Island.  Very low fluorescence values were found to the northeast.  High localized areas of fluorescence were found in the offshore regions of transects 4 and 5.  In all areas, fluorescence was higher in the upper part of the water column.


            Environmental data at fixed depth layer:  The distribution of temperature and salinity at selected depths (25, 50, 100, 150, 200, and 240 m) demonstrates the different water types and seasonal cooling, as well.  For temperature, the progression to cooler water from the northeast to the southwest corners of the grid in the 25, 50, and 100 m depth layers demonstrates clearly the effect of cooling of the upper water column as winter progresses.  Salinity in the upper 100 m shows the effect of the coastal current exiting the southern end of Marguerite Bay as the extensive region of fresh water extending from within Marguerite Bay around Alexander Island and to the south, reaching almost halfway across the shelf in the southern part of the study.  Both temperature and salinity show the presence of UCDW on the shelf and into Marguerite Bay in the northern region of the survey grid, with the quite warm and salty water in that region in the 150, 200, and 240 m depth layers.  This water type was absent at the southern end of the study region. 

            Fluorescence at these six depth layers showed that fluorescence was greater in the upper water column and in the southern region of the survey grid.  Elevated regions of high fluorescence were observed across two transects in the northern region, near the shelf break (upwelling of nutrients in the canyon?) and  along two southern transects off of Alexander Island.

            The particle load of the water column, represented by the light attenuation from the transmissometer on the BIOMAPER-II, showed different trends from the fluorescence in the six depth layers.  Light attenuation was greater in the northern region in the upper 50 m, in contrast to fluorescence which was lower in the northern region.  A region of localized elevated light attenuation was observed in the upper 150 m, especially in the 100-150 m depth range, near the coast of Alexander Island.  This was a region where high abundances of adult krill were observed both in the video images and as acoustic backscatter.  The video images revealed that the elevated attenuation of light likely resulted from high abundances of  small microzooplankton that were observed as numerous small particles.

 

8.3 ROV observations of juvenile krill distribution, abundance, and behavior  (Scott Gallager)

 

8.3.1 Objective and Methods

            The objective of the ROV studies is to observe and quantify the distribution, abundance, behavior, and size distribution of juvenile krill in association with the underside of marginal ice. The WHOI SeaRover was equipped with a variety of physical and biological sensors, including a stereo camera system with a field of view of 1 m3 and a synchronized strobe, CTD, Imagenix 881a 630 kHz‑1 Mhz sector scanning sonar, uplooking DVL Navigator 1200 kHz ADCP, and the standard forward looking pan and tilt color camera. A Trackpoint II navigational beacon was also mounted on the frame. The navigational transponder was mounted on a 10 m pole off the starboard side of the Palmer.

 

 

 

 


 


Figure 30.  Three-dimensional distribution of seawater density (Ft) (top) and fluorescence (bottom)

over the survey area.  View is from the south.

 

 

 

            The ROV was deployed through the starboard A-frame and 20 m of tether paid out with a 50 lb clump weight. The ROV first dropped to 20 m and traveled at least 10 m away from the ship. The ROV then ascended to about 5 m depth or until the underside of the ice was observed in the pan and tilt camera. A trackline was established extending radially away from the ship out to a distance of approximately 100 m. As the ROV traveled the trackline at a speed of about 5‑10 cm s-1, the stereo camera was used to image the under-ice surface and associated organisms. Precise positioning and sizing of the target within the 1 m3 will be established through post‑processing using a sterogrammetry algorithm. The forward speed of the ROV will be established with data from the ADCP and used in conjunction with the image volume to calculate volume sampled per unit time. For example, at a forward speed of 10 cm s-1, a new 1 m3 will be imaged every 10 s. The ADCP will also provide distance to the under-ice surface and backscatter intensity. The sector scanning sonar is being used to evaluate distance from the ice and for locating krill swarms. The CTD provides backup data on ROV depth and documentation of hydrography. In addition to larval distribution, swimming behavior will also be quantified. Stereogrammetry will be used to measure swim speeds and direction to obtain a vector for each individual every 1/30 s. To correct for background motion, the instantaneous vector for all particles in the field of view are ensemble averaged and subtracted from each organism at 1/30 s intervals. Thus the swimming speed, direction and body posture, angle of attach, etc. will be quantified as a function of body size and stage.

 

8.3.2 Results

            To date we have deployed the ROV four times to collect data and once as a test. Images of juvenile krill on order 8 to 15 mm in length appear common along the under-ice surface in association with crevasses and cracks in the ice. Typically, when the ROV bumps the ice, small numbers of furcilia appear by swimming down and away from the under surface. Swimming speeds vary from near motionless to about 8 cm s-1 for 10 mm furcilia.  No swarming or aggregation behavior was noticed other than the presence of small groups of furcilia occurring under a particular piece of ice. 

            Together with data from BIOMAPER-II/VPR and the Simrad EK500, the ROV observations suggest that layers of juvenile krill form between the under-ice surface and  about 20 m in depth, depending on bathymetry and degree of ice formation.  Unfortunately, only brash and pancake ice have been sampled to date.  The hope is to get a good look at the undersides of fast ice on the next cruise (NBP01-04) in July and August 2001.

 

8.4 Simrad EK500 Studies of volume backscatter (Scott Gallager)

 

            The Simrad EK500 has three hull-mounted transducers:  38, 120, and 200 kHz.  Very little was known about the system by the electronics technicians on board other than it was useful for estimating bottom depth.  The system was not set up to record or print data in any way.   The legend goes that after the system was installed in 1993, Simrad was unable to calibrate due to interference possibly emanating from the ship or enhanced by the protective coverings over the transducers.  The system has not seen much use, even though a few investigators have tried in vain to establish decent echograms.

            After playing around with the settings on the display and reading the manual a few times, Galleger was able to come up with a configuration that clearly showed scattering layers.  These layers were highly correlated with layers observed on the same frequencies when BIOMAPER-II was in the water.  The VPR on BIOMAPER-II indicated when a particular plankton patch was dominated by copepods, larval krill, or adult krill.  Simrad settings were tweaked to match the output of BIOMAPER-II as  closely as possible.  However, a full calibration by Simrad will be necessary if investigators are interested in quantifying biomass of scattering layers.

            Simrad menus are independent.  This means that changes made to the display are not reflected in the printer or serial com port output.  One must go into each submenu and change the settings appropriately.  The most important change found necessary to visualize scattering layers was to increase the background noise margin under the main menu to at least 8 dB and then decreasing the thresholds for TS color minimum and Sv color minimum to very low values.  Details of each setting found most appropriate may be viewed in the Simrad binder on the shelf in the main lab, but here is a brief example of what seemed to work.

 


Operation menu: noise margin 8 dB

Display menu: set echogram to 1&2&3 to get all three frequencies displayed.  Ts and Sv as follows for each  frequency:

            38         120       200 kHz

Ts        -65       -100      -100

Sv        -95       -100      -89


 

            Depth range  may be set to your choice, but Gallager found 43 @ 1000 m and 120 and 200 kHz @ 250 m produced a very nice echogram of both surface waters and deep scattering layers of larger organisms.

            Printer is set up on the PaintJet, but the Palmer is very low on ink and the ink cartridges are difficult to purchase.

            All settings on the printer menu should be set identically to those on the display unless the user has a specific reason not to. 

            Transceiver menu: The best combination of pulse length and bandwidth was found to be a long pulse length and a narrow bandwidth for all three transducers.

            Ethernet menu: We did not set this up with an IP address, but there is no reason why the electronics technicians could not do this if desired.

            Serial Com port menu: We logged the entire three-channel echogram at a ping rate of 4 per s at 19.2 kbaud directly to a laptop and to the ships data logger on RVDAS.  Although it is not indicated in the manual, the newer software upgrade includes the ability to send out the echogram out the communication port in either ASCII or binary.  Gallager sent it in both modes to test software for processing.

            Annotation menu: set 10 minutes if you would like time recorded on the display and printer. 

            The Simrad  was used effectively to observe scattering layers during MOCNESS tows.  We conducted three tows where the strobe light was turned off and one at random as a particular net was tripped.  The Simrad gave a nice feeling for how uniform the patches were during the tests. (Figure 31).

 

9.0  Seabird Distribution in the Marguerite Bay Area (Christine Ribic and Erik Chapman)

 

9.1 Introduction

            The association of seabirds with physical oceanographic features has had a long history.  For example, seabirds have been found to be associated with temperature, water masses, currents, and the sea ice pack. Evidence for the association of seabirds with biological features has not been as strong. Veit, working during the breeding season at South Georgia, was not able to find a small-scale association of seabird distributions and krill patches.  Only at a very large scale was there some evidence that there were more seabirds in the vicinity of krill patches than elsewhere.  This may be due to the patchiness of the krill and the inability of seabirds to track these patches at small scales.  Therefore, in the Antarctic system, seabirds may associate with physical features that have a higher probability of containing krill than associating with krill patches directly.   The primary objective of the seabird project is to determine the distribution of seabirds in the Marguerite Bay area and to investigate their associations with physical and biological features.  A second objective is to determine the foraging ecology of the seabirds in that area.

 

 


 


Figure 31.  An example of the SIMRAD EK500 echosounder output, showing a krill layer above the seafloor (top panel - 43 kHz; middle panel - 120 kHz; bottom panel - 200 kHz).

 

 

 

 

            Because the U.S. SO GLOBEC cruises will take place during the non-breeding season when birds will not be closely tied to nesting areas, we hypothesize that ability to detect enhanced food resources will be the driving factor determining seabird distributions.

            We will be developing and testing competing models using existing knowledge of the marine system and Antarctic seabird biology.  Models will be developed separately for each species or group of species based on their foraging ecology.  We will be using seabird distribution and foraging ecology data that we collect, along with data collected concurrently by physical and biological oceanographers, to test these models.

 

9.2 Methods

 

            Seabird distribution within the SO GLOBEC study area was investigated using daytime and nighttime (using night vision viewers) survey work, and foraging ecology of the birds was investigated through diet sampling.  Nighttime surveys were designed to complement daytime surveys by recording activity of petrels that may be feeding primarily at night.  Previous survey work in Antarctica has suggested some petrel species (Antarctic and Snow Petrels in particular) may forage at night.  This effort was experimental and was developed during the cruise.  Diet sampling efforts will be used to complement a foraging ecology study being carried out by Dr. William F. Fraser on the R/V Laurence M. Gould during the U.S. SO GLOBEC cruises.  Summaries of daytime and nighttime surveys and diet sampling efforts are outlined separately below.

 

9.3 Daytime Surveys

9.3.1 Methods

            Strip transects were conducted simultaneously at 300 m and 600 m widths for birds. Surveys were conducted continuously while the ship was underway within the study area and when visibility was >300 m.  For strip transects, two observers continuously scanned a 90° area extending the transect distance (300 m and 600 m) to the side and forward along the transect line.  Binoculars of 10X and 7X magnification were used to confirm species identifications.  The 7X pair of binoculars also included a laser range finder.  Ship following birds were noted at first occurrence.  Ship followers will be down-weighted in the analyses because these individuals may have been attracted to the ship from habitats at a distance from the ship. For each sighting, transect (300 m or 600 m), species, number of birds, behavior, flight direction, and any association with visible physical features, such as ice, were recorded.  Distances were measured either by a range finder device as suggested by Heinneman or by the laser distance finder (when in the ice).  Marine mammal sightings within the transect were also recorded.

            Surveys were conducted from an outside observation post located on the port bridge wing of the RVIB N.B. Palmer.  When it was not feasible to conduct surveys from this observation post, we surveyed from the inside port bridge wing.

 

9.3.2  Data Collected

                        Total Survey Time:  88 hours, 21 minutes.

Distance (km):  938.2

                        Boat Speed (knots):  5.7 (1.8 SD)

                        True Wind Speed (knots): 11.3 (4.7 SD)

 

Sightings during daytime surveys are summarized in Table 12.

 

9.3.3 Preliminary Results

            Overall, we found the distribution of seabirds varied throughout the grid, depending on species.  There were no obvious patterns with physical features except for the following. We found a relatively high density of Snow Petels in both ice and open water within the coastal current along the north and west shore of Alexander Island.  We plan on investigating this relationship in more detail as hydrographic maps of the water masses in the study area become available.  We did not observe Adélie penguins (Pygoscelis adelii) during the survey. It will be interesting to see whether Adélie penguins will be present in the study during the later stages of the winter when the pack ice has developed.

 

 

 

 

 

 

 

 

 

Table 12.  Summary of sightings during daytime survey effort within the

SO GLOBEC study area during cruise NBP01-03.

 

Species

Number

Snow Petrel (Pagrodoma nivea)

513

Southern Fulmar (Fulmarus glacialoides)

387

Antarctic Petrel (Thalassoica antarctica)

276

Blue Petrel (Halobaena caerulea)

209

Cape Petrel (Daption capense)

163

Kelp Gull (Larus dominicanus)

141

Imperial Shag (Phalacrocorax atriceps)

38

Southern Giant Petrel (Macronectes giganteus)

35

Unidentified Storm Petrel

4

Sooty Shearwater (Puffinus grifeus)

2

Broad-billed Prion (Pachyptila vittata)

1

Antarctic Tern (Sterna vittata)

1

Gray-Headed (Diomedea chrysostoma) or Black Browed (Diomedea melanophris) Albatross

1

 

 

9.4 Seabird Nighttime Surveys

9.4.1 Methods

            ITT 200/210 Binocular Night Vision Viewers were used during one half-hour survey periods while on the survey grid.  Surveys were a minimum of an hour apart.  Observations were made from the 02 deck in an area that is not well lit in the ship’s lights to increase the effectiveness of the night vision viewer.  Observers scanned back and forth from the stern to the bow looking for birds. When possible, the species of the bird was recorded in addition to whether the bird appeared to be following the ship or attracted to the ship’s lights.  Observations were not conducted when visibility with the night vision viewer was less than 100 m from the ship.

 

9.4.2 Data Collected

                        Total Survey Time:  17 hours, 51 minutes

Distance (km):  150.5

                        Boat Speed (knots):  5.1 (4.2 SD)

True Wind Speed (knots):  10.3 (1.1 SD)

 

Sightings during daytime surveys are summarized in Table 13.

 

9.4.3 Preliminary Results

            We were able to see birds using the night vision viewer approximately 200 m from the ship without sea ice, snow, or fog.  Sea ice tended to increase visibility distance up to about 400 m and fog and snow decreased visibility to between 50 and 100 m.  We found that most of the birds that we observed were attracted to the lights and were following the ship.  In addition to Snow and Antarctic Petrels, we also saw Cape and Blue Petrels during the night surveys.  During the few transects when we traveled through sea ice, visibility was greatly improved and birds did not appear to be following the ship or attracted to the lights. We are interested in continuing our effort with the night vision viewer during the next cruise, particularly since we are expecting significantly more sea ice cover and the night surveys were most effective in these conditions. 

 

 

Table 13.    Summary of sightings during nighttime survey effort within the

SO GLOBEC study area during cruise NBP01-03.

 

Species

Number

Snow Petrel (Pagrodoma nivea)

86

Antarctic Petrel (Thalassoica antarctica)

21

Blue Petrel (Halobaena caerulea)

20

Cape Petrel (Daption capense)

18

Unidentified Petrel

65

 

9.5 Diet Sampling

 

9.5.1 Methods

            During the U.S. SO GLOBEC cruises, we opportunistically diet sampled penguins and petrels from the RVIB N.B. Palmer according to protocols used by Dr. William R. Fraser.   Dr. Fraser was diet sampling concurrently from the R/V L.M. Gould.  We used the water off-loading technique in which birds are netted and their stomachs pumped.  This technique is used extensively in seabird research in Antarctica [Antarctic Marine Ecosystem Research in the Ice Edge Zone (AMERIEZ), Antarctic Marine Living Resources Program (AMLR), Polar Oceans Research Group] and is preferable to methods that involve killing birds. We attempted on two occasions to capture Snow Petrels in a net from a Zodiac by positioning ourselves in brash ice and baiting the birds with red cloth soaked in cod liver oil.  The birds were attracted to the bait, but they did not come close enough to the boat for us to catch them with our nets.  We will be looking into using a net that can be thrown over birds that may be more useful in capturing the birds.

 

9.5.2 Data Collected

            During the cruise, we diet sampled 3 Antarctic Petrels, 2 Snow Petrels and 6 Adélie penguins. The petrels that we were able to capture landed on the ship at night.  The 6 Adélie penguins that were diet sampled were captured from land in the Faure Islands in Marguerite Bay.

 

9.5.3 Preliminary Results

            Of the petrels that were diet sampled, we got a good sample of stomach contents from one Antarctic Petrel. The stomach contents of this bird were entirely fish. Otoliths were collected for identification of species and size-class of the fish.  We got only stomach oil and unidentifiable small digested bits from the other petrels.  Of the Adélie penguins sampled, 2 of the penguins had empty stomachs and 4 of the birds had been eating fish and some adult krill.  Results from the diet sampling of penguins and the Antarctic Petrel are given in Table 14.

 

 

 

 

 

 

 

 

Table 14.  Summary of stomach contents for diet samples taken from an

Antarctic Petrel and 4 Adélie penguins during cruise NBP01-03.

 

Species

Julian Date

Latitude

Longitude

Fish (g)

Krill (g)

Otoliths taken?

Notes

Antarctic Petrel

145

-68.1584

-69.9372

63

0

yes

 

Adélie penguin

147

-68.0909

-68.8138

3

2

No

 

Adélie penguin

147

-68.0909

-68.8138

22

120

Yes

Krill was adult Euphausia superba (43-59mm)

Adélie penguin

147

-68.0909

-68.8138

3

2

No

 

Adélie penguin

147

-68.0909

-68.8138

23

30

Yes

Krill was adult Euphausia superba (25-56mm)

 

10.0 Cetacean Visual Survey and Biopsy (A. Friedlaender)

 

10.1 Introduction

 

            Recently, the International Whaling Commission (IWC) developed proposals for collaborative work in the Southern Ocean with the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and the International Global Ocean Ecosystem Dynamics (GLOBEC) program under the IWC Southern Ocean Whale Ecosystem Research (SOWER) program.  This research program has the long-term aim to: “define how spatial and temporal variability in the physical and biological environment influence cetacean species in order to determine those processes in the marine ecosystem which best predict long-term changes in cetacean distribution, abundance, stock structure, extent, and timing of migrations and fitness.”

            This objective is being pursued through collaboration with GLOBEC and CCAMLR, using multidisciplinary ecosystem approach to data collection, analysis, and modeling.  The IWC also recognizes that it lacks the data to determine baseline patterns of distribution (and the  biological and physical processes responsible for such patterns) of baleen whales from which to judge the potential effects of climate change.  Therefore, three further objectives have been defined by the Commission.  They are: “to characterize foraging behavior and movements of individual baleen whales in relation to prey characteristics and physical environment, to relate distribution, abundance and biomass of baleen whale species to same for krill in a large area in a single season, and to monitor interannual variability in whale distribution and abundance in relation to physical environment and prey characteristics.”

            SO GLOBEC studies provide the ideal platform for such long-term studies, where scientists from a range of disciplines can conduct intensive focused studies, within the framework of long-term data synthesis and planning.  Given the shared objectives among the IWC, GLOBEC, and CCAMLR, the IWC has determined that the most effective means of investigating these ecological issues is to focus a considerable body of cetacean research within the framework provided by these programs (taken from D. Thiele). 

            The first of the “Predator Science Questions” in SO GLOBEC has been formulated as: How does winter distribution and foraging ecology of top predators relate to the distribution and characteristics of the physical environment and prey (krill) (taken from J.A. van Franeker)?

 

10.2 Methods

            Standard IWC methodology for multidisciplinary studies will be used throughout all GLOBEC collaborative cruises.  This will involve experienced cetacean researchers conducting line transect sighting surveys throughout daylight hours in acceptable weather conditions.  Data are recorded on a laptop based tracking program (Wincruz), and photo and video records are also obtained for species identification, group size ,verification, feeding (and other behavior), ice habitat use, and individual identification (taken from D. Thiele).

            During this cruise, observations were made from the ice tower or the bridge level by a single observer (AF).  When conditions permitted, the observer was outside along the cat-walk of the ice tower, otherwise, observations were made from inside.  Effort was focused 45° to port and starboard of the bow ahead of the vessel, while also scanning to cover the full 180° ahead of the vessel.  In ice, the method was adjusted to include searching in behind the vessel track as well, in order for cetaceans and seals hidden by ice to be detected more readily.  The observer used a combination of eye and binocular (7x50 Fujinon) searching.  Effort would commence when the following conditions allowed: appropriate daylight, winds less than 20 kts or Beaufort Sea State less than or equal to 5, visibility greater than 1 mile (measured in the distance a minke whale blow could be seen with the naked eye as judged by the observer), and the ship actually steaming.

            Sightings were recorded on a laptop based Wincruz Antarctic program, which also logged GPS position, course, ship speed, and a suit of other environmental and sighting conditions automatically.  Visual observations were made both during the station-transect portion of the trip, as well as during transit.  When possible, photographic and/or video documentation was made of each sighting for later use in individual identification, species confirmation, and habitat description.

            A second component to the marine mammal work is biopsy sampling from small boats.  On the occasion that weather conditions, daylight, timing, and whales were present, biopsy sampling was attempted from Zodiacs.  Samples were obtained with a Barnett Wildcat Crossbow, equipped with custom made floating bolts and screw-on hollow point biopsy plugs.  The bolts are designed to penetrate the skin and blubber (depending on the size of the plug; either 1 inch or 0.5 inch) to the end of the plug, where the float begins, and bounce out of the whale, securing a sample with three small barbs inside the plug.  Skin samples are preserved in dimethyl sulfoxide solution and will be sent to the National Marine Fisheries Service, Southwest Fisheries Science Center for genetic analysis.  Blubber samples will be frozen for later use in contaminant, pesticide, heavy metal, etc. analyses.

 

10.3 Results

10.3.1 Sightings

            Generally, sighting conditions during the cruise were poor.  The appropriate combination of environmental and ship conditions did not lend to good conditions.  Yet, nearly 80 hours (79:33) of sighting effort were made during the entire cruise.  Of this time, 45:30 were made during the survey grid.

            In Antarctic waters (south of 60ES), 43 cetacean sightings of 67 animals were made (Figure 32, top panel).  These include 19 sightings of 30 humpback whales, Megapatera novaeangliae; 22 sightings of 33 minke whales, Balaenoptera acutorostrata; 1 sighting of 3 ‘like’ humpback whales; and 1 sighting of 1 unidentified whale (Table 15).

            More specifically, within the study area as defined by the survey grid, 18 sightings of 27 humpback whales (Figure 32, middle panel), 19 sightings of 30 minke whales (Figure 32, bottom panel), 1 sighting of 3 ‘like’ humpback whales, and 1 sighting of 1 unidentified whale were made (Table 16).

 

10.3.2 Biopsy

            On the evening of 24 May 2001, sonobuoys recorded several humpback whales relatively close to the ship (C. Berchock pers. comm.), and whales were seen in the ship’s lights as the RVIB Nathaniel B. Palmer traveled north along the west coast of Alexander Island.  At first light, the ship was approximately 2 miles north of where the whales were seen.  Ship’s time was dedicated to biopsy sampling for the day, and A. Friedlaender decided to steam back to where the whales were previously seen.  At 0930, whales were sighted in an area with bands of brash ice several miles off the coast.  Weather conditions were optimal for surveying and small boat work.  Zodiacs were deployed for work at 1030.  In the area of the ship (68.75ES, 71.35EW), there were three pairs of humpback whales and one single humpback whale, one group of two minke whales and one group of three minke whales.  The whales appeared to be tracing back and forth, perpendicular to the coast in a 2-3 mile area.  Photo-ID pictures were taken of each of the whales in the area, save two minkes and one humpback whale that were not approached.  Video footage was taken of each approach, shot taken, and each whale’s behavior (thanks to Mark Christmas, National Geographic Society).  Biopsy samples  were obtained from three humpback whales and one minke whale.  Only one sample was taken from each group of animals approached.  Skin samples were taken from all four whales, while blubber samples were taken from two of the humpbacks and the minke whale (Table 17).

 

10.4 Preliminary Findings/Discussion

 

            As stated earlier, a primary research objective of the cetacean studies within SO GLOBEC is to determine the winter distribution and foraging ecology of baleen whales in relation to the characteristics of the environment and the distribution of their prey. Sightings data from this cruise show only humpback (Megaptera novaeangliae) and minke (Balaenoptera acutorostrata) whales present in the study region in the austral fall and winter.  Sighting numbers for both species were nearly equal, suggesting that both over-winter around Marguerite Bay in similar concentrations.  Correlation of cetacean distributions with concurrent hydrographic distributions show whales associated with: 1) the southern boundary of the Antarctic Circumpolar Current, 2) the frontal boundary between intrusions of warm Upper Circumpolar Deep Water and continental shelf water, and 3) the frontal boundary between inner shelf coastal current and continental shelf waters (E. Hofmann, pers. comm.; see also Figures 5 and 6 in the Hydrography Report).  Cetacean sightings were particularly numerous along the frontal boundary formed as the coastal current exits the southern end of Marguerite Bay.  Humpback whales were associated with all three frontal boundaries, while minke whales were found only along the continental shelf and coastal frontal boundaries.  The correspondence between the cetacean sightings and hydrographic features suggests that the austral winter distribution of cetaceans along the Western Antarctic Peninsula is not random, but rather is determined by the structure of the physical environment, which in turn determines prey distribution.  Continued analyses and collection of cetacean sightings data in conjunction with concurrent prey and hydrographic distributions will allow determination of the causal relationships underlying austral winter cetacean distributions in the Antarctic Peninsula region.

           

 

Table 15.  Cetacean Sightings in Antarctic Waters (south of 60°S)

 

 

Sightings

Number

Humpback Whale

19

30

Minke Whale

22

33

Like Humpback Whale

1

3

Unidentified Whale

1

1

Total

43

67

 

 


 


Figure 32.  Top panel: Cetacean Survey Effort Lines and Sightings in Antarctica (below 60ES). 

Middle panel: Cetacean Survey Effort and Humpback Whale Sightings.  Bottom panel: Cetacean

Survey Effort and Minke Whale Sightings.

 

 

 

Table 16.  Cetacean Sightings within Survey Grid Study Area

 

 

Sightings

Number

Humpback Whale

18

27

Minke Whale

19

30

Like Humpback Whale

1

3

Unidentified Whale

1

1

Total

39

61

 

Table 17.  Whale Biopsy Samples

 

Date

WOS #

Species

Skin

Blubber

25 May 2001

WOS34

Megaptera novaeangliae

yes

yes

25 May 2001

WOS35

Megaptera novaeangliae

yes

yes

25 May 2001

WOS37

Megaptera novaeangliae

yes

no

25 May 2001

WOS36

Balaenoptera Acutorostrata

yes

yes

Total

 

 

4

3

 

11.0 Passive listening (Berchok)

 

11.1 Introduction

 

            The primary goal of this project is to determine minimum population estimates, distribution and seasonality for mysticete whales within the Western Antarctic Peninsula region. These data will allow rates of krill predation by whales to be modeled for the study area.  Because the vocalizations of most baleen whales are unique and easily recognizable, it is possible to distinguish between the various species using passive acoustic techniques.  At the very least, it is hoped that an acoustic detection baseline can be established from which future changes in relative abundance can be measured. 

            The main species of interest is the blue whale (Balaenoptera musculus), followed by the fin (B. physalus) and humpback (Megaptera novaeangliae) whales. Minke (B. acutorostrata) and sperm whale (Physeter macrocephalus – an odontocete) calls may be detected, but they are expected to be so infrequent as to make population density estimates unreliable. The Antarctic blue whale population is now so low that it is virtually impossible to obtain statistically significant encounter rates for population estimation during visual surveys.  For this reason, current population estimates vary greatly from 500 to 5000 individuals.  

 

11.2 Methods

 

            The key component of this study is a series of eight acoustic recorders that were deployed during the LMG01-03 Cruise (18 March–13 April 2001).  These are bottom mounted, with the hydrophone component floating 5 m above the mooring.  Each of these instruments will record continuously at 500 samples per second for 15 months. The low frequency (~ 20 Hz) calls of blue and fin whales can be readily recorded out to a 20 km radius, providing more contacts in a one year deployment than would be possible from even an extensive visual survey, assuming whales call roughly 10 to 50% of the time.   Furthermore, blue whales show geographic variation in their low frequency, regularly repeated ‘broadcast’ calls, which are stable for many decades and likely to become an important parameter in the revision of blue whale stocks and subspecies.

            For the NBP01-03 cruise, sonobuoys were deployed opportunistically in order to supplement the information that will be gathered from the seafloor recorders.  Sonobuoys are expendable underwater listening devices that can last for up to eight hours.  There are four main components to a sonobuoy – the float, radio transmitter, salt water battery, and hydrophone.  The hydrophone is an underwater sensor that converts the pressure waves from underwater sounds into electrical voltages that get amplified and sent up a thin wire [length can be set to 90 feet ( 27.4 m), 400 feet (121.8 m), or 1000 feet (304.6 m)] to the radio transmitter that is housed in the surface float.  The radio signal is picked up by an antennae and radio receiver on the ship, then reviewed and simultaneously recorded onto a digital audiotape.  The maximum range on this cruise for the radio transmission was 10 nm, resulting in about an hour of recordings per sonobuoy while steaming, two hours during biomapping and up to eight hours during MOCNESS tows and CTD stations.  Interference from the N. B. Palmer limited the amount of clear recordings, with noise levels decreasing only after a range of 3-4 nm from the deployed sonobuoy.

            There are two types of sonobuoys.  Omnidirectional sonobuoys have hydrophones that can register signals up to 40 kHz, but they cannot determine the location of the sound source.    DiFAR (DIrectional Fixing And Ranging) sonobuoys also have an omnidirectional hydrophone for recording sound, but it is limited to a top frequency of 2.5 kHz.  However, DiFARs also have two pairs of sensors, which along with an internal compass, can determine the exact bearing of the sound from the sonobuoy.  With three or more of these sonobuoys in the water, it is then possible to pinpoint the location of the sound source.  This can then be correlated to visual observations of the species of marine mammal in that location, along with behavior and grouping information. 

            It was possible to receive the transmissions from up to four sonobuoys.   For the most part, only one sonobuoy was deployed at a time, unless a strong signal was heard.  In that case, either one or two more sonobuoys were deployed in order to get a cross bearing or triangulation on the sound source.  It was difficult to get more than a general position of the whale relative to the boat as the signal was being recorded, but this is something that can be worked out in more detail during post-processing.

            There were several reasons for the sonobuoy deployments.  First, they provided recordings that can be compared to the seafloor data.  This will provide a calibration on content, as well as detection range. Second, by deploying them around visually detected groups of whales, they provide a means of correlating calls with numbers of whales present.  Will a group of ten minke whales sound like ten whales, five whales, one whale, or no whales?  In this way, a more accurate population estimate can be calculated from the seafloor recordings.  Third, due to the very low sampling rate of the seafloor recorders, their upper frequency range is 250 Hz.  This is suitable for blue, fin, and minke whales, but for other species, such as the humpback whale, only the lower frequencies of their vocalizations will be detected.  Recordings made from the sonobuoys should be able to provide an estimate of what percentage of the vocal repertoire of this population of humpback whales falls below 250 Hz.  Again, this will lead to a more accurate population estimate. Lastly,  they provide a means of making recordings outside the range of the seafloor array.

 

11.3 Data Collected

 

            Sonobuoys were deployed both when marine mammals were visually detected and also randomly throughout the cruise.  A total of 104 sonobuoys were deployed – 9 omnidirectional and 89 DiFAR (6 DiFAR buoys failed).  Locations of all the deployments, as well as a preliminary summary of the various species heard on each buoy, can be seen in the complete (whalesound1.jpeg) and close-up (whalesound2.jpeg) maps and can also be found in Appendix 8.  Further analysis of the recordings is needed to verify some questionable sounds, as well as double check for others not detected during the initial review.  The table also indicates whether the deployment was due to a whale or seal sighting, a particular location, or because sounds were already being detected by nearby sonobuoys.

 

 

 

11.4 Preliminary Results

 

            Humpbacks were the predominant species heard.  Comparison of the distribution of sonobuoy deployments (whalesound1.jpeg and whalesound2.jpeg), with concurrent hydrographic distributions (see Figures 5 and 6 in Hydrography section, 2.1), show that the humpback whales were primarily associated with: 1) the frontal region of the inner shelf coastal current that flows into and out of Marguerite Bay around Adelaide and Alexander Islands, respectively; 2) the frontal boundary between coastal and continental shelf waters; and 3) the southern boundary of the Antarctic Circumpolar Current at the outer edge of the survey region.  This result is also in agreement with the visual survey results (A. Freidlaender).  Although the number of humpback and minke whales visually detected were very close (A. Freidlaender), very few minke whale calls were heard.  Also, although there were many visual sighting of crabeater, fur, and leopard seals, these species were not detected acoustically except for a few instances (to be verified).  Species that were heard but not visually detected included one blue whale (to be verified), one fin whale, and several members of an unidentified odontocete species.

 

12.0 Bathymetry of region and mooring surveys (Bob Beardsley and Jim Dolan)

 

            One objective of the SO GLOBEC program is to produce a better knowledge of the sea floor bathymetry in the program study area.  Much of Marguerite Bay and the adjacent shelf is poorly charted and the coverage with high quality digital sounding data with GPS‑quality navigation data is very sparse.  Most of the high‑quality along‑track digital data collected in this area on NSF‑funded research cruises prior to the SO GLOBEC program have been transferred to the U.S. National Geophysical Data Center (NGDC). These data have been obtained from NGDC and used to produce a local area improved version of the Sandwell and Smith ETOPO2 2‑min digital gridded bathymetry for the SO GLOBEC study area prior to the start of the 2001 field program (ETOPO8.2A).  As has been found on the first SO GLOBEC mooring cruise, LMG01‑03, the 2‑min resolution of ETOPO8.2A does not resolve many of the canyons and abrupt changes in topography which characterize Marguerite Bay and the inner‑ to‑mid shelf region, nor is it particularly accurate in even the more uniform terrain regions.

            To begin to improve this situation, high‑quality swath bathymetry data were collect during NBP01‑03 using the SeaBeam multibeam system abroad the NBP. SeaBeam data were collected during the entire cruise outside the 200‑m limit of Argentine, and the raw data collected in the SO GLOBEC study area were ping‑edited by members of the scientific crew, quality‑controlled by Jim Dolan, Aaron Hunt, and Tom Bolmer, and used for scientific analysis and making gridded maps on various scales during the cruise. Detailed surveys and high‑resolution maps were made for the A1, B1, B2, and B3 mooring sites and several areas where specific BIOMAPER-II experiments were conducted.  The final SO GLOBEC SeaBeam data set was produced under the supervision of Jim Dolan at the end of the cruise and copies were distributed to Peter Wiebe, chief scientist; Bob Groman, U.S. SO GLOBEC Program Office data manager; and RPSC for its archive.

            In addition, a limited number of radar measurements of the coastline and ice edge positions were made during the cruise to help several features which appeared to be mis‑charted.  Charcot Island and its bay were relocated on chart 29005, Lazarev Bay relocated on chart 3571, and the Adelaide ice cliff near CTD station #100 relocated on chart 29141.

            The wealth of new bathymetry information and the overall high quality of the NBP01‑03 SeaBeam data strongly support the plan to continue to collect SeBeam data on all NBP cruises in the SO GLOBEC region, plus continue to re-chart the coastline whenever needed on future cruises. One program hope is to merge SeaBeam data collected in this program with the SeaBeam already collected on other NBP cruises to this area but not yet released by the principal investigators on those cruises.

 

 

 

13.0 Science Writers Reports

 

13.1 National Geographic Society (Mark Christmas)

 

            Nationalgeographic.com produced a web site, named SeaLab: Antarctica, to chronicle the oceanographic efforts of NBP01-03. It is located at .   The aim of the site was to illustrate, with written dispatches and photographs, the rigors of an oceanographic investigation in the Antarctic.  Questions could be submitted to the research team through the web site.  This proved to be a very popular aspect of the coverage and was used by classrooms that were studying Antarctica.  The hope was to put a human face to the science being conducted and allow people to experience the wonders of the Antarctic.

 

13.2 UCSC/NSF (Aparna Screenivasan)

 

            The goal of the science writer for the National Science Foundation (NSF) is to document the research and preliminary results of the various projects relating to the first U.S. SO GLOBEC cruise to the west Antarctic Peninsula.  I produced six stories during the cruise, all of which were picked up by the USA Today web site. The initial piece was an overview of the research to be conducted on the RVIB Nathaniel B. Palmer and the R/V Laurence M. Gould ships. Background research for that story was conducted at the preliminary meeting before the R/V Laurence M. Gould and the RVIB Nathaniel B. Palmer sailed on 21 April and 23 April 2001, respectively.   A major scientific group was the focus of the next four stories.  All of the pieces included descriptions of where the RVIB N.B. Palmer had visited, as well as relevant science conducted during that time period.  The groups discussed were as follows:  Conductivity, Temperature Depth (CTD), Acoustic Doppler Current Profiler (ADCP),  BIo-Optical Multi-frequency Acoustical and Physical Environmental Recorder (BIOMAPER II), and whale acoustics and visual studies. 

            The final story will discuss conclusions of the cruise and future directions for the next U.S. SO GLOBEC cruises.  In addition, there are two long-term projects in the works, one possible feature article is with Chris Fritsen from the University of Reno, focusing on his work with microbes that live in extreme environments.  A second possible feature article is a writing/artistic collaboration with Susan Beardsley, focusing on Antarctic plankton.  In addition, there is the potential to write more pieces for the National Science Foundation for the next U.S. SO GLOBEC cruises, which sail on 21 July 2001.  The stories about the science on the next cruises will have to be researched and discussed via electronic mail.  Overall, writing for the National Science Foundation and working with the scientists and staff on the RVIB Nathaniel B. Palmer has been a wonderful learning experience.  I would enjoy working with the U.S. Antarctic Research Program and the National Science Foundation in the future.

 


CRUISE PARTICIPANTS

 

Science Party (Name, Institution)

Krill Survey (BIOMAPER-II, MOCNESS, ROV)

Wiebe, Peter                                         Woods Hole Oceanographic Institution

Ashjian, Carin                                       Woods Hole Oceanographic Institution

Davis, Cabell                                         Woods Hole Oceanographic Institution

Gallager, Scott                                       Woods Hole Oceanographic Institution

Dennet, Mark                                        Woods Hole Oceanographic Institution

Fisher, Karen                                        Cornell University

Girard, Andrew                                     Woods Hole Oceanographic Institution

Taylor, Maureen                                    National Marine Fisheries Service, Woods Hole

Warren, Joe                                          Woods Hole Oceanographic Institution

 

CTD/ADCP

Hofmann, Eileen                                    Old Dominion University

Salihoglu, Baris                                      Old Dominion University

Sanay, Rosario                                      Old Dominion University

Beardsley, Susan                                   Woods Hole Oceanographic Institution

Beardsley, Robert                                  Woods Hole Oceanographic Institution

Howard, Susan                                      Earth and Space Research

 

Nutrients

Conroy, Rebecca                                   University of South Florida

Rutherford, E. Howard                          University of South Florida

 

Productivity Measurements

Kozlowski, Wendy                                 Scripps Institution of Oceanography

Thimgan, Mike                                      Scripps Institution of Oceanography

 

Seabird Survey/Ecology

Ribic, Christine                                      University of Wisconsin

Chapman, Erik                                      University of Wisconsin

 

Whale Survey/Active Counting

Friedlaender, Ari                                   International Whaling Commission/Duke University

 

Whale Survey/Passive Listening

Berchok, Catherine                                Pennsylvania State University   

 

Science Writers

Christmas, Mark                                    National Geographic Society

Sreenivasan, Aparna                              University of California, Santa Cruz/NSF

 

Raytheon Polar Services Technical Support (Name,  Position)

Doyle, Alice                                          Marine Project Coordinator

Doren, Jesse                                         Marine Technician

Burke, Matthew                                                Marine Technician

Green, David                                         Marine Technician

Dolan, James                                        Information Technology

Hunt, Aaron                                          Information Technology

Bolmer, Tom                                         Information Technology

Otten, Jeff                                            Electronics Technician

Szelag, Jan                                            Electronics Technician

 

Officers and Crew (Name,  Position)

Watson, Mike                                        Master

Fahey, David                                         Chief Mate

Galster, Marty                                       2nd Mate

Higdon, John                                         3rd Mate

Repin, Vladimir                                     Ice Pilot

Munroe, David                                      Chief Engineer

Ambrocio, Rogelio                                 1st Engineer

Lewis, Murray                                      2nd Engineer

Zipperer, Bryan                                     3rd Engineer

Ayler, Robert                                        Oiler

Pagdanganan, Rogelio                            Oiler

Delacruz, Fredor                                   Oiler

Alvezo, Enrique                         Oiler

Garde, Lauro                                         Able Bodied Seaman

Aaron, Bienvenido                                 Able Bodied Seaman

Villanueva, Sam                                    Able Bodied Seaman

Ambrocio, Ruel                                     Able Bodied Seaman

Plaza, Danilo                                         Ordinary Seaman

Sandoval, Lorenzo                                 Ordinary Seaman

Stelly, Ernest                                         Ordinary Seaman

Nestor, Silverio                                      Ordinary Seaman

Monje, Alejandra                                   Ordinary Seam


APPENDICES

 

Appendix 1.  Event Log

 

 

 

 

 

Consec.

Standard

Local Time

Event

Univ. Coor.

 Time (UCT)

Latitude (°S)

Longitude (°W)

Water

Cast

Scientific

 

eventno

Instr

cast

#

Station#

Station #

Mth

Day

hhmm

s/e

Mth

Day

hhmm

Deg.    Min.

Deg.    Min.

Depth

Depth

Invest.

Comments

NBP11401.001

DOCK

 

DEPART

 

4

24

1200

s

4

24

1600

53 10.230

70 54.378

 

0

Wiebe

 

NBP11401.002

BMP

1

ST.MAG

 

4

24

1255

s

4

24

1655

52 42.931

70 18.924

68

22

Wiebe

SOUND TEST 1

NBP11401.003

BMP

1

ST.MAG

 

4

24

1524

e

4

24

1924

52 41.545

70 09.952

68

22

Wiebe

 

NBP11401.004

BMP

2

ST.MAG

 

4

24

1727

s

4

24

2127

52 41.258

70 07.761

 

15

Wiebe

 

NBP11401.005

BMP

2

ST.MAG

 

4

24

1748

e

4

24

2148

52 41.276

70 07.710

 

15

Wiebe

 

NBP11601.001

XBT

 

DRAKE1

 

4

26

1501

s/e

4

26

1901

59 11.299

65 55.755

4678

763

Hofmann

 

NBP11601.002

SONOB

1

DRAKE2

 

4

26

1518

s

4

26

1918

59 14.238

65 56.617

 

305

Berchok

 

NBP11601.003

SONOB

1

DRAKE3

 

4

26

1602

e

4

26

2002

59 22.466

65 58.196

 

305

Berchok

 

NBP11601.004

XBT

 

DRAKE3

 

4

26

1558

s/e

4

26

1958

59 20.855

65 58.032

3505

760

Hofmann

BAD CAST

NBP11601.005

XBT

 

DRAKE4

 

4

26

1601

s/e

4

26

2001

59 21.327

65 58.150

3505

760

Hofmann

 

NBP11601.006

XBT

 

DRAKE5

 

4

26

1651

s/e

4

26

2051

59 29.444

66 02.030

3628

760

Hofmann

BAD CAST

NBP11601.007

XBT

 

DRAKE6

 

4

26

1653

s/e

4

26

2053

59 29.941

66 03.190

3628

760

Hofmann

 

NBP11601.008

XBT

 

DRAKE7

 

4

26

1751

s/e

4

26

2151

59 39.329

66 25.190

3416

 

Hofmann

BAD CAST

NBP11601.009

XBT

 

DRAKE8

 

4

26

1753

s/e

4

26

2153

59 39.74

66 02.625

3308

 

Hofmann

BAD CAST

NBP11601.010

XBT

 

DRAKE9

 

4

26

1756

s/e

4

26

2156

59 40.207

66 02.751

3308

 

Hofmann

BAD CAST

NBP11601.011

XBT

 

DRAKE10

 

4

26

1800

s/e

4

26

2200

59 40.847

66 02.870

3308

 

Hofmann

BAD CAST

NBP11601.012

XBT

 

DRAKE11

 

4

26

1805

s/e

4

26

2205

59 41.662

66 02.970

3308

300

Hofmann

 

NBP11601.013

XBT

 

DRAKE12

 

4

26

1853

s/e

4

26

2253

59 49.518

66 05.049

4269

413

Hofmann

 

NBP11601.014

XBT

 

DRAKE13

 

4

26

1856

s/e

4

26

2256

59 50.083

66 05.195

4200

 

Hofmann

BAD CAST

NBP11601.015

XBT

 

DRAKE14

 

4

26

1858

s/e

4

26

2258

59 50.389

66 05.288

4194

760

Hofmann

 

NBP11601.016

XBT

 

DRAKE15

 

4

26

1958

s/e

4

26

2358

60 0.393

66 07.888

3349

760

Hofmann

 

NBP11601.017

XBT

 

DRAKE16

 

4

26

2052

s/e

4

27

00:52

60 9.727

66 10.511

3575

300

Hofmann

 

NBP11601.018

XBT

 

DRAKE17

 

4

26

2055

s/e

4

27

00:55

60 10.29

66 10.660

3164

575

Hofmann

 

NBP11601.019

XBT

 

DRAKE18

 

4

26

2147

s/e

4

27

01:47

60 19.654

66 13.002

3122

760

Salihoglu

 

NBP11601.020

XBT

 

DRAKE19

 

4

26

2239

s/e

4

27

02:39

60 29.593

66 15.153

3074

760

Sanay

 

NBP11601.021

XBT

 

DRAKE20

 

4

26

2331

s/e

4

27

03:31

60 39.381

66 17.600

3438

760

Salihoglu

 

NBP11701.001

XBT

 

DRAKE21

 

4

27

00:26

s/e

4

27

04:26

60 49.550

66 20.065

3879

176

Salihoglu

wire broke

NBP11701.002

XBT

 

DRAKE22

 

4

27

00:30

s/e

4

27

04:30

60 50.450

66 20.270

3879

368

Salihoglu

wire broke

NBP11701.003

XBT

 

DRAKE23

 

4

27

01:25

s/e

4

27

05:25

60 59.860

66 22.940

2657

59

Salihoglu

wire broke

NBP11701.004

XBT

 

DRAKE24

 

4

27

01:26

s/e

4

27

05:26

61 00.210

66 23.080

2700

143

Salihoglu

wire broke

NBP11701.005

XBT

 

DRAKE25

 

4

27

01:28

s/e

4

27

05:28

61 00.530

66 23.160

2700

668

Salihoglu

 

NBP11701.006

XBT

 

DRAKE26

 

4

27

02:24

s/e

4

27

06:24

61 09.470

66 25.360

3400

90

Beardsley

wire broke

NBP11701.007

XBT

 

DRAKE27

 

4

27

02:25

s/e

4

27

06:25

61 09.890

66 25.480

3400

164

Beardsley

wire broke

NBP11701.008

XBT

 

DRAKE28

 

4

27

02:28

s/e

4

27

06:28

61 10.280

66 25.570

3400

668

Beardsley

 

NBP11701.009

XBT

 

DRAKE29

 

4

27

03:28

s/e

4

27

07:28

61 19.280

66 27.790

4287

564

Beardsley

wire broke

NBP11701.010

XBT

 

DRAKE30

 

4

27

04:45

s/e

4

27

08:45

61 30.320

66 30.560

4396

240

Beardsley

wire broke

NBP11701.011

XBT

 

DRAKE31

 

4

27

04:48

s/e

4

27

08:48

61 30.620

66 30.680

4397

543

Beardsley

wire broke

NBP11701.012

XBT

 

DRAKE32

 

4

27

04:51

s/e

4

27

08:51

61 31.080

66 30.860

4397

344

Beardsley

wire broke

NBP11701.013

XBT

 

DRAKE33

 

4

27

05:58

s/e

4

27

09:58

61 39.950

66 33.070

3978

760

Beardsley

perfect

NBP11701.014

XBT

 

DRAKE34

 

4

27

07:12

s/e

4

27

11:12

61 49.590

66 35.800

3819

760

Beardsley

perfect

NBP11701.015

XBT

 

DRAKE35

 

4

27

08:25

s/e

4

27

12:25

61 59.950

66 38.590

2505

325

Beardsley

wire broke

NBP11701.016

XBT

 

DRAKE36

 

4

27

08:27

s/e

4

27

12:27

62 00.490

66 38.740

3110

760

Beardsley

perfect

NBP11701.017

XBT

 

DRAKE37

 

4

27

09:27

s/e

4

27

13:27

62 09.469

66 40.881

3707

638

Hofmann

 

NBP11701.018

XBT

 

DRAKE38

 

4

27

10:40

s/e

4

27

14:40

62 19.718

66 43.811

3585

760

Howard

 

NBP11701.019

XBT

 

DRAKE39

 

4

27

11:43

s/e

4

27

15:43

62 29.582

66 46.461

3626

760

Hofmann

 

NBP11701.020

XBT

 

DRAKE40

 

4

27

12:58

s/e

4

27

16:58

62 39.969

66 54.426

3523

735

Salihoglu

 

NBP11701.021

XBT

 

DRAKE41

 

4

27

14:08

s/e

4

27

18:08

62 49.432

67 80.760

3551

760

Howard

spikes below 374

NBP11701.022

XBT

 

DRAKE42

 

4

27

15:12

s/e

4

27

19:12

62 59.560

67 15.940

3530

200

Howard

wire broke

NBP11701.023

XBT

 

DRAKE43

 

4

27

15:14

s/e

4

27

19:14

62 59.980

67 16.211

3541

300

Howard

bad data below 300 m

NBP11701.024

XBT

 

DRAKE44

 

4

27

16:16

s/e

4

27

20:16

63 09.980

67 22.209

3771

760

Salihoglu

 

NBP11701.025

XBT

 

DRAKE45

 

4

27

17:10

s/e

4

27

21:10

63 19.579

67 20.663

3715

760

Hofmann

 

NBP11701.026

XBT

 

DRAKE46

 

4

27

18:05

s/e

4

27

22:05

63 29.585

67 16.878

3535

760

Sreenyvasan

 

NBP11701.027

XBT

 

DRAKE47

 

4

27

19:59

s/e

4

27

22:59

63 39.827

67 12.948

3374

 

Hofmann

 

NBP11701.028

SONOB

2

DRAKE48

 

4

27

20:01

s

4

28

00:01

63 50.979

67 08.638

3160

305

Berchok

 

NBP11701.030

XCTD

 

DRAKE49

 

4

27

20:04

s/e

4

28

00:04

63 51.710

67 06.780

3160

 

Hofmann

didn't work

NBP11701.031

XBT

 

DRAKE50

 

4

27

20:08

s/e

4

28

00:08

63 51.710

67 06.780

3160

 

Hofmann

 

NBP11701.032

XBT

 

DRAKE51

 

4

27

20:10

s/e

4

28

00:10

63 52.000

67 06.100

3160

 

Hofmann

 

NBP11701.033

XBT

 

DRAKE52

 

4

27

20:12

s/e

4

28

00:12

63 52.210

67 05.580

3160

 

Hofmann

 

NBP11701.034

SONOB

2

DRAKE48

 

4

27

20:22

e

4

28

00:22

63 53.800

67 01.700

3160

305

Berchok

 

NBP11701.035

XBT

 

DRAKE53

 

4

27

22:13

s/e

4

28

02:13

64 06.733

66 31.283

979

 

Hofmann

 

NBP11801.001

SONOB

3

PALMER1

 

4

28

12:20

s

4

28

16:20

64 52.533

64 08.099

387

27

Berchok

 

NBP11801.002

SONOB

3

PALMER2

 

4

28

13:04

e

4

28

17:04

64 53.393

64 25.852

387

27

Berchok

 

NBP11901.001

SONOB

4

Transit 1

 

4

28

00:50

s

4

29

04:50

64 59.677

69 29.732

2808

305

Berchok

 

NBP11901.002

XCTD

 

Transit 2

 

4

28

00:52

s/e

4

29

04:52

64 59.779

69 29.829

2808

 

Hofmann

 

NBP11901.003

SONOB

4

Transit 1

 

4

28

01:31

e

4

29

05:31

65 06.488

69 36.893

2808

305

Berchok

Fin Whales recorded

NBP11901.004

XCTD

 

 

 

4

29

01:55

 

4

29

05:55

65 10.966

69 41.62

2879

 

Beardsley

didn't work

NBP11901.005

XBT

 

2

 

4

29

01:56

 

4

29

05:56

65 10.966

69 41.62

2879

 

Beardsley

broke on launch

NBP11901.006

XBT

 

3

 

4

29

01:59

 

4

29

05:59

65 10.966

69 41.62

2879

 

Beardsley

 

NBP11901.007

XBT

 

4

 

4

29

02:49

 

4

29

06:49

65 19.203

69 50.521

2755

 

Beardsley

 

NBP11901.008

XBT

 

5

 

4

29

03:40

 

4

29

07:40

65 27.656

69 59.776

2877

 

Beardsley

 

NBP11901.009

XBT

 

6

 

4

29

04:23

 

4

29

08:23

65 37.403

70 10.395

2727

50

Beardsley

 

NBP11901.010

FRRF

1

1

499.251

4

29

06:35

s

4

29

10:35

65 48.848

70 23.283

719

50

Hofmann

 

NBP11901.011

FRRF

1

1

499.251

4

29

06:51

e

4

29

10:51

65 48.848

70 23.283

719

50

Hofmann

 

NBP11901.012

CTD

2

1

499.251

4

29

07:06

s

4

29

11:06

65 48.83

70 23.19

718

707

Hofmann

 

NBP11901.013

CTD

2

1

499.251

4

29

08:03

e

4

29

12:03

65 48.83

70 23.19

718

707

Hofmann

 

NBP11901.014

BMP

3

1

499.251

4

29

08:45

s

4

29

12:45

65 48.0

70 23.0

500

250

Wiebe

 

NBP11901.015

Whales

 

 

500.220

4

29

08:45

s

4

29

12:45

65 48.0

70 23

500

 

Friedlaender

 

NBP11901.016

BIRDS

 

 

500.220

4

29

08:49

s

4

29

12:49

65 48

70 23

500

 

Ribic

 

NBP11901.017

SONOB

5

transit 2

 

4

29

12:45

s

4

29

16:45

65 57.262

69 53.590

347

305

Berchok

 

NBP11901.018

BIRDS

 

 

500.220

4

29

13:04

e

4

29

17:04

65 58

69 50

360

 

Ribic

 

NBP11901.019

BMP

3

2

500.220

4

29

13:30

e

4

29

17:30

65 58.249

69 50.794

360

 

Wiebe

 

NBP11901.020

CTD

3

2

500.220

4

29

13:58

s

4

29

17:58

65 58.4

69 49,61

350

50

Beardsley

FRRF

NBP11901.021

CTD

3

2

500.220

4

29

14:27

e

4

29

18:27

65 58.4

69 49.61

350

50

Beardsley

 

NBP11901.022

CTD

4

2

500.220

4

29

14:30

s

4

29

18:30

65 58.8

69 49.62

350

327

Beardsley

 

NBP11901.023

CTD

4

2

500.220

4

29

14:59

e

4

29

18:59

65 58.8

69 49.62

350

327

Beardsley

 

NBP11901.024

Whales

 

 

 

4

29

14:40

e

4

29

18:40

65 58.8

69.49

360

 

Friedlaender

 

NBP11901.025

Whales

 

 

 

4

29

15:08

s

4

29

19:08

65 59.4

69 49.3

350

 

Friedlaender

 

NBP11901.026

BIRDS

 

 

 

4

29

15:12

s

4

29

19:12

65 59.4

69 49

350

 

Ribic

 

NBP11901.027

SONOB

5

 

 

4

29

15:43

e

4

29

19:43

66 08.87

69 41.264

347

305

Berchok

NO Whales HEARD

NBP11901.028

BIRDS

 

 

 

4

29

16:00

e

4

29

20:00

66 2.0

69 36

320

 

Ribic

 

NBP11901.029

Whales

 

 

 

4

29

16:15

e

4

29

20:15

66 2.0

69 34

320

 

Friedlaender

 

NBP11901.030

CTD

5

3

500.180

4

29

18:40

s

4

29

22:40

66 11.034

69 6.861

341

335

Hofmann

PAR sensor broke

NBP11901.031

CTD

5

3

500.180

4

29

19:15

e

4

29

23:15

66 11.034

69 6.861

341

335

Hofmann

 

NBP12001.001

MOC1

1

3

500.180

4

29

20:50

s

4

30

00:50

66 10.796

69 10.465

360

300

Ashjian

 

NBP12001.002

MOC1

1

3

500.180

4

29

22:18

e

4

30

02:18

66 18.13

69.27.08

360

300

Ashjian

 

NBP12001.003

BMP

4

3

500.180

4

30

00:03

s

4

30

04:03

66 11.038

69 13.71

362

250

Wiebe

 

NBP12001.004

CTD

6

4

500.140

4

30

06:10

s

4

30

10:10

66 23.33

68 23.13

675

50

Hofmann

 

NBP12001.005

CTD

6

4

500.140

4

30

06:30

e

4

30

10:30

66 23.33

68 23.13

675

50

Hofmann

 

NBP12001.006

CTD

7

4

500.140

4

30

06:41

s

4

30

10:41

66 23.19

68 23.05

674

645

Hofmann

 

NBP12001.007

CTD

7

4

500.140

4

30

07:40

e

4

30

11:40

66 23.19

68 23.05

674

645

Hofmann

 

NBP12001.008

BMP

4

4

500.140

4

30

08:30

e

4

30

12:30

66 21.34

68 30.15

674

250

Wiebe

SONAR failure

NBP12001.009

BIRDS

 

4T

 

4

30

08:30

s

4

30

12:30

66 22

68 23

691

 

Chapman

low visib., poor data

NBP12001.010

Whales

 

4T

 

4

30

08:30

s

4

30

12:30

66 22

68 25

691

 

Friedlaender

 

NBP12001.011

BIRDS

 

5

500.120

4

30

10:45

e

4

30

14:45

66 28

68 01

529

 

Ribic

low visib., poor data

NBP12001.012

Whales

 

5

500.120

4

30

11:15

e

4

30

15:15

66 29

68 01

424

 

Friedlaender

poor conditons/data

NBP12001.013

CTD

8

5

500.120

4

30

11:30

s

4

30

15:30

66 19.42

68 02

427

417

Hofmann

 

NBP12001.014

CTD

8

5

500.120

4

30

11:51

e

4

30

15:51

66 29.42

68 02.10

427

417

Hofmann

 

NBP12001.015

BIRDS

 

5T

 

4

30

12:39

s

4

30

16:39

66 32.428

68 07.173

408

 

Chapman

obs. from ins. bridge

NBP12001.016

 

 

 

 

4

30

 

 

4

30

 

 

 

 

 

 

event # not used

NBP12001.017

 

 

 

 

4

30

 

 

4

30

 

 

 

 

 

 

event # not used

NBP12001.018

BIRDS

 

6

460.120

4

30

14:32

e

4

30

18:32

66 47.253

68 32.054

240

 

Chapman

 

NBP12001.019

SONOB

6

6

460.120

4

30

14:26

s

4

30

18:26

66 47.197

68 31.954

255

305

Berchok

 

NBP12001.020

CTD

9

6

460.120

4

30

14:45

s

4

30

18:45

66 47.26

68 32.10

258

220

Salihoglu

rough seas

NBP12001.021

CTD

9

6

460.120

4

30

15:10

e

4

30

19:10

66 47.26

68 32.10

258

220

Salihoglu

rough seas

NBP12001.022

BIRDS

 

6T

 

4

30

15:12

s

4

30

19:12

66 47.307

68 32.526

250

 

Ribic

 

NBP12001.023

SONOB

6

6

460.120

4

30

16:00

e

4

30

20:00

66 42.917

68 47.161

255

305

Berchok

 

NBP12001.024

BIRDS

 

7

460.140

4

30

16:15

e

4

30

20:15

66 41.202

68 53.346

320

 

Chapman

 

NBP12001.025

CTD

10

7

460.140

4

30

16:55

s

4

30

20:55

66 41.005

68 54173

329

308

Howard

 

NBP12001.026

CTD

10

7

460.140

4

30

17:23

e

4

30

21:23

66 41.005

68 54.173

329

308

Howard

 

NBP12001.027

CTD

11

8

460.180

4

30

19:44

s

4

30

23:44

66 28.37

69 38.23

515

492

Hofmann

 

NBP12101.001

CTD

11

8

460.180

4

30

20:25

e

5

1

00:25

66 28.37

69 38.23

515

492

Hofmann

 

NBP12101.002

CTD

12

9

460.220

4

30

23:00

s

5

1

03:25

66 15.68

70 21.19

470

455

Salihoglu

 

NBP12101.003

CTD

12

9

460.220

4

30

23:50

e

5

1

03:50

66 15.68

70 21.19

470

455

Salihoglu

 

NBP12101.004

CTD

13

10

459.250

5

1

01:43

s

5

1

05:43

66 6.24

70 53.62

880

50

Beardsley

FRRF

NBP12101.005

CTD

13

10

459.250

5

1

01:58

e

5

1

05:58

66 6.24

70 53.62

880

50

Beardsley

 

NBP12101.006

CTD

14

10

459.250

5

1

02:13

s

5

1

06:13

66 5.88

70 53.01

880

870

Beardsley

 

NBP12101.007

CTD

14

10

459.250

5

1

03:18

e

5

1

07:18

66 5.88

70 53.01

880

870

Beardsley

 

NBP12101.008

MOC1

2

10

459.250

5

1

04:15

s

5

1

08:15

66 7.945

70 56.6

895

800

Ashjian

 

NBP12101.009

MOC1

2

10

459.250

5

1

06:33

e

5

1

10:33

66 9.86

70 57.30

890

 

Ashjian

 

NBP12101.010

BIRDS

 

10T

 

5

1

08:25

s

5

1

12:25

66 10.791

71 01.111

1080

 

Chapman

 

NBP12101.011

Whales

 

10T

 

5

1

08:30

s

5

1

12:30

66 10

71 00

952

 

Friedlaender

 

NBP12101.012

BMP

5

10

459.250

5

1

09:00

s

5

1

13:00

66 09.166

70 58.311

890

250

Wiebe

fixed cable & 420 kHz

NBP12101.013

SONOB

7

10T

 

5

1

09:54

s

5

1

13:54

66 12.234

71 03.541

1379

305

Berchok

Humpback moans

NBP12101.014

SONOB

8

10T

 

5

1

10:48

s

5

1

14:48

66 16.06

71 09.65

 

305

Berchok

Humpback moans

NBP12101.015

SONOB

7

10T

 

5

1

11:07

e

5

1

15:07

 

 

 

305

Berchok

 

NBP12101.016

SONOB

8

10T

 

5

1

11:32

e

5

1

15:32

66 18.096

71 12.989

1296

305

Berchok

 

NBP12101.017

Whales

 

11

 

5

1

12:50

e

5

1

16:50

66 24

71 22

766

 

Friedlaender

 

NBP12101.018

BIRDS

 

11

 

5

1

12:50

e

5

1

16:51

66 24

71 22

766

 

Chapman

 

NBP12101.019

BIRDS

 

11T

 

5

1

14:31

s

5

1

18:31

66 25.269

71 23.082

766

 

Chapman

 

NBP12101.020

Whales

 

12T

 

5

1

14:25

s

5

1

18:25

66 25

71 23

688

 

Friedlaender

 

NBP12101.021

CTD

15

11

419.247

5

1

13:08

s

5

1

17:08

66 24.82

71 23.47

742

50

Sreenyvasan

FRRF

NBP12101.022

CTD

15

11

419.247

5

1

13:26

e

5

1

17:26

66 24.82

71 23.07

742

50

Sreenyvasan

 

NBP12101.023

CTD

16

11

419.247

5

1

13:36

s

5

1

17:36

66 24.95

71 23.04

722

697

Sreenyvasan

 

NBP12101.024

CTD

16

11

419.247

5

1

14:23

e

5

1

18:23

66 24.95

71 23.04

722

697

Sreenyvasan

 

NBP12101.025

SONOB

9

12T

 

5

1

14:48

s

5

1

18:48

66 25.81

71 19.96

509

305

Berchok

Humpback moans

NBP12101.026

SONOB

10

12T

 

5

1

16:02

s

5

1

20:02

66 28.878

71 06.977

535

305

Berchok

Humpback moans

NBP12101.027

SONOB

9

12T

 

5

1

16:06

e

5

1

20:06

 

 

 

305

Berchok

 

NBP12101.028

BIRDS

 

12T

 

5

1

16:24

e

5

1

20:24

66 29.894

71 03.012

1037

 

Chapman

 

NBP12101.029

Whales

 

12T

 

5

1

16:25

e

5

1

20:25

66 29

71 03

1037

 

Friedlaender

 

NBP12101.030

CTD

17

12

420.225

5

1

17:09

e

5

1

21:09

66 31.17

70 58.76

538

50

Salihoglu

FRRF

NBP12101.031

CTD

17

12

420.225

5

1

17:20

s

5

1

21:20

66 31.17

70 58.76

538

50

Salihoglu

 

NBP12101.032

CTD

18

12

420.225

5

1

17:21

e

5

1

21:26

66 31.22

70 58.74

542

521

Salihoglu

 

NBP12101.033

CTD

18

12

420.225

5

1

18:05

s

5

1

22:05

66 31.22

70 58.87

542

521

Salihoglu

 

NBP12101.034

SONOB

10

13T

 

5

1

18:21

e

5

1

22:21

66 31.981

70 56.021

558

305

Berchok

 

NBP12101.035

CTD

19

13

420.180

5

1

23:39

s

5

2

03:38

66 45.81

70 9.81

534

50

Salihoglu

FRRF

NBP12101.036

CTD

19

13

420.180

5

1

23:42

e

5

2

03:42

66 45.81

71 9.81

534

50

Salihoglu

 

NBP12101.037

CTD

20

13

420.180

5

1

23:53

s

5

2

03:53

66 45.85

70 9.83

534

530

Salihoglu

 

NBP12201.001

CTD

20

13

420.180

5

2

12:30

e

5

2

04:30

66 45.85

70 9.83

534

530

Salihoglu

 

NBP12201.002

BMP

5

13

420.180

5

2

00:56

e

5

2

04:56

67 46.461

70 11.23

561

250

Wiebe

 

NBP12201.003

MOC1

3

13

420.180

5

2

03:20

s

5

2

07:20

66 48.566

70 22.764

600

500

Ashjian

 

NBP12201.004

MOC1

3

13

420.180

5

2

05:06

e

5

2

09:06

67 1.03

69 16.8

 

250

Ashjian

 

NBP12201.005

BMP

6

13

420.180

5

2

05:52

s

5

2

09:52

66 48.92

77 33.27

 

300

Wiebe

 

NBP12201.006

BIRDS

 

13T

 

5

2

08:42

s

5

2

12:42

66 51.461

70 18.946

300

 

Chapman

 

NBP12201.007

Whales

 

13T

 

5

2

08:42

s

5

2

12:42

66 51.461

70 18.946

300

 

Friedlaender

 

NBP12201.008

SONAB

11

To14

 

5

2

09:39

s

5

2

13:39

66 52.887

70 09.128

594

305

Berchok

 

NBP12201.009

SONAB

11

To14

 

5

2

10:59

e

5

2

14:59

66 54.756

69 51.827

594

305

Berchok

 

NBP12201.010

Whales

 

14

 

5

2

12:40

e

5

2

16:40

66 56

69 31

520

 

Friedlaender

 

NBP12201.011

BIRDS

 

14

 

5

2

12:40

e

5

2

16:40

66 56

69 31

520

 

Chapman

 

NBP12201.012

BIRDS

 

14T

 

5

2

13:44

s

5

2

17:49

66 57.05

69 31.909

490

 

Chapman

 

NBP12201.013

Whales

 

14T

 

5

2

13:45

s

5

2

17:45

66 57

69 31

490

 

Friedlaender

 

NBP12201.014

CTD

21

14

420.145

5

2

12:55

s

5

2

16:55

66 56.93

69 31.67

501

491

Salihoglu

 

NBP12201.015

CTD

21

14

420.145

5

2

13:40

e

5

2

17:40

66 56.93

69 31.67

501

491

Salihoglu

 

NBP12201.016

BIRDS

 

 

 

5

2

15:57

e

5

2

19:57

67 02.947

69 10.143

471

 

Chapman

 

NBP12201.017

Whales

 

 

 

5

2

15:57

e

5

2

19:57

67 02

69 10

471

 

Friedlaender

 

NBP12201.018

BMP

6

15

 

5

2

16:12

e

5

2

20:12

67 03.16

69 09.08

 

 

Wiebe

 

NBP12201.019

SONAB

12

15

 

5

2

16:37

s

5

2

20:17

67 03.131

69 09.410

400

305

Berchok

one fin whale seen by bridge

NBP12201.020

CTD

22

15

420.125

5

2

16:47

s

5

2

20:47

67 3.14

69 09.45

390

384

Salihoglu

 

NBP12201.021

CTD

22

15

420.125

5

2

17:35

e

5

2

21:35

67 3.14

69 09.45

390

384

Salihoglu

 

NBP12201.022

MOC1

4

15

420.125

5

2

17:42

s

5

2

21:42

67 3.04

69 09.8

390

350

Ashjian

 

NBP12201.023

SONAB

13

To16

 

5

2

18:17

s

5

2

22:10

67 02.344

69 12.287

418

122

Berchok

wow!

NBP12201.024

MOC1

4

15

420.125

5

2

19:23

e

5

2

23:25

67 1.03

69 16.8

390

350

Ashjian

 

NBP12201.025

BMP

7

15

420.125

5

2

20:15

s

5

3

00:15

 

 

460

250

Wiebe

 

NBP12301.001

SONAB

12

TO16

 

5

2

21:36

e

5

3

01:36

67 06.341

69 25.301

 

305

Berchok

 

NBP12301.002

SONAB

13

TO16

 

5

2

21:36

e

5

3

01:36

67 06.341

70 25.301

 

122

Berchok

 

NBP12301.003

CTD

23

16

380.120

5

3

01:27

e

5

3

05:27

67 22.32

69 36.35

440

430

Beardsley

 

NBP12301.004

CTD

23

16

380.120

5

3

02:02

s

5

3

06:02

67 22.32

69 36.35

440

430

Beardsley

 

NBP12301.005

CTD

24

17

380.150

5

3

05:41

e

5

3

09:41

67 12.58

70 9.91

600

50

Beardsley

FRRF

NBP12301.006

CTD

24

17

380.150

5

3

05:54

s

5

3

09:54

67 12.58

70 9.91

600

50

Beardsley

 

NBP12301.007

CTD

25

17

380.150

5

3

06:08

e

5

3

10:08

67 12.56

70 9.87

600

590

Beardsley

 

NBP12301.008

CTD

25

17

380.150

5

3

06:54

s

5

3

10:54

67 12.56

71 9.87

471

590

Beardsley

 

NBP12301.009

BIRDS

 

17T

 

5

3

 

 

5

3

 

 

 

 

 

Chapman

 

NBP12301.010

Whales

 

17T

 

5

3

 

 

5

3

 

 

 

 

 

Friedlaender

no obs/no vis

NBP12301.011

BIRDS

 

18

 

5

3

10:18

e

5

3

14:18

67 02.97

70 43.41

486

 

Chapman

 

NBP12301.012

BIRDS

 

18T

 

5

3

 

 

5

3

 

 

 

 

 

Chapman

 

NBP12301.013

CTD

26

18

380.180

5

3

10:46

s

5

3

14:46

67 2.99

70 43.06

488

481

Beardsley

 

NBP12301.014

CTD

26

18

380.180

5

3

11:25

e

5

3

15:25

67 2.99

70 43.06

488

481

Beardsley

 

NBP12301.015

BIRDS

 

19

 

5

3

15:45

e

5

3

19:45

66 50.24

71 25.255

469

 

Chapman

 

NBP12301.016

BMP

7

19

 

5

3

15:58

e

5

3

19:58

66 46.23

71 37.041

 

250

Wiebe

 

NBP12301.017

CTD

27

19

380.220

5

3

16:30

s

5

3

20:30

66 49.80

71 29.24

466

462

Hofmann

 

NBP12301.018

CTD

27

19

380.220

5

3

17:08

e

5

3

21:08

67 49.80

71 29.24

466

462

Hofmann

 

NBP12301.019

MOC1

5

19

380.220

5

3

17:27

s

5

3

21:27

66 49.65

71 30.44

450

400

Ashjian

 

NBP12301.020

MOC1

5

19

380.220

5

3

18:59

e

5

3

22:59

66 47.11

71 35.66

474

400

Ashjian

 

NBP12301.021

BIRDS

 

19

380.220

5

3

19:38

s

5

3

23:38

66 47.61

71 33.48

468

 

Chapman

 

NBP12301.022

BIRDS

 

19

380.220

5

3

20:16

e

5

4

00:16

66 49.31

71 27.81

462

 

Chapman

 

NBP12301.023

BMP

8

19

380.220

5

3

20:36

s

5

4

00:36

66 49.38

71 29.04

482

250

Wiebe

 

NBP12301.024

BIRDS/NIGHT

 

19

380.220

5

3

20:55

s

5

4

00:55

66 48.39

71 32.181

452

 

Chapman

 

NBP12301.025

BIRDS/NIGHT

 

19

380.220

5

3

21:29

e

5

4

01:29

66 46.35

71 31.814

477

 

Chapman

 

NBP12401.001

CTD

28

20

380.264

5

4

01:16

s

5

4

05:16

66 34 93

72 14.12

3310

50

Beardsley

 

NBP12401.002

CTD

28

20

380.264

5

4

01:21

e

5

4

05:25

66 34 93

72 14.12

3310

50

Beardsley

 

NBP12401.003

CTD

29

20

380.264

5

4

01:55

S

5

4

05:54

66 34 72

72 13.31

3383

3368

Beardsley

 

NBP12401.004

CTD

29

20

380.264

5

4

04:41

e

5

4

08:41

66 34 72

72 13.31

3383

3368

Beardsley

 

NBP12401.005

sonob

14

to 22

 

5

4

04:42

s

5

4

08:42

66 34.784

72 13.131

3369

305

Berchok

 

NBP12401.006

sonob

14

to 22

 

5

4

06:09

e

5

4

10:09

66 36.545

72 30.152

---

305

Berchok

 

NBP12401.007

XCTD

 

to 21

 

5

4

07:34

s/e

5

4

11:34

66 24.667

69 50.784

 

150

Sanay

 

NBP12401.008

BIRDS/NIGHT

 

to 22

 

5

4

07:38

s

5

4

11:38

 

 

 

 

Chapman

 

NBP12401.009

BIRDS/NIGHT

 

to 22

 

5

4

08:08

e

5

4

12:08

66 38.848

72 54.489

3528

 

Chapman

 

NBP12401.010

BIRDS

 

to 22

 

5

4

 8:34

s

5

4

12:34

66 39.242

72 59.119

3585

 

Chapman

 

NBP12401.011

Whales

 

to 22

 

5

4

09:00

s

5

4

13:00

 

 

 

 

Friedlaender

 

NBP12401.012

BMP

8

22

 

5

4

09:07

e

5

4

14:07

66 41.26

73 18.81

3600

250

Wiebe

 

NBP12401.013

sonob

15

to 22

 

5

4

09:21

s

5

4

13:21

66 40.239

73 08.971

3540

305

Berchok

 

NBP12401.014

BIRDS

 

22

 

5

4

10:23

e

5

4

14:23

66 41.44

73 20.73

3610

 

Chapman

 

NBP12401.015

CTD

30

22

340.295

5

4

10:54

s

5

4

14:54

66 41.15

73 21.01

3647

50

Beardsley

 

NBP12401.016

CTD

30

22

340.295

5

4

11:01

e

5

4

15:01

66 41.15

73 21.01

3647

50

Beardsley

 

NBP12401.017

CTD

31

22

340.295

5

4

11:11

s

5

4

15:11

66 41.14

73 20.97

3609

2000

Hofmann

 

NBP12401.018

CTD

31

22

340.295

5

4

 

e

5

4

 

66 41.14

73 20.97

3609

2000

Hofmann

 

NBP12401.019

MOC1

6

22

340.295

5

4

13:32

s

5

4

17:32

66 40.166

73 22.08

3639

1000

Davis

 

NBP12401.020

sonob

15

22

340.295

5

4

13:49

E

5

4

17:44

66 39.690

73 22.430

-

305

Berchok

 

NBP12401.021

MOC1

6

22

340.295

5

4

15:55

e

5

4

19:55

66 36.34

73 23.36

3669

1000

Davis

 

NBP12401.022

BMP

9

22

340.295

5

4

17:22

s

5

4

21:22

66 40.18

73 22.05

3660

30

Wiebe

 

NBP12401.023

BMP

9

22

340.295

5

4

18:07

e

5

4

22:07

66 39.33

73 22.556

3652

250

Wiebe

 

NBP12401.024

XBT

 

TO23

 

5

4

22:15

s/e

5

5

02:15

66 49.50

72 55.19

3250

760

Hofmann

 

NBP12401.025

BMP

10

22

340.295

5

4

22:38

s

5

5

02:38

66 44.73

73 08.81

3625

 

Wiebe

 

NBP12501.001

CTD

32

23

340.253

5

5

00:44

s

5

5

04:44

66 55.47

72 35.38

508

488

Beardsley

 

NBP12501.002

CTD

32

23

340.253

5

5

01:18

e

5

5

05:18

66 55.47

72 35.38

508

488

Beardsley

 

NBP12501.003

XCTD

 

TO24

 

5

5

 

s/e

5

5

 

67 1.32

72 18.38

420

180

Beardsley

failed at 180 m

NBP12501.004

XBT

 

TO24

 

5

5

319

s/e

5

5

07:19

67 1.566

72 17.58

407

  

Beardsley

 

NBP12501.005

Bird

 

TO24

 

5

5

432

s

5

5

832

67 5.110

72 6.045

405

 

Ribic

night survey

NBP12501.006

Bird

 

TO24

 

5

5

518

e

5

5

918

67 6.698

72 0.378

415

 

Ribic

 

NBP12501.007

CTD

33

24

340.220

5

5

05:32

s

5

5

09:32

67 6.82

72 0.33

415

406

Beardsley

 

NBP12501.008

CTD

33

24

340.220

5

5

06:03

e

5

5

10:03

67 6.82

72 0.33

415

406

Beardsley

 

NBP12501.009

BMP

10

 

 

5

5

06:26

e

5

5

10:26

67 06.83

72 24.300

 

 

Wiebe

 

NBP12501.010

Bird

 

TO25

 

5

5

08:34

s

5

5

12:34

67 13.955

71 36.749

435

 

Chapman

 

NBP12501.011

Whale

 

TO25

 

5

5

08:55

s

5

5

12:55

67 15.020

71 33.107

455

 

Friedlaender

 

NBP12501.012

Whale

 

25

 

5

5

10:07

e

5

5

14:07

67 19.955

71 16.665

482

 

Friedlaender

 

NBP12501.013

Bird

 

25

 

5

5

10:07

e

5

5

1407

67 19.955

71 16.665

482

 

Chapman

 

NBP12501.014

CTD

34

25

340.18

5

5

10:28

s

5

5

14:28

67 20.04

71 16.58

463

453

Beardsley

 

NBP12501.015

CTD

34

25

340.18

5

5

11:04

e

5

5

15:04

67 20.04

71 16.58

463

453

Beardsley

 

NBP12501.016

MOC1

7

25

 

5

5

11:23

s

5

5

15:23

67 19.865

71 17.17.812

460

400

Ashjian

 

NBP12501.017

Bird

 

T26

 

5

5

12:49

s

5

5

16:49

67 19.184

71 24.697

472

 

Chapman

 

NBP12501.018

MOC1

7

25

 

5

5

12:53

e

5

5

16:53

67 19.18

71 24.69

 

 

Ashjian

 

NBP12501.019

whale

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Friedlaender

 

NBP12501.020

sonob

16

TO26

 

5

5

14:24

s

5

5

18:24

67 24.5

71 4.9

514

305

Berchok

 

NBP12501.021

sonob

16

TO26

 

5

5

15:00

e

5

5

19:00

67 28.258

70 50.447

---

305

Berchok

 

NBP12501.022

sonob

17

TO26

 

5

5

15:19

s

5

5

19:19

67 30.33

70 42.4

720

305

Berchok

 

NBP12501.023

drifter

 

to 26

 

5

5

15:24

s/e

5

5

19:24

67 30.8

70 40.6

 

 

Beardsley

 

NBP12501.024

Bird/

Whale

 

26

 

5

5

19:45

e

5

5

23:45

67 32.998

70 32.273

761

 

Chapman

 

NBP12501.025

sonob

17

26

 

5

5

16:03

e

5

5

20:03

67 30.33

70 42.4

784

305

Berchok

 

NBP12501.026

CTD

35

26

340.140

5

5

16:05

s

5

5

20:05

67 33.11

70 32.18

762

50

Salihoglu

FRRF

NBP12501.027

CTD

35

26

340.140

5

5

16:20

e

5

5

20:20

67 33.11

70 32.18

762

50

Salihoglu

FRRF

NBP12501.028

CTD

36

26

340.140

5

5

16:22

s

5

5

20:22

67 33.10

70 32.17

760

760

Salihoglu

 

NBP12501.029

CTD

36

26

340.140

5

5

17:05

e

5

5

21:05

67 33.10

70 32.17

760

760

Salihoglu

 

NBP12501.030

BMP

11

26

340.140

5

5

17:54

s

5

5

21:54

67 33.6

70 28.20

760

40

Wiebe

 

NBP12501.031

BIRD

 

TO27

 

5

5

18:48

s

5

5

22:48

67 36.157

70 21.329

694

 

Chapman/

Ribic

 

NBP12501.032

BMP

11

 

 

5

5

20:54

e

5

6

00:54

67 41.9

70 01.7

690

40

Wiebe

 

NBP12501.033

BIRD

 

TO27

 

5

5

22:38

e

5

5

02:38

 

 

 

 

Chapman/

Ribic

 

NBP12501.034

CTD

37

27

340.100

5

5

22:58

s

5

6

02:58

67 45.90

69 46.97

357

349

Hofmann

 

NBP12501.035

CTD

37

27

340.100

5

5

23:40

e

5

6

03:40

67 45.90

69 46.97

357

349

Hofmann

 

NBP12601.001

CTD

38

28

335.060

5

6

04:56

s

5

6

08:56

68  2.45

69 22.32

415

412

Bearldley

 

NBP12601.002

CTD

38

28

335.060

5

6

05:34

e

5

6

09:34

68  2.45

69 22.32

415

412

Bearldley

 

NBP12601.003

BIRD

 

TO29

 

5

6

 

s

5

6

 

 

 

 

 

Chapman

 

NBP12601.004

MOC1

8

28

355.060

5

6

07:00

s

5

6

11:00

68 4.38

69 25.28

~350

300

Ashjian

 

NBP12601.005

MOC1

8

28

355.060

5

6

08:30

e

5

6

12:30

68 1.61

69 25.1

 

 

Ashjian

 

NBP12601.006

sonob

18

TO29

 

5

6

08:51

s

5

6

12:51

68 1.142

69 29.880

755

305

Berchok

 

NBP12601.007

Whales

 

TO29

 

5

6

09:55

s

5

6

13:55

68 6.060

69 12.843

475

 

Friedlaender

 

NBP12601.008

sonob

18

TO29

 

5

6

10:01

e

5

6

14:01

68 7.186

69 11.578

 

305

Berchok

 

NBP12601.009

sonob

19

TO29

 

5

6

13:45

s

5

6

17:45

67 58.33

68 32.83

705

122

Berchok

humpback sounds

NBP12601.010

Whales

 

29

357.046

5

6

14:10

e

5

6

18:10

67 55.15

68 30.27

605

 

Friedlaender

 

NBP12601.011

CTD

39

29

357.046

5

6

14:21

s

5

6

18:21

67 55.13

68 30.33

650

50

Hofmann

FRRF

NBP12601.012

CTD

39

29

357.046

5

6

14:30

e

5

6

18:30

67 55.13

68 30.33

650

50

Hofmann

 

NBP12601.013

CTD

40

29

357.046

5

6

14:36

s

5

6

18:36

67 55.11

68 30.43

643

635

Hofmann

 

NBP12601.014

CTD

40

29

357.046

5

6

15:15

e

5

6

19:15

67 55.11

68 30.43

643

635

Hofmann

 

NBP12601.015

BIRDS

 

29

 

5

6

15:45

e

5

6

19:45

67 53.451

68 18.058

640

 

Chapman

 

NBP12601.016

sonob

19

TO30

 

5

6

15:49

e

5

6

19:49

67 53.451

68 18.058

 

122

Berchok

 

NBP12601.017

sonob

20

TO Gould

 

5

6

16:04

s

5

6

20:04

67 52.626

67 47.035

814

122

Berchok

 

NBP12601.018

BIRD

 

TO30

 

5

6

16:07

s

5

6

20:07

67 53.104

67 41.150

240

 

Chapman

night survey

NBP12601.019

sonob

20

At Gould

 

5

6

18:22

e

5

6

22:22

67 52.626

67 47.035

 

 

Berchok

 

NBP12601.020

CTD

41

30

380.020

5

6

19:20

s

5

6

23:20

67 53.21

67 41.00

218

210

Salihoglu

 

NBP12601.021

CTD

41

30

380.020

5

6

19:50

e

5

6

23:50

68 53.21

67 41.00

218

210

Salihoglu

 

NBP12601.022

sonob

21

to 31

 

5

6

20:12

s

5

6

00:12

67 53.359

67 41.607

305

122

Berchok

 

NBP12601.023

sonob

21

to gould

 

5

6

21:18

e

5

7

01:18

67 51.622

67 54.437

---

122

Berchok

Repicked up signal from .017 buoy, since we turned back around. 

NBP12601.024

sonob

20

to gould

 

5

6

21:18

s

5

7

01:18

67 51.622

67 54.437

---

122

Berchok

 

NBP12601.025

Birds

 

to31

 

5

6

23:27

end

5

7

03:28

67 56.103

68 13.509

702

 

Chapman

Night survey

NBP12701.001

SONOB

20

TO 31

 

5

7

00:13

e

5

7

04:13

68 01.133

68 13.832

---

122

Berchok

 

NBP12701.002

CTD

42

31

340.020

5

7

01:50

s

5

7

05:50

68 10.9

68 13.2

507

497

Beardsley

 

NBP12701.003

CTD

42

31

340.020

5

7

02:30

e

5

7

06:30

68 10.9

68 13.2

507

497

Beardsley

 

NBP12701/004

Drifter

 

From 31

 

5

7

02:48

s/e

5

7

06:48

68 11.9

68 11.0

 

 

Beardsley

 

NBP12701/005

Bird

 

To 32

 

5

7

04:17

s

5

7

08:17

68 20.014

67 56.336

627

 

Ribic

night survey

NBP12701/006

Bird

 

To 32

 

5

7

05:03

e

5

7

09:03

68 27.673

67 46.336

513

 

Ribic

 

NBP12701/007

CTD

43

32

340.-020

5

7

06:50

s

5

7

10:50

68 23.10

67 23.81

226

219

Beardsley

 

NBP12701/008

CTD

43

32

340.-020

5

7

07:17

e

5

7

11:17

68 23:10

67 23.81

226

219

Beardsley

 

NBP12701.009

Bird/whale

 

To33

 

5

7

09:27

s

5

7

12:27

68 29.088

67 35.841

440

 

Chapman

 

NBP12701.011

CTD

44

33

300.-020

5

7

11:10

s

5

7

15:22

68 40.74

67 58.99

266

258

Beardsley

 

NBP12701.012

CTD

44

33

300.-020

5

7

 

 

5

7

 

68 40.74

67 58.99

266

258

Beardsley

 

NBP12701.013

Bird/

whale

 

33

 

5

7

11:07

e

5

7

15:07

68 40.766

67 58.994

279

 

Chapman

 

NBP12701.014

Bird/

whale

 

To34

 

5

7

11:54

s

5

7

15:54

68 40.74

67 58.91

293

 

Chapman/

Friedlaender

 

NBP12701.015

SONOB

22

to 34

 

5

7

13:51

s

5

7

17:51

68 34.157

68 25.231

459

122

Berchok

 

NBP12701.016

SONOB

22

34

 

5

7

15:20

e

5

7

19:20

missed it

 

---

122

Berchok

 

NBP12701.017

Birds

 

34

 

5

7

15:32

e

5

7

19:32

68 28.462

68 47.236

678

 

Chapman

FRRF

NBP12701.017a

whale

 

34

 

5

7

15:32

e

5

7

19:32

68 28.462

68 47.236

678

 

Friedlaender

 

NBP12701.018

CTD

45

34

300.020

5

7

15:37

s

5

7

19:37

68 28.47

68 47.26

696

50

Howard

 

NBP12701.019

CTD

45

34

300.020

5

7

15:44

e

5

7

19:44

68 28.47

68 47.26

696

50

Howard

 

NBP12701.020

CTD

46

34

300.020

5

7

15:56

s

5

7

19:56

68 28.50

68 47.37

696

669

Howard

 

NBP12701.021

CTD

46

34

300.020

5

7

16:36

e

5

7

20:36

68 28.50

68 47.37

696

669

Howard

 

NBP12701.022

MOC1

9

34

300.020

5

7

16:54

s

5

7

20:54

68 28.70

68 46.23

740

400

Ashjian

Night survey

NBP12701.023

SONOB

22

34

 

5

7

16:57

s

5

7

20:57

68 28.778

68 45.981

604

122

Berchok

 

NBP12701.024

MOC1

9

34

300.020

5

7

18:45

e

5

7

22:45

68 31.13

68 36.91

330

400

Ashjian

 

NBP12701.025

Birds

 

T35

 

5

7

19:20

s

5

7

23:20

68 29.847

68 41.637

483

 

Chapman

 

NBP12701.026

SONOB

22

to 35

 

5

7

20:41

e

5

8

00:41

68 25.125

68 59.477

---

122

Berchok

 

NBP12701.027

Birds

 

to 35

 

5

7

23:44

e

5

8

03:44

68 17.71

69 27.0

760

 

Chapman

 

NBP12801.001

BMP

12

35

300.060

5

8

01:05

s

5

8

05:05

68 14.184

69 38.21

580

250

Wiebe

 

NBP12801.002

CTD

47

35

300.060

5

8

02:33

s

5

8

06:33

68 15.90

69 34.48

580

50

Beardsley

 

NBP12801.003

CTD

47

35

300.060

5

8

02:45

e

5

8

06:45

68 15.90

69 34.48

580

50

Beardsley

 

NBP12801.004

CTD

48

35

300.060

5

8

03:00

s

5

8

07:00

68 15.91

69 34.61

584

574

Beardsley

 

NBP12801.005

CTD

48

35

300.060

5

8

03:40

e

5

8

07:40

68 15.91

69 34.61

584

574

Beardsley

 

NBP12801.006

Bird

 

from 35

 

5

8

04:22

s

5

8

08:22

68 14.071

69 37.84

 

 

Ribic 

Night survey

NBP12801.007

Drifter

 

35

 

5

8

04:25

s

5

8

08:25

68 13.6

69 40.4

 

 

Beardsley

 

NBP12801.008

Bird

 

from 35

 

5

8

06:39

e

5

8

10:39

68 7.798

70 4.414

 

 

Ribic

 

NBP12801.008a

RingNet

1

36

300.100

5

8

08:15

s/e

5

8

12:15

68 3.24

70 22.00

847

30

Kozlowski

 

NBP12801.009

CTD

49

36

300.100

5

8

08:36

s

5

8

12:36

68 3.24

70 22.00

847

50

Beardsley

 

NBP12801.010

CTD

49

36

300.100

5

8

08:44

e

5

8

12:44

68 3.24

70 22.00

847

50

Beardsley

 

NBP12801.011

CTD

50

36

300.100

5

8

09:00

s

5

8

13:00

68 3.24

70 22.00

847

838

Beardsley

 

NBP12801.012

CTD

50

36

300.100

5

8

10:10

e

5

8

14:10

68 3.24

70 22.00

847

838

Beardsley

 

NBP12801.013

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

event no not used

NBP12801.014

Bird

 

 

To 36

5

8

10:18

s

5

8

14:18

68 3.16

70 22.962

865

 

Chapman

 

NBP12801.015

Bird

 

 

36

5

8

14:36

e

5

8

18:36

 

 

 

 

Chapman

 

NBP12801.016

XCTD

 

37

300.140

5

8

14:57

s/e

5

8

18:57

67 49.510

71 6.309

450

450

Hofmann

 

NBP12801.017

XCTD

 

37

300.140

5

8

15:09

s/e

5

8

19:03

67 49.023

71 06.855

450

450

Hofmann

 

NBP12801.018

Bucket

1

37

300.140

5

8

15:15

s/e

5

8

19:15

67 22.903

72 35.581

450

surf

Kozlowski

 

NBP12801.019

XCTD

 

38

300.180

5

8

19:46

s/e

5

8

23:46

67 36.895

71 51.184

389

389

Hofmann

 

NBP12810.020

Bucket

2

38

300.180

5

8

19:50

s/e

5

8

23:50

67 36.713

71 50.954

389

surf

Kozlowski

 

NBP12901.001

XBT

 

39

300.220

5

9

00:56

s/e

5

9

04:56

67 23.507

72 34.791

370

370

Hofmann

 

NBP12901.002

XCTD

 

39

300.220

5

9

01:02

s/e

5

9

05:02

67 23.270

72 35.130

374

374

Hofmann

 

NBP12901.003

Bucket

3

39

300.220

5

9

01:00

S/E

5

9

05:00

67 22.903

72 35.581

374

SURF

Kozlowski

 

NBP12901.004

XBT

 

40

300.265

5

9

06:24

s/e

5

9

10:24

67 06.225

73 21.441

2363

760

Sanay

 

NBP12901.005

XCTD

 

40

300.265

5

9

06:29

s/e

5

9

10:29

67 06.225

73 21.441

2363

1000

Sanay

 

NBP12901.006

bucket

4

40

300.265

5

9

06:37

s/e

5

9

10:37

67 06.225

73 21.441

2363

surf

Thimgan

 

NBP12901.007

Whales

 

to 41

 

5

9

 

s

5

9

 

67 09.954

73 53.205

3266

 

Friedlaender

 

NBP12901.008

Bird

 

to 41

 

5

9

09:11

s

5

9

13:11

67 09.954

73 53.205

3266

 

Chapman

 

NBP12901.009

Whales

 

41

 

5

9

12:00

Event

5

9

16:00

67 14.066

74 28.763

2916

 

Friedlaender

 

NBP12901.010

Bird

 

41

 

5

9

12:20

e

5

9

16:20

67 14.05

74 32.115

2829

 

Chapman

 

NBP12901.011

BMP

12

41

 

5

9

12:55

e

5

9

16:55

67 13.464

74 31.59

2937

250

Wiebe

 

NBP12901.012

CTD

51

41

260.295

5

9

13:24

s

5

9

17:24

67 12.01

74 29.92

2966

50

Salihoglu

 

NBP12901.013

CTD

51

41

260.295

5

9

13:32

e

5

9

17:32

67 12.01

74 29.92

2966

50

Salihoglu

 

NBP12901.014

CTD

52

41

260.295

5

9

13:40

s

5

9

17:40

67 12.05

74 29.89

2975

2975

Salihoglu

 

NBP12901.015

CTD

52

41

260.295

5

9

15:50

e

5

9

19:50

67 12.05

74 29.89

2975

2975

Salihoglu

 

NBP12901.016

MOC1

10

41

260.295

5

9

16:08

s

5

9

20:08

67 11.303

74 29.7

2971

1000

Ashjian

 

NBP12901.017

MOC1

10

41

260.295

5

9

19:09

e

5

9

23:09

67 4.47

74 24.8

2971

1000

Ashjian

 

NBP12901.018

BMP

13

41

260.295

5

9

20:50

s

5

10

00:50

67 14.026

74 31.453

2855

250

Wiebe

GOOD LAUNCH

NBP12901.019

Bird

 

To 42

 

5

9

20:58

s

5

10

00:58

67 13.778

74 32.628

2833

 

Chapman

 

NBP12901.020

sonob

23

to 42

 

5

9

21:05

s

5

10

01:05

67 14.212

74 32.237

2859

305

Berchok

humpbacks heard

NBP12901.021

sonob

23

to 42

 

5

9

22:55

e

5

10

02:55

67 20.022

74 13.458

---

305

Berchok

 

NBP12901.022

Bird

 

to 42

 

5

9

23:06

e

5

10

03:06

67 20.57

74 11.75

3136

 

Chapman

 

NBP13001.001

CTD

53

42

260.255

5

10

02:29

s

5

10

06:29

67 28.14

73 49.1

433

425

Beardsley

 

NBP13001.002

CTD

53

42

260.255

5

10

03:04

e

5

10

07:04

67 28.14

73 49.1

433

425

Beardsley

 

NBP13001.003

Bird

 

to 43

 

5

10

04:30

s

5

10

08:30

67 31.884

73 36.843

 

 

Ribic

night survey

NBP13001.004

Bird

 

to 43

 

5

10

06:39

e

5

10

10:39

67 39.117

73 13.915

 

 

Ribic

 

NBP13001.005

CTD

54

43

260.220

5

10

07:31

s

5

10

11:31

67 40.23

73 10.74

492

484

Beardsley

 

NBP13001.006

CTD

54

43

260.220

5

10

08:05

e

5

10

12:05

67 40.23

73 10.74

492

484

Beardsley

 

NBP13001.007

Bird

 

to 44

 

5

10

08:45

s

5

10

12:45

67 41.657

73 05.947

481

 

Chapman

 

NBP13001.08

Whales

 

to 44

 

5

10

 

s

5

10

 

 

 

 

 

Friedlaender

 

NBP13001.009

sonob

24

to 44

 

5

10

11:31

s

5

10

15:31

67 49.432

72 40.615

463

122

Berchok

 

NBP13001.010

sonob

24

44

 

5

10

12:49

e

5

10

16:49

67 52.847

72 29.510

---

---

Berchok

 

NBP13001.011

bucket

5

44

260.180

5

10

13:25

s/e

5

10

17:25

67 52.847

72 29.510

314

surf

Kozlowski

 

NBP13001.012

Whales

 

44

 

5

10

13:30

e

5

10

17:30

67 52.847

72 29.510

314

 

Friedlaender

 

NBP13001.013

CTD

55

44

260.180

5

10

13:11

s

5

10

17:11

67 53.87

72 25.90

320

293

Hofmann

rough -no sfc btle

NBP13001.014

CTD

55

44

260.180

5

10

13:41

e

5

10

17:41

67 53.87

72 25.90

320

293

Hofmann

beaufort 8-9

NBP13001.015

Bird

 

to 44

 

5

10

15:44

e

5

10

19:44

67 52.85

72 29.5

390

 

Chapman

 

NBP13001.016

XCTD

 

45

260.140

5

10

18:26

s/e

5

10

22:26

68 7.341

71 40.634

503

503

Hofmann

 

NBP13001.017

bucket

6

45

260.140

5

10

18:35

s/e

5

10

22:35

68 07.874

71 38.741

503

surf

Kozlowski

 

NBP13001.018

XCTD

 

46

260.100

5

10

23:05

s/e

5

11

03:05

68 20.887

70 55.246

498

498

Hofmann

 

NBP13001.019

bucket

7

46

260.100

5

10

23:12

s/e

5

11

03:12

68 20.973

70 55.064

498

surf

Thimgan

 

NBP13101.001

xctd

 

47

255.080

5

11

01:23

s/e

5

11

05:23

68 27.690

70 32.199

529

529

Beardsley

 

NBP13101.002

bucket

8

47

255.080

5

11

01:40

s/e

5

11

05:40

68 28.497

70 28.611

529

surf

Kozlowski

 

NBP13101.003

xctd

 

48

267.057

5

11

03:56

s/e

5

11

07:56

68 31.213

69 59.7

976

976

Beardsley

 

NBP13101.004

bucket

9

48

267.057

5

11

04:09

s/e

5

11

08:09

68 31.679

69 57.253

976

surf

Thimgan

 

NBP13101.005

BMP

13

49

 

5

11

09:02

E

5

11

13:02

68 00.883

68 00.892

 

250

Wiebe

 

NBP13101.006

CTD

56

49

236.030

5

11

09:36

S

5

11

13:36

68 53.21

69 54.77

1259

50

Beardsley

frrf

NBP13101.007

CTD

56

49

236.030

5

11

09:45

E

5

11

13:45

68 53.21

69 54.77

1259

50

Beardsley

frrf

NBP13101.008

CTD

57

49

236.030

5

11

09:57

S

5

11

13:57

68 53.18

69 54.60

1260

1245

Beardsley

 

NBP13101.009

CTD

57

49

236.030

5

11

11:20

E

5

11

15:20

68 53.18

69 54.60

1260

1245

Beardsley

 

NBP13101.010

Bird

 

 

 

5

11

11:10

S

5

11

15:11

68 53.03

69 54.5

1259

 

Chapman

 

NBP13101.011

SONOB

25

49

 

5

11

11:30

S

5

11

15:30

68 52.707

69 54.021

1211

305

Berchok

 

NBP13101.012

SONOB

25

TO 50

 

5

11

12:20

e

5

11

16:20

68 55.856

69 50.511

---

---

Berchok

 

NBP13101.013

SONOB

26

TO 50

 

5

11

13:18

S

5

11

17:18

69 00.089

69 43.595

641

305

Berchok

 

NBP13101.014

SONOB

26

NEAR 50

 

5

11

14:49

e

5

11

18:49

69 02.219

69 35.968

---

---

Berchok

 

NBP13101.015

CTD

58

50

230.010

5

11

14:09

S

5

11

18:09

69 2.16

69 35.89

993

50

Hofmann

 

NBP13101.016

CTD

58

50

230.010

5

11

14:20

E

5

11

18:20

69 2.16

69 35.89

993

50

Hofmann

 

NBP13101.017

CTD

59

50

230.010

5

11

14:31

S

5

11

18:31

69 2.21

69 35.90

978

955

Hofmann

 

NBP13101.018

CTD

59

50

230.010

5

11

15:25

E

5

11

19:25

69 2.21

69 35.90

978

955

Hofmann

 

NBP13101.019

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

event # not used

NBP13101.020

Bird

 

50

 

5

11

15:35

E

5

11

19:35

69 03.359

69 34.660

952

 

Chapman

 

NBP13101.021

sonob

27

to 51

 

5

11

17:04

s

5

11

21:04

69 11.343

69 23.541

1033

27

Berchok

 

NBP13101.022

Ring Net

2

51

215.-015

5

11

18:24

s/e

5

11

22:24

69 16.634

69 18.642

815

30

Kozlowski

 

NBP13101.023

CTD

60

51

215.-015

5

11

18:31

s

5

11

22:31

69 16.81

69 18.81

815

790

Salihoglu

 

NBP13101.024

CTD

60

51

215.-015

5

11

19:30

e

5

11

23:30

69 16.81

69 18.81

815

790

Salihoglu

 

NBP13101.025

MOC1

11

51

215.-015

5

11

20:06

s

5

12

00:06

69 16.67

69 18.59

800

750

Ashjian

 

NBP13101.026

sonob

27

at 51

 

5

11

20:22

e

5

12

00:22

69 16.206

69 17.596

---

27

Berchok

 

NBP13101.027

MOC1

11

51

215.-015

5

11

22:15

e

5

12

02:15

69 12.402

69 20.05

800

750

Ashjian

 

NBP13101.028

sonob

27

to 52

 

5

11

22:34

s

5

12

02:34

69 11.328

69 19.652

---

---

Berchok

same as .021 buoy

NBP13101.029

XBT

 

NEAR 52

 

5

11

10:44

s

5

12

02:44

69 10.825

69 18.301

905

200

Salhoglu

for sea beam

NBP13101.030

XBT

 

NEAR 52

 

5

11

10:47

e

5

12

02:47

69 10.618

69 17.651

881

400

Salihoglu

for sea beam

NBP13101.031

Birds

 

to 52

 

5

11

23:08

s

5

12

03:08

69 09.12

69 13.812

673

 

Chapman

 

NBP13101.032

sonob

27

to 52

 

5

11

23:18

e

5

12

03:18

69 08.404

69 12.799

---

---

Berchok

same as .021 buoy

NBP13101.33

Birds

 

to 52

 

5

11

23:57

e

5

12

03:57

69 05.26

69 08.76

348

 

Chapman

 

NBP13201.001

BMP

14

to 52

 

5

12

00:50

s

5

12

04:50

69 01.28

69 04.65

towyo

 

Wiebe

 

NBP13201.002

CTD

61

52

260.000

5

12

03:25

s

5

12

07:25

68 52.12

68 58.27

551

544

Beardsley

 

NBP13201.003

CTD

61

52

260.000

5

12

04:05

e

5

12

08:05

68 52.12

68 58.27

551

544

Beardsley

 

NBP13201.004

Birds

 

to 53

 

5

12

04:16

s

5

12

08:16

68 51.792

68 59.06

 

 

Ribic

night survey

NBP13201.005

Birds

 

to 53

 

5

12

08:05

e

5

12

12:05

68 40.81

69 39.343

 

 

Ribic

 

NBP13201.006

sonob

28

to 53

 

5

12

08:53

s

5

12

12:53

68 38.401

69 48.858

818

305

Berchok

 

NBP13201.007

Birds

 

to 53

 

5

12

09:36

s

5

12

13:36

68 36.1

69 56.1

955

 

Chapman

 

NBP13201.008

Whales

 

to 53

 

5

12

09:45

s

5

12

13:45

 

 

 

 

Friedlaender

 

NBP13201.009

sonob

28

to 53

 

5

12

09:48

e

5

12

13:48

68 35.875

69 58.623

---

305

Berchok

 

NBP13201.010

sonob

29

to 53

 

5

12

12:48

s

5

12

16:48

68 41.8

70 39.604

287

122

Berchok

 

NBP13201.011

sonob

30

to 53

 

5

12

13:35

s

5

12

17:35

68 43.11

70 49.25

253

122

Berchok

 

NBP13201.012

sonob

29

to 53

 

5

12

14:18

e

5

12

18:18

68 44.661

70 57.960

---

---

Berchok

 

NBP13201.013

Whales

 

53

 

5

12

14:20

e

5

12

18:20

68 49.6

70 58.11

200

 

Friedlaender

 

NBP13201.014

Birds

 

53

 

5

12

14:21

e

5

12

18:21

68 49.6

70 58.11 200

200

 

Chapman

 

NBP13201.015

ringnet

3

53

 

5

12

14:25

s/e

5

12

18:25

68 44.647

70 58.275

338

30

Kozlowski

 

NBP13201.016

ice

1

53

 

5

12

15:13

s/e

5

12

19:13

68 44.28

70 58.97

338

surf

Kozlowski

 

NBP13201.017

ice

2

53

 

5

12

15:34

s/e

5

12

19:34

68 44.28

70 58.97

338

surf

Kozlowski

 

NBP13201.018

Biopsy

62

53

220.075

5

12

14:49

s

5

12

19:01

68 44.28

70 58:97

338

 

Friedlaender

whale biopsy try

NBP13201.019

CTD

62

53

220.075

5

12

15:01

s

5

12

19:45

68 44.28

70 58.97

338

315

Hofmann

.

NBP13201.020

CTD

62

53

220.075

5

12

15:45

e

5

12

18:49

68 44.28

70 58.97

338

315

Hofmann

 

NBP13201.021

Biopsy

62

53

220.075

5

12

15:55

e

5

12

19:55

68 44.28

70 58.97

338

 

Friedlaender

 

NBP13201.022

sonob

30

to 54

 

5

12

16:18

e

5

12

20:18

68 42.329

70 59.507

---

---

Berchok

 

NBP13201.023

sonob

31

to 54

 

5

12

18:18

s

5

12

22:18

68 39.443

71 18.309

~400

122

Berchok

 

NBP13201.024

xbt

 

54

220.1

5

12

20:03

s/e

5

13

00:03

68 36.193

71 31.479

421

200

Hofmann

 

NBP13201.025

xbt

 

54

220.1

5

12

20:14

s/e

5

13

00:14

68 35.761

71 31.360

311

266

Hofmann

 

NBP13201.026

bucket

10

54

220.1

5

12

20:21

s/e

5

13

00:21

68 35.372

71 31.140

311

surf

Thimgan

 

NBP13201.027

sonob

31

to 55

 

5

12

21:39

e

5

13

01:39

68 29.932

71 29.086

---

---

Berchok

 

NBP13201.028

xbt

 

to 55

 

5

12

22:12

s/e

5

13

02:12

68 27.820

71.28.174

628

622

Hofmann

 

NBP13301.001

sonob

32

to 55

 

5

13

12:58

s

5

13

16:58

68 07.028

71 54.611

513

305

Berchok

 

NBP13301.002

sonob

32

to 55

 

5

13

14:55

e

5

13

18:55

68 15.574

72 06.871

---

---

Berchok

 

NBP13301.003

BMP

14

to 55

 

5

13

15:11

e

5

13

1911

68 15.364

72 08.031

300

250

Wiebe

 

NBP13301.004

sonob

33

to 55

 

5

13

15:52

s

5

13

19:52

68 18.852

72 13.152

393

305

Berchok

 

NBP13301.005

ringnet

4

55

220.140

5

13

16:35

s/e

5

13

20:35

68 23.962

72 17.492

464

30

Kozlowski

 

NBP13301.006

CTD

63

55

220.140

5

13

16:45

s

5

13

20:45

68 23.96

72 17.55

467

445

Salihoglu

 

NBP13301.007

CTD

63

55

220.140

5

13

17:20

e

5

13

21:20

68 23.96

72 17.55

467

445

Salihoglu

 

NBP13301.008

MOC

12

55

220.140

5

13

17:30

s

5

13

21:30

68 23.7

72 18.44

400

350

Ashjian

 

NBP13301.009

MOC

12

55

220.140

5

13

19:03

e

5

13

23:03

68 21.38

72 26.16

400

350

Ashjian

 

NBP13301.010

BMP

15

to 56

 

5

13

20:15

s

5

14

00:15

68 19.631

72 30.626

 

250

Wiebe

 

NBP13301.011

Birds

 

to 56

 

5

13

20:32

s

5

14

00:32

68 18.86

72 32.88

533

 

Chapman

 

NBP13301.012

sonob

33

to 56

 

5

13

21:10

e

5

14

01:10

68 17.138

72 39.752

---

---

Berchok

 

NBP13301.013

Birds

 

to 56

 

5

13

21:12

e

5

14

01:12

68 17.03

72 40.21

416

 

Chapman

 

NBP13401.001

CTD

64

56

220.180

5

14

00:20

s

5

14

04:20

68 10.56

73 2.53

324

316

Beardsley

 

NBP13401.002

CTD

64

56

220.180

5

14

00:50

e

5

14

04:50

68 10.56

73 2.53

324

316

Beardsley

 

NBP13401.003

BMP

15

57

221.180

5

14

05:50

e

5

14

09:50

67 55.278

73 47.147

410

 

Wiebe

 

NBP13401.004

RingNet

14

5

220.220

5

14

06:47

s/e

5

14

10:47

67 56.77

73 47.18

 

30

Thimyan

 

NBP13401.005

CTD

65

57

220.220

5

14

07:09

s

5

14

11:09

67 56.76

73 47.16

419

412

Beardsley

 

NBP13401.006

CTD

65

57

220.220

5

14

07:50

e

5

14

11:50

67 56.76

73 47.16

419

412

Beardsley

 

NBP13401.007

Bucket

11

57

220.220

5

14

07:50

s/e

5

14

11:50

67 56.69

73 47.46

419

surf

Thimgan

 

NBP13401.008

XBT

 

58

220.230

5

14

09:15

s/e

5

14

13:15

67 53.40

73 58.281

424

449

Beardsley

 

NBP13401.009

Bird

 

to 59

 

5

14

09:40

s

5

14

13:40

67 52.8

74 01.06

423

 

Chapman

 

NBP13401.010

sonob

34

to 59

 

5

14

09:48

s

5

14

13:48

67 52.449

74 01.875

414

305

Berchok

 

NBP13401.011

XCDT

 

59

219.242

5

14

11:02

s/e

5

14

15:02

67 49.39

74 11.87

1132

175

Beardsley

 

NBP13401.012

XBT-5

 

59

219.242

5

14

11:10

s/e

5

14

15:10

67 48.93

74 13.04

1368

500

Beardsley

T is bad

NBP13401.013

XBT-5

 

59

219.242

5

14

11:12

s/e

5

14

15:12

67 48.80

74 13.20

1368

250

Beardsley

T is bad

NBP13401.014

XBT-7

 

59

219.242

5

14

11:14

s/e

5

14

15:14

67 48.76

74 13:43

1547

220

Beardsley

 

NBP13401.015

XBT-7

 

59

219.242

5

14

11:18

s/e

5

14

15:18

67 48.62

74 13:67

1553

200

Beardsley

 

NBP13401.016

Sonob

34

60

 

5

14

12:04

e

5

14

16:04

67 46.294

74 18.789

---

---

Berchok

 

NBP13401.017

XCTD

 

60

220.25

5

14

12:05

s/e

5

14

16:05

67 46.27

74 18.84

2360

 

Hofmann

 

NBP13401.018

XBT-7

 

60

220.25

5

14

12:12

s/e

5

14

16:12

67 45.79

74 18.90

2360

 

Hofmann

 

NBP13401.019

bucket

12

60

220.25

5

14

12:16

s/e

5

14

16:18

67 45.410

74 19.014

2360

surf

Kozlowski

 

NBP13401.020

sonob

35

61

 

5

14

13:58

s

5

14

17:58

67 41.068

74 33.664

2546

305

Berchok

 

NBP13401.021

XCTD

 

61

220.265

5

14

14:08

s/e

5

14

18:08

67 40.60

74 34.941

2514

1000

Salihoglu

 

NBP13401.022

XBT-7

 

61

220.265

5

14

14:15

s/e

5

14

18:15

67 40.202

74 35.366

2515

200

Hofmann

 

NBP13401.023

XBT-7

 

61

220.265

5

14

14:17

s/e

5

14

18:17

67 40.18

74 35.486

2515

700

Hofmann

 

NBP13401.024

bucket

13

61

219.242

5

14

14:15

s/e

5

14

18:15

67 40.237

74 35.335

 

surf

Kozlowski

 

NBP13401.025

Birds

 

to62

 

5

14

15:36

e

5

14

19:15

67 36.78

74 47.82

2643

 

Chapman

 

NBP13401.026

sonob

35

62

 

5

14

15:37

e

5

14

19:37

67 36.736

74 47.975

---

---

Berchok

 

NBP13401.027

XCTD

 

62

220.28

5

14

15:59

s/e

5

14

19:59

67 35.783

74 51.55

2747

 

Hofman

 

NBP13401.028

bucket

14

62

220.28

5

14

16:05

s/e

5

14

20:05

67 35.406

74 52.176

2747

surf

Kozlowski

 

NBP13401.029

XCTD

 

63

220.295

5

14

17:34

s/e

5

14

21:34

67 30.552

75 7.23

2900

 

Hofmann

 

NBP13401.030

bucket

 

63

220.295

5

14

 

s/e

5

14

 

 

 

 

 

Kozlowski

 

NBP13401.031

XBT-5

 

63

220.295

5

14

17:40

s/e

5

14

21:40

67 30.29

75 7.5

2931

 

Hofmann

bad data

NBP13401.032

SONAB

36

63

 

5

14

17:45

s

5

14

21:45

67 29.907

75 07.959

2996

305

Berchok

 

NBP13401.033

XBT-7

 

63

220.295

5

14

17:46

s/e

5

14

21:46

67 29.77

75 08.121

2998

 

Hofmann

 

NBP13401.034

SONAB

36

to 64

 

5

14

20:00

e

5

15

00:00

67 40.715

75 01.545

---

---

Berchok

 

NBP13401.035

XBT-7

 

to 64

 

5

14

20:14

s/e

5

15

00:14

67 41.909

75 00.891

2803

760

Hofmann

 

NBP14301.036

XBT-7

 

to 64

 

5

14

20:17

s/e

5

15

00:17

67 42.206

75 00.726

2801

760

Hofmann

 

NBP14301.037

XBT-7

 

to 64

 

5

14

21:36

s/e

5

15

01:36

67 53.770

74 53.800

2832

760

Hofmann

 

NBP13501.001

CTD

66

64

180.241

5

15

00:18

s

5

15

04:18

68 5.78

74 46.97

411

406

Beardsley

 

NBP13501.002

CTD

66

64

180.241

5

15

00:56

e

5

15

04:56

68 5.78

74 46.97

411

406

Beardsley

 

NBP13501.003

MOC1

13

64

181.241

5

15

02:01

s

5

15

06:01

68  3.76

74 47.02

422

 

Ashjian

 

NBP13501.004

MOC1

13

64

182.241

5

15

04:08

e

5

15

08:08

67 59.48

74 48.06

2695

 

Ashjian

off shelf break

NBP13501.005

BMP

16

64

180.241

5

15

06:08

s

5

15

10:08

68 4.54

74 46.16

426

 

Wiebe

 

NBP13501.006

CTD

67

65

180.220

5

15

09:10

s

5

15

13:10

68 13.21

74 23.76

445

434

Beardsley

5 m swell

NBP13501.007

CTD

67

65

180.220

5

15

09:52

e

5

15

13:52

68 13.21

74 23.76

445

434

Beardsley

bent wire, reterm.

NBP13501.008

Birds

 

to 65

 

5

15

10:01

s

5

15

14:01

68 13.32

74 22.89

447

 

Chapman

 

NBP13501.009

sonob

37

to 65

 

5

15

12:57

s

5

15

16:57

68 22.861

73 53.222

593

305

Berchok

 

NBP13501.010

sonob

37

65

 

5

15

14:11

e

5

15

18:11

68 26.658

73 40.701

---

---

Berchok

buoy died suddenly

NBP13501.011

Birds

 

66

 

5

15

04:17

e

5

15

18:17

68 26.658

73 40.701

580

 

Chapman

 

NBP13501.012

BMP

16

66

 

5

15

1433

e

5

15

1833

68 26.917

73 38.37

580

250

Wiebe

 

NBP13501.013

CTD

68

66

180.180

5

15

15:27

s

5

15

19:27

68 27.00

73 39.40

545

516

Salihoglu

 

NBP13501.014

CTD

68

66

180.180

5

15

16:00

e

5

15

20:00

68 27.00

73 39.40

545

516

Salihoglu

 

NBP13501.015

MOC

14

66

181.180

5

15

16:28

s

5

15

20:28

68 26.27

73 42.78

595

550

Ashjian

 

NBP13501.016

MOC

14

66

182.180

5

15

18:53

e

5

15

22:53

68 22.10

73 54.24

595

550

Ashjian

 

NBP13501.017

BMP

17

66

180.180

5

15

21:00

s

5

16

01:00

68 26.123

73 39.205

 

0-250

Wiebe

 

NBP13501.018

drifter

 

66

180.180

5

15

09:20

S

5

16

01:20

68 27.17

73 36.04

537

 

Beardsley

 

NBP13501.019

sonob

38

to 67

 

5

15

21:53

s

5

16

01:53

68 29.162

73 31.883

571

305

Berchok

 

NBP13501.020

sonob

38

to 67

 

5

15

23:50

e

5

16

03:50

68 35.954

73 10.038

---

---

Berchok

 

NBP13601.001

CTD

69

67

180.140

5

16

01:54

s

5

16

05:54

68 40.05

72 56.64

508

498

Beardsley

 

NBP13601.002

CTD

69

67

180.140

5

16

02:37

e

5

16

06:37

68 40.05

72 56.64

508

498

Beardsley

 

NBP13601.003

XBT-4

 

to 68

 

5

16

04:26

s/e

5

16

08:26

68 45.36

72 39.85

156

156

Beardsley

 

NBP13601.004

XBT-4

 

to 68

 

5

16

06:20

s/e

5

16

10:20

68 49.01

72 21.76

131

131

Beardsley

 

NBP13601.005

Ring Net

6

68

180.100

5

16

08:39

s/e

5

16

12:39

68 54.17

72 8.36

224

30

Thimgan

 

NBP13601.006

CTD

70

69

180.100

5

16

08:58

e

5

16

12:58

68 54.12

72 8.61

224

215

Beardsley

 

NBP13601.007

CTD

70

69

180.100

5

16

09:22

s

5

16

13:22

68 54.12

72 8.61

224

215

Beardsley

 

NBP13601.008

sonob

39

68

 

5

16

09:42

s

5

16

13:42

68 53.927

72 09.283

255

122

Berchok

 

NBP13601.009

Whales

 

to 69

 

5

16

10:06

s

5

16

14:06

68 53.632

72 10.007

228

 

Friedlaender

 

NBP13601.010

Birds

 

to 69

 

5

16

10:06

s

5

16

14:06

68 53.632

72 10.007

228

 

Chapman

 

NBP13601.011

sonob

40

to 69

 

5

16

12:01

s

5

16

16:01

68 59.209

72 19.564

305

122

Berchok

 

NBP13601.012

XBT-4

 

to 69

 

5

16

12:54

s/e

5

16

16:54

69 2.609

72 27.291

165

 

Hofmann

 

NBP13601.013

SONOB

39

to 69

 

5

16

13:02

e

5

16

17:02

69 02.826

72 27.769

---

---

Berchok

 

NBP13601.014

SONOB

41

to 69

 

5

16

13:16

s

5

16

17:16

69 04.050

72 30.527

683?

122

Berchok

 

NBP13601.015

SONOB

40

to 69

 

5

16

14:03

e

5

16

18:03

69 07.831

72 38.604

---

---

Berchok

 

NBP13601.016

SONOB

42

to 69

 

5

16

14:16

s

5

16

18:16

69 08.453

72 40.023

114

122

Berchok

 

NBP13601.017

Birds

 

69

 

5

16

14:56

e

5

16

18:56

69 10.94

72 45.43

116

 

Chapman

 

NBP13601.018

Whales

 

69

 

5

16

14:56

e

5

16

18:56

69 10.94

72 45.43

116

 

Friedlaender

 

NBP13601.019

BMP

17

69

 

5

16

15:07

e

5

16

19:07

69 10.694

72 45.17

151

250

Wiebe

lots of pinnacles

NBP13601.020

Ring Net

7

69

140.100

5

16

15:30

s/e

5

16

19:30

69 11.146

72 46.286

159

30

Kozlowski

 

NBP13601.021

CTD

71

69

140.100

5

16

15:35

s

5

16

19:35

69 11.13

72 46.47

165

146

Hofmann

btl H8 dumped

NBP13601.022

CTD

 

 

140.100

5

16

16:04

e

5

16

20:04

69 11.13

72 46.47

165

146

Hofmann

 

NBP13601.023

MOC

15

69

140.100

5

16

16:16

s

5

16

20:16

69 10.87

72 46.03

150

80

Ashjian

 

NBP13601.024

MOC

15

69

140.100

5

16

16:53

e

5

16

20:53

69 9.96

72 43.6

150

80

Ashjian

 

NBP13601.025

BMP

18

69

 

5

16

18:07

s

5

16

22:07

69 10.63

72 45.38

130

 

Wiebe

 

NBP13601.026

XBT-4

 

to 70

 

5

16

19:54

s/e

5

16

23:54

69 06.611

73 00.562

224

250

Salihoglu

 

NBP13601.027

sonob

41

to 70

 

5

16

20:19

e

5

17

00:19

69 04.749

73 06.496

---

---

Berchok

 

NBP13601.028

sonob

42

to 70

 

5

16

20:19

e

5

17

00:19

69 04.749

73 06.496

---

---

Berchok

 

NBP13601.029

XBT-4

 

to 70

 

5

16

21:43

s/e

5

17

01:43

69 01.144

73 19.535

132

140

Salihoglu

 

NBP13601.030

Ring Net

8

70

140.140

5

16

23:18

s/e

5

17

318

68 57.202

73 32.222

195

30

Thimgan

 

NBP13601.031

CTD

72

70

140.140

5

16

23:35

s

5

17

03:35

68 57.18

73 32.27

195

176

Salihoglu

 

NBP13601.032

CTD

72

70

140.140

5

16

00:00

e

5

17

04:00

68 57.18

73 32.27

195

176

Salihoglu

 

NBP13701.001

XBT

 

to 71

 

5

17

01:43

s/e

5

17

05:43

68 51.91

73 48.14

402

402

Beardsley

 

NBP13701.002

XBT

 

to 71

 

5

17

03:06

s/e

5

17

07:06

68 47.85

74 2.21

425

425

Beardsley

 

NBP13701.003

Ring Net

9

71

140.180

5

17

04:52

s/e

5

17

08:52

68 43.404

74 17.647

535

30

Thimgan

 

NBP13701.004

CTD

73

71

140.180

5

17

05:15

s

5

17

09:15

68 43.38

74 17.59

523

515

Beardsley

 

NBP13701.005

CTD

73

71

140.180

5

17

05:55

e

5

17

09:55

68 43.38

74 17.59

523

515

Beardsley

 

NBP13701.006

Birds

 

to 72

 

5

17

06:21

s

5

17

10:21

68 42.23

74 21.061

 

 

Ribic

night survey

NBP13701.007

Birds

 

to 72

 

5

17

08:35

e

5

17

12:35

68 35.069

74 44.145

 

 

Ribic

 

NBP13701.008

Ring Net

 

72

140.220

5

17

 

s/e

5

17

 

 

 

 

 

Thimgan

lost net

NBP13701.009

CTD

74

72

140.220

5

17

10:58

s

5

17

14:58

68 29.28

75 2.56

424

416

Beardsley

 

NBP13701.010

CTD

74

72

140.220

5

17

11:34

e

5

17

15:34

68 29.28

75 2.56

424

416

Beardsley

 

NBP13701.011

Bird

 

to 73

 

5

17

11:30

s

5

17

15:30

68 29.289

75 02.498

447

 

Chapman

 

NBP13701.012

sonob

43

to 73

 

5

17

11:52

s

5

17

15:52

68 28.431

75 04.795

425

305

Berchok

 

NBP13701.013

sonob

43

to 73

 

5

17

14:09

e

5

17

18:09

68 21.033

75 27.438

---

---

Berchok

 

NBP13701.014

Birds

 

to 73

 

5

17

15:12

e

5

17

19:12

68 17.68

75 37.67

1007

 

Chapman

 

NBP13701.015

XCTD

 

73

140.255

5

17

15:32

s/e

5

17

19:32

68 16.741

75 40.328

2081

1000

Salihoglu

good to 1000(end)

NBP13701.016

SONOB

44

73

 

5

17

15:39

s

5

17

19:39

68 16.399

75 40.533

2203

305

Berchok

 

NBP13701.017

bucket

16

73

140.255

5

17

15:35

s/e

5

17

19:35

68 16.504

75 40.497

2203

surf

Kozlowski

 

NBP13701.018

sonob

44

to 74

 

5

17

17:55

e

5

17

21:55

68 24.069

75 57.834

---

---

Berchok

 

NBP13701.019

XBT-5

 

to 74

 

5

17

18:00

s/e

5

17

22:00

68 24.313

75 58.415

2008

1830

Salihoglu

good to 1830(end)

NBP13701.020

sonob

44

to 74

 

5

17

19:30

s

5

17

23:30

68 29.59

76 11.03

959

 

Chapman

 

NBP13701.021

Birds

 

to 74

 

5

17

20:10

e

5

18

00:10

68 31.67

76 16.639

943

 

Chapman

 

NBP13701.022

XCTD

 

74

100.255

5

17

20:49

s/e

5

18

00:49

68 32.774

76 19.256

996

996

Salihoglu

good cast

NBP13701.023

Bucket

17

74

100.255

5

17

20:58

s/e

5

18

00:58

68 32.685

76 18.843

996

surf

Thimgan

 

NBP13701.024

Birds

 

to 75

 

5

17

21:08

s

5

18

01:08

68 33.256

76 17.438

746

 

Chapman

 

NBP13701.025

XBT-4

 

to 75

 

5

17

22:51

s/e

5

18

02:51

68 38.734

76 01.864

431

431

Hofmann

good cast

NBP13801.001

Birds

 

75

 

5

18

00:34

e

5

18

04:34

68 44.24

75 43.82

471

 

Chapman

 

NBP13801.002

CTD

75

75

100.220

5

18

01:17

s

5

18

05:17

68 45.15

75 41.24

460

454

Beardsley

 

NBP13801.003

CTD

75

75

100.220

5

18

01:54

e

5

18

05:54

68 45.15

75 41.24

460

454

Beardsley

recoved from tape

NBP13801.004

Birds

 

to 76

 

5

18

04:11

s

5

18

08:11

68 52.297

75 19.538

 

 

Ribic

 

NBP13801.005

XBT-4

 

to 76

 

5

18

04:15

s/e

5

18

08:15

68 52.500

75 18,768

396

396

Beardsley

 

NBP13801.006

Birds

 

to 76

 

5

18

05:43

e

5

18

09:43

68 57.295

75 4.328

 

 

Ribic

 

NBP13801.007

BMP

18

76

 

5

18

06:41

e

5

18

10:41

68 59.073

74 56.27

400

250

Wiebe

 

NBP13801.008

CDT

76

76

100.180

5

18

08:00

s

5

18

12:00

68 59.57

74 56.57

404

398

Beardsley

 

NBP13801.009

MOC

16

76

100.180

5

18

08:54

s

5

18

12:54

68 59.43

74 55.77

350

340

Wiebe

 

NBP13801.010

MOC

16

76

100.180

5

18

10:36

e

5

18

14:36

68 59.43

74 55.77

370

340

Ashjian

 

NBP13801.011

CDT

76

76

100.180

5

18

08:37

e

5

18

12:37

68 59.57

74 56.57

404

398

Beardsley

 

NBP13801.012

sonob

45

to 77

 

5

18

10:54

s

5

18

14:54

68 56.422

74 48.267

384

122

Berchok

 

NBP13801.013

Birds

 

to 77

 

5

18

11:01

s

5

18

15:01

68 56.698

74 48.300

366

 

Chapman

 

NBP13801.014

Whales

 

to 77

 

5

18

11:01

s

5

18

15:01

68 56.698

74 48.300

366

 

Friedlaender

 

NBP13801.015

BMP

19

77

 

5

18

11:45

s

5

18

15:45

68 59.42

74 54.52

395

 

Wiebe

 

NBP13801.016

sonob

45

to 77

 

5

18

13:24

e

5

18

17:24

69 05.036

74 39.221

---

---

Berchok

 

NBP13801.017

XBT-7

 

to 77

 

5

18

14:02

s/e

5

18

18:02

69 06.914

74 32.478

517

517

Hofmann

good cast

NBP13801.018

sonob

46

to 77

 

5

18

14:50

e

5

18

18:50

69 09.674

74 24.946

461

 

Berchock

 

NBP13801.019

Birds

 

to 77

 

5

18

14:50

e

5

18

18:50

69 09.674

74 24.946

461

 

Chapman

 

NBP13801.020

Whales

 

to 77

 

5

18

14:50

e

5

18

18:50

69 09.674

74 24.946

461

 

Friedlaender

 

NBP13801.021

ringnet

11

77

100.140

5

18

16:10

s/e

5

18

20:10

69 13.577

74 10.674

623

30

Kozlowski

25m mesh net

NBP13801.022

CTD

77

77

100.140

5

18

16:22

s

5

18

20:22

69 13.64

74 10.73

644

615

Hofmann

 

NBP13801.023

CTD

77

77

100.140

5

18

17:15

e

5

18

21:15

69 13.64

74 10.73

644

615

Hofmann

 

NBP13801.024

sonob

46

77

 

5

18

17:36

e

5

18

21:36

69 14.453

74 13.228

---

---

Berchok

 

NBP13801.025

XBT-7

 

to 78

 

5

18

19:28

s/e

5

18

23:28

69 21.465

74 29.956

540

540

Salihoglu

 

NBP13801.026

Birds

 

to 78

 

5

18

19:49

s

5

18

23:49

69 22.76

54 33.38

521

 

Chapman

 

NBP13801.027

sonob

47

to 78

 

5

18

20:32

s

5

19

00:32

69 25.599

74 40.228

557

305

Berchok

 

NBP13801.028

Ring Net

12

78

60.14

5

18

22:11

s/e

5

19

02:11

69 29.883

74 50.843

283

30

Thimgan

25u mesh net

NBP13801.029

Birds

 

to 78

 

5

18

22:25

e

5

19

02:25

69 29.84

74 50.86

325

 

Chapman

 

NBP13801.030

CTD

78

78

60.14

5

18

22:35

s

5

19

02:35

69 29.83

74 50.89

337

313

Salihoglu

 

NBP13801.031

Birds

 

to 79

 

5

18

23:07

s

5

19

03:07

69 29.73

74 50.83

326

 

Chapman

 

NBP13801.032

CTD

78

78

60.14

5

18

23:05

s

5

19

03:05

69 29.83

74 50.89

337

313

Salihoglu

 

NBP13801.033

sonob

48

to 79

 

5

18

23:21

s

5

19

03:21

69 29.226

74 52.962

350

305

Berchok

 

NBP13801.034

Birds

 

to 79

 

5

18

23:54

e

5

19

03:54

69 27.57

74 58.17

303

 

Chapman

 

NBP13901.001

sonob

49

to 79

 

5

19

00:36

s/e

5

19

04:36

69 25.277

75 05.251

254

122

Berchok

buoy failed

NBP13901.002

sonob

47

to 79

 

5

19

00:36

e

5

19

04:36

69 25.277

75 05.251

---

---

Berchok

 

NBP13901.003

sonob

48

to 79

 

5

19

00:42

e

5

19

04:42

69 25.277

75 05.251

---

---

Berchok

 

NBP13901.004

XBT-4

 

to 79

 

5

19

01:29

s/e

5

19

05:29

69 22.33

75 15.20

305

305

Beardsley

 

NBP13901.005

CTD

79

79

60.180

5

19

03:52

s

5

19

07:52

69 15.43

75 36.72

402

392

Beardsley

 

NBP13901.006

CTD

79

79

60.180

5

19

04:24

e

5

19

08:24

69 15.43

75 36.72

402

392

Beardsley

 

NBP13901.007

Birds

 

to 80

 

5

19

04:37

s

5

19

08:37

69 15.224

75 37.216

 

 

Ribic

 

NBP13901.008

XBT-7

 

to 80

 

5

19

06:38

s/e

5

19

10:38

69 8.707

75 58.202

429

429

Beardsley

 

NBP13901.009

Birds

 

to 80

 

5

19

08:35

e

5

19

12:35

69 2.283

76 18.27

 

 

Ribic

 

NBP13901.010

CTD

80

80

60.220

5

19

09:18

s

5

19

13:18

69 1.24

76 21.40

431

426

Beardsley

 

NBP13901.011

CTD

80

80

60.220

5

19

09:51

e

5

19

13:51

69 1.24

76 21.40

431

426

Beardsley

 

NBP13901.012

Birds

 

to 81

 

5

19

10:13

s

5

19

14:13

69 00.293

76 23.97

432

 

Chapman

 

NBP13901.013

Whales

 

to 81

 

5

19

10:13

s

5

19

14:13

69 00.293

76 23.97

432

 

Friedlaender

 

NEP13901.014

XBT-7

 

to 81

 

5

19

11:48

s/e

5

19

15:48

68 55.135

76 39.742

423

423

Beardsley

 

NBP13901.015

sonob

50

to 81

 

5

19

12:46

s

5

19

16:46

68 52.226

76 48.234

401

305

Berchok

 

NBP13901.016

BMP

19

81

 

5

19

13:49

e

5

19

17:49

68 48.191

76 58.73

550

250

Wiebe

 

NBP13901.017

Whales

 

81

 

5

19

13:50

e

5

19

17:50

68 48.191

76 58.73

550

 

Friedlaender

 

NBP13901.018

Birds

 

81

 

5

19

13:50

e

5

19

17:50

68 48.191

76 58.73

550

 

Chapman

 

NBP13901.019

RingNet

13

81

60.255

5

19

14:05

s/e

5

19

18:05

68 48.384

76 59.903

553

30

Kozlowski

 

NBP13901.020

CTD

81

81

60.255

5

19

14:15

s

5

19

18:15

68 48.34

77 0.30

710

690

Hofmann

Salihoglu did chloro.

NBP13901.021

CTD

81

81

60.255

5

19

15:10

e

5

19

19:10

68 48.34

77 0.30

710

690

Hofmann

Salihoglu did chloro.

NBP13901.022

MOC

17

81

61.255

5

19

15:20

s

5

19

19:20

68 47.9

76 59.803

600

550

Ashjian

 

NBP13901.023

MOC

17

81

61.255

5

19

17:13

e

5

19

21:13

68 46.5

76 49.3

600

550

Ashjian

 

NBP13901.024

sonob

50

81

 

5

19

17:47

e

5

19

21:47

68 46.357

76 49.569

---

---

Berchok

 

NBP13901.025

BMP

20

81

 

5

19

18:30

s

5

19

22:30

68 48.48

76 59.09

500

 

Wiebe

 

NBP13901.026

Birds

 

to 82

 

5

19

18:35

s

5

19

22:35

68 48.65

76 59.92

503

 

Chapman.

 

NBP13901.027

XBT

 

to 82

 

5

19

20:38

s/e

5

20

00:38

68 55.088

77 21.58

543

543

Salihoglu

 

NBP13901.028

Birds

 

to 82

 

5

19

21:41

e

5

20

01:41

68 58.311

77 32.33

506

 

Chapman

 

NBP13901.029

Ring Net

14

82

20.26

5

19

23:28

s/e

5

20

03:28

69 02.152

77 45.797

415

30

Thimgan

 

NBP13901.030

CTD

82

82

20.26

5

19

23:36

s

5

20

03:36

69 2.16

77 45.74

420

394

Salihoglu

 

NBP14001.001

CTD

82

82

20.26

5

20

00:15

e

5

20

04:15

69 2.16

77 45.74

420

394

Salihoglu

 

NBP14001.002

XBT-7

 

to 83

 

5

20

02:23

s/e

5

20

06:23

69 9.31

77 25.075

417

417

Beardsley

 

NBP14001.003

CTD

83

83

20.22

5

20

05:00

s

5

20

09:00

69 17.05

77 1.72

401

393

Beardsley

 

NBP14001.004

CTD

83

83

20.22

5

20

05:34

e

5

20

09:34

69 17.05

77 1.72

401

393

Beardsley

 

NBP14001.005

XBT

 

to 84

 

5

20

07:42

s/e

5

20

11:42

69 23.972

76 40.556

414

250

Beardsley

 

NBP14001.006

XBT

 

to 84

 

5

20

07:45

s/e

5

20

11:45

69 24.159

76 40.059

401

100

Beardsley

 

NBP14001.007

XBT-7

 

to 84

 

5

20

07:48

s/e

5

20

11:48

69 24.316

76 39.591

401

401

Beardsley

 

NBP14001.008

sonob

51

to 84

 

5

20

09:37

s

5

20

13:37

69 30.481

76 20.710

408

305

Berchok

 

NBP14001.009

BMP

20

84

20.18

5

20

09:57

e

5

20

13:57

69 31.564

76 17.34

400

250

Wiebe

 

NBP14001.010

Ring Net

15

84

20.18

5

20

10:52

s/e

5

20

14:52

69 31.564

76 17.986

418

30

Thimgan

 

NBP14001.011

CTD

84

84

20.18

5

20

10:59

s

5

20

14:59

69 31.45

76 18.13

418

396

Beardsley

 

NBP14001.012

CTD

84

84

20.18

5

20

11:45

e

5

20

15:45

69 31.45

76 18.13

418

396

Beardsley

 

NBP14001.013

MOC1

18

84

20.18

5

20

11:55

s

5

20

15:55

69 31.27

76 17.54

500

460

Ashjian

 

NBP14001.014

MOC1

18

84

20.18

5

20

13:29

e

5

20

17:29

69 29.965

76 9.172

500

 

Ashjian

 

NBP14001.015

sonob

52

to 85

 

5

20

14:19

s

5

20

18:19

69 36.516

76 23.097

294

122

Berchok

 

NBP14001.016

sonob

51

to 85

 

5

20

14:24

e

5

20

18:24

69 37.683

76 25.074

---

---

Berchok

 

NBP14001.017

sonob

52

to 85

 

5

20

15:33

e

5

20

19:33

69 49.995

76 40.882

---

---

Berchok

 

NBP14001.018

CTD

85

85

-034.161

5

20

16:46

s

5

20

20:46

69 59.94

76 53.63

862

832

Howard

 

NBP14001.019

CTD

85

85

-034.161

5

20

17:48

e

5

20

21:48

69 59.94

76 53.63

862

832

Howard

 

NBP14001.020

sonob

53

to 86

 

5

20

19:09

s

5

20

23:09

70 12.414

77 7.639

885

305

Berchok

 

NBP14001.021

xbt

 

TO 86

 

5

20

19:43

s/e

5

20

23:43

70 18.61

77 14.678

524

524

Salihoglu

 

NBP14001.022

sonob

53

to 86

 

5

20

19:59

e

5

20

23:59

70 21.858

77 18.410

---

---

Berchok

 

NBP14001.023

CTD

86

86

-105.132

5

20

21:55

s

5

21

01:55

70 37.99

77 37.32

586

570

Salihoglu

 

NBP14001.024

CTD

86

86

-105.132

5

20

22:50

e

5

21

02:50

70 37.99

77 37.32

586

570

Salihoglu

 

NBP14101.001

XBT-4

 

to 87

 

5

21

00:39

s/e

5

21

04:39

70 34.958

77 10.376

167

167

Beardsley

 

NBP14101.002

XBT-5

 

to 87

 

5

21

06:07

s/e

5

21

06:07

70 31.857

76 41.827

1150

1150

Beardsley

 

NBP14101.003

XBT-4

 

to 87

 

5

21

03:42

s/e

5

21

07:42

70 28.652

76 13.699

326

326

Beardsley

 

NBP14101.004

XBT-4

 

to 87

 

5

21

04:23

s/e

5

21

08:23

70 27.384

76 02.379

920

151

Beardsley

 

NBP14101.005

XBT-4

 

to 87

 

5

21

04:24

s/e

5

21

08:24

70 27.384

76 02.379

920

189

Beardsley

 

NBP14101.006

XBT-7

 

to 87

 

5

21

04:28

s/e

5

21

08:28

70 27.292

76 1.249

940

200

Beardsley

 

NBP14101.007

XBT-7

 

to 87

 

5

21

06:10

s/e

5

21

10:10

70 23.45

75 36.337

724

724

Beardsley

 

NBP14101.008

sonob

54

to 87

 

5

21

08:12

s/e

5

21

12:12

70 17.904

75 18.611

573

122

Berchok

 

NBP14101.009

sonob

54

to 87

 

5

21

08:34

s

5

21

12:34

70 18.204

75 14.420

575

122

Berchok

 

NBP14101.010

ice

3

near 87

 

5

21

09:40

s/e

5

21

13:40

70 19.493

75 9.320

595

surf

Kozlowshi/

Gallager

 

NBP14101.011

XBT-7

 

near 87

 

5

21

09:52

s/e

5

21

13:52

70 19.338

75 9.555

595

595

Beardsley

 

NBP14101.012

Birds

 

 

 

5

21

10:29

s

5

21

14:29

70 18.151

75 12.779

572

 

Chapman

 

NBP14101.013

Birds

 

 

 

5

21

11:05

e

5

21

15:05

70 17.674

75 17.48

559

 

Chapman

 

NBP14101.014

Ice

4

 

 

5

21

11:05

s/e

5

21

15:05

70 17.674

75 17.948

559

surf

Thimgan

 

NBP14101.015

Ice

5

 

 

5

21

11:07

s/e

5

21

15:07

70 17.674

75 17.948

559

surf

Thimgan

zodiac work

NBP14101.016

Whales

 

 

 

5

21

12:30

s

5

21

16:30

70 18 .814

75 43.097

595

 

Friedlaender

zodiac work

NBP14101.017

Birds

 

 

 

5

21

13:45

s

5

21

17:45

70 18 .814

75 43.097

595

 

Chapman

 

NBP14101.018

Ice

6

 

 

5

21

13:50

s/e

5

21

17:50

70 18.141

75 37.064

 

surf

Thimgan

 

NBP14101.019

Ring Net

16

 

 

5

21

14:12

s/e

5

21

18:12

70 18.191

75 37.441

 

30

Thimgan

zodiac work

NBP14101.020

Whales

 

 

 

5

21

14:53

e

5

21

18:54

70 18 .814

75 43.097

595

 

Friedlaender

zodiac work

NBP14101.021

Birds

 

 

 

5

21

14:53

e

5

21

18:54

70 18 .814

75 43.097

595

 

Chapman

 

NBP14101.022

sonob

55

 

 

5

21

14:53

e

5

21

18:53

missed

it

---

---

Berchok

 

NBP14101.023

ROV

2

 

 

5

21

19:00

s

5

22

 

70 18 .814

75 43.097

 

 

Gallager

 

NBP14101.024

ROV

2

 

 

5

21

20:00

e

5

22

 

70 18 .814

75 43.097

 

 

Gallager

 

NBP14201.001

XBT-4

 

from 84

 

5

22

06:31

s/e

5

22

10:31

69 27.799

75 50.79

296

295

Beardsley

 

NBP14201.002

XBT-4

 

from 84

 

5

22

07:37

s/e

5

22

11:37

69 24.221

75 26.207

262

262

Beardsley

 

NBP14201.003

sonob

56

to 87

 

5

22

07:55

s

5

22

11:55

69 23.441

75 20.721

253

122

Berchok

 

NBP14201.004

sonob

57

to 87

 

5

22

08:52

s

5

22

12:52

69 21.015

75 03.614

322

122

Berchok

 

NBP14201.005

XBT-4

 

from 84

 

5

22

09:04

s/e

5

22

13:04

69 20.748

75 0.012

373

373

Beardsley

 

NBP14201.006

sonob

58

to 87

 

5

22

09:48

s

5

22

13:48

69 26.115

74 53.635

290

122

Berchok

 

NBP14201.007

sonob

56

to 87

 

5

22

09:52

e

5

22

13:52

69 27.411

74 53.306

---

---

Berchok

 

NBP14201.008

sonob

59

to 87

 

5

22

10:31

s

5

22

14:31

69 32.705

74 51.903

309

122

Berchok

 

NBP14201.009

sonob

57

to 87

 

5

22

10:37

e

5

22

14:37

69 32.705

74 51.903

---

---

Berchok

 

NBP14201.010

sonob

60

to 87

 

5

22

11:13

s

5

22

15:13

69 37.358

74 50.785

161

122

Berchok

 

NBP14201.011

sonob

58

to 87

 

5

22

11:19

e

5

22

15:19

69 37.358

74 50.785

---

---

Berchok

 

NBP14201.012

Ice

7

 

 

5

22

12:50

s/e

5

22

16:50

69 35.222

74 36.444

 

surf

Thimgan

 

NBP14201.013

sonob

61

to 87

 

5

22

13:40

s

5

22

17:40

69 33.049

74 28.145

246

122

Berchok

 

NBP14201.014

sonob

60

to 87

 

5

22

13:40

e

5

22

17:40

69 33.049

74 28.145

---

---

Berchok

 

NBP14201.015

ROV

3

 

 

5

22

15:00

s

5

22

19:00

69 15.884

70 30.354

170

15

Gallager

 

NBP14201.016

ROV

3

 

 

5

22

16:00

e

5

22

20:00

69 15.884

70 30.354

170

15

Gallager

 

NBP14201.017

CTD

87

87

062.122

5

22

1630

s

5

22

2030

69 35.02

74 27.22

170

164

Salihoglu

 

NBP14201.018

CTD

87

87

062.122

5

22

1706

e

5

22

2106

69 35.02

74 27.22

170

164

Salihoglu

 

NBP14201.019

sonob

59

to 88

 

5

22

18:30

e

5

22

22:30

69 30.645

74 16.670

---

---

Berchok

 

NBP14201.020

sonob

61

to 88

 

5

22

19:20

e

5

22

23:20

missed

it

---

---

Berchok

 

NBP14201.021

XBT-4

to 88

 

 

5

22

19:38

s/e

5

22

23:38

69 30.676

74 0.692

330

330

Salihoglu

 

NBP14201.022

XBT-4

to 88

 

 

5

22

19:58

s/e

5

22

23:58

69 30.497

73 56.621

275

275

Salihoglu

 

NBP14201.023

XBT

to 88

 

 

5

22

22:05

s/e

5

23

02:05

69 29.405

73 32.91

161

161

Salihoglu

 

NBP14301.001

XBT

to 88

 

 

5

23

00:14

s/e

5

23

04:14

69.23.611

73 9.147

150

150

Beardsley

 

NBP14301.002

SLRW

 

 

 

5

23

01:20

s

5

23

05:20

 

 

 

 

Rosario

 

NBP14301.003

XBT

 

 

 

5

23

02:12

s/e

5

23

06:12

69 19.001

72 43.658

121

121

Beardsley

Trackpoint also launched

NBP14301.004

ROV

4

 

 

5

23

05:20

s

5

23

09:20

69 15.910

72 30.359

125

 

Gallager

 

NBP14301.005

ROV

4

 

 

5

23

08:12

e

5

23

12:12

69 15.910

72 30.359

125

 

Gallager

 

NBP14301.006

sonob

62

 

 

5

23

08:32

s

5

23

12:32

69 15.578

72 29.879

118

27

Berchok

 

NBP14301.007

ice

8

 

 

5

23

09:05

s/e

5

23

13:05

69 15.436

72 29.542

106

surf

Kozlowski

 

NBP14301.008

sonob

62

 

 

5

23

10:10

e

5

23

14:10

69 18.520

72 28.753

---

---

Berchok

 

NBP14301.009

sonob

63

 

 

5

23

11:11

s

5

23

15:11

69 21.522

72 24.525

111

27

Berchok

 

NBP14301.010

sonob

63

 

 

5

23

12:34

e

5

23

16:34

69 24.269

72 17.737

---

---

Berchok

 

NBP14301.011

ROV

5

 

 

5

23

15:00

s

5

23

19:00

69 20.240

72 26.166

 

 

Gallager

take out due to current and wind to reposition

NBP14301.012

ROV

5

 

 

5

23

16:30

e

5

23

20:30

69 20.240

72 26.166

 

 

Gallager

repositioned by iceberg

NBP14301.013

ROV

6

 

 

5

23

18:59

s

5

23

22:59

69 20.240

72 26.166

 

 

Gallager

 

NBP14301.014

ROV

6

 

 

5

23

20:45

e

5

24

02:25

69 20.240

72 26.166

 

 

Gallager

 

NBP14301.015

XBT

 

to 53

 

5

23

23:36

s/e

5

24

03:36

69 10.819

72 43.07

138

138

Salihoglu

 

NBP14401.001

XBT

 

to 53

 

5

24

119

s/e

5

24

05:19

69 3.218

72 31.779

1063

760

Hofmann

broke @42m

NBP14401.002

XBT

 

to 53

 

5

24

120

s/e

5

24

05:20

69 2.956

72 31.899

1171

760

Hofmann

 

NBP14401.003

XBT

 

to 53

 

5

24

03:24

s/e

5

24

07:24

68 53.89

72 8.747

212

212

Sanay

 

NBP14401.004

sonob

64

to 53

 

5

24

04:15

s

5

24

08:15

68 49.793

71 58.905

236

122

Berchok

 

NBP14401.005

sonob

65

to 53

 

5

24

04:47

s/e

5

24

08:42

68 47.576

71 54.486

190

122

Berchok

 

NBP14401.006

XBT

 

to 53

 

5

24

04:52

s/e

5

24

08:52

68 46.615

71 52.688

158

158

S. Beardsley

 

NBP14401.007

sonob

66

to 53

 

5

24

04:58

s

5

24

08:58

68 46.287

71 51.855

170

122

Berchok

 

NBP14401.008

XBT-7

 

to 53

 

5

24

06:47

s/e

5

24

10:47

68 44.729

71 24.698

 

 

Sue B.

 

NBP14401.009

XBT-7

 

to 53

 

5

24

06:48

s/e

5

24

10:48

68 44.773

71 24.083

420

420

Sue B.

 

NBP14401.010

sonob

67

to 53

 

5

24

06:51

s

5

24

10:51

68 44.811

71 23.333

555

122

Berchok

 

NBP14401.011

XBT-7

 

to 53

 

5

24

06:52

s/e

5

24

10:52

68 44.83

71 22.926

423

423

Sue B.

 

NBP14401.012

sonob

64

to 53

 

5

24

06:53

e

5

24

10:53

68 44.843

71 22.630

---

---

Berchok

 

NBP14401.013

sonob

66

to 53

 

5

24

07:20

e

5

24

11:20

68 45.204

71 14.795

---

---

Berchok

 

NBP14401.014

sonob

68

to 53

 

5

24

07:26

s

5

24

11:26

68 48.227

71 13.625

193

122

Berchok

 

NBP14401.015

Whales

 

to 68

 

5

24

10:30

s/e

5

24

14:30

68 44.843

71 22.63

423

 

Friedlaender

 

NBP14401.015

Birds

 

to 68

 

5

24

10:30

s/e

5

24

14:30

68 44.843

71 22.63

423

 

Chapman

Petrel diet sample effort

NBP14401.016

ice

9

to 53

 

5

24

13:46

s/e

5

24

17:46

68 45.778

71 24.479

 

surf

Koslowski

 

NBP14401.017

ringnet

17

to 53

 

5

24

13:55

s/e

5

24

17:55

68 45.778

71 24.479

 

30

Koslowski

 

NBP14401.018

sonob

69

 

 

5

24

12:10

s

5

24

16:10

68 44.841

71 23.340

?

27

Berchok

 

NBP14401.019

sonob

67

 

 

5

24

15:02

e

5

24

19:02

missed

it

---

---

Berchok

camera 4 overbright

NBP14401.020

BMP

21

 

 

5

24

15:25

s

5

24

19:25

68 44.449

71 27.70

550

50

Wiebe

 

NBP14401.021

sonob

68

 

 

5

24

15:34

e

5

24

19:34

68 43.887

71 28.090

---

---

Berchok

 

NBP14401.022

sonob

69

 

 

5

24

21:05

e

5

24

01:05

missed

it

---

---

Berchok

 

NBP14401.023

BMP

21

 

 

5

24

21:31

e

5

25

01:31

68 47.52

71 23.86

400

0-120

Wiebe

 

NBP14401.024

CTD

88

88

208.084

5

24

22:07

s

5

25

02:07

68 47.01

71 24.14

468

442

Salihoglu

 

NBP14401.025

CTD

88

88

208.084

5

24

22:45

e

5

25

02:45

68 47.01

71 24.14

468

442

Salihoglu

 

NBP14501.001

XBT-4

 

 

 

5

25

00:40

s/e

5

25

04:40

68 42.863

70 50.059

240

240

Beardsley

 

NBP14501.002

XBT-4

 

 

 

5

25

00:43

s/e

5

25

04:43

68 42.863

70 50.059

240

240

Beardsley

 

NBP14501.003

XBT-4

 

 

 

5

25

01:35

s/e

5

25

05:35

68 40.837

70 34.163

254

254

Beardsley

 

NBP14501.004

XBT-4

 

 

 

5

25

01:39

s/e

5

25

05:39

68 40.837

70 34.163

254

254

Beardsley

 

NBP14501.005

Birds

 

 

 

5

25

01:40

s/e

5

25

05:40

68 47.196

70 23.952

428

 

Chapman

Petrel diet sample

NBP14501.006

RingNet

18

89

 

5

25

03:00

s/e

5

25

07:00

68 42.882

70 23.816

378

30

Kozlowski

 

NBP14501.007

CTD

89

89

239.057

5

25

03:20

s

5

25

07:20

68 42.78

70 23.88

361

354

Beardsley

 

NBP14501.008

CTD

89

89

239.057

5

25

03:51

e

5

25

07:51

68 42.78

70 23.88

361

354

Beardsley

 

NBP14501.009

XBT-4

 

from 89

 

5

25

04:31

s/e

5

25

08:31

68 40.814

70 16.606

405

405

Beardsley

 

NBP14501.010

XBT-4

 

from 89

 

5

25

04:54

s/e

5

25

08:54

68 38.731

70 9.815

412

412

Beardsley

 

NBP14501.011

XBT-5

 

from 89

 

5

25

05:10

s/e

5

25

09:10

68 37.712

70 4.06

1360

1360

Beardsley

 

NBP14501.012

XBT-5

 

from 89

 

5

25

05:26

s/e

5

25

09:26

68 36.183

69 57.547

1068

1068

Beardsley

 

NBP14501.013

XBT-7

 

from 89

 

5

25

05:45

s/e

5

25

09:45

68 49.868

69 49.868

724

724

Beardsley

 

NBP14501.014

XBT-7

 

from 89

 

5

25

06:43

s/e

5

25

10:43

68 30.819

69 35.81

493

493

Sanay

 

NBP14501.015

XBT-4

 

from 89

 

5

25

07:43

s/e

5

25

11:43

68 21.263

69 21.263

209

209

Sanay

 

NBP14501.016

XBT-4

 

from 89

 

5

25

07:46

s/e

5

25

11:46

68 27.209

69 20.623

246

246

Sanay

 

NBP14501.017

XBT-7

 

from 89

 

5

25

08:57

s/e

5

25

12:57

68 23.868

69 7.063

723

723

Sanay

 

NBP14501.018

SONOB

70

kirkwood

 

5

25

13:06

s

5

25

17:06

68 19.722

68 54.860

???

27

Berchok

 

NBP14501.019

SONOB

70

kirkwood

 

5

25

15:11

e

5

25

19:11

68 20.463

69 01.764

176

---

Berchok

 

NBP14501.020

AWS

 

 

 

5

25

 

s/e

 

 

 

 

 

 

 

Beardsley

 

NBP14501.021

Whales

 

kirkwood

 

5

25

13:06

s

5

25

17:06

68 19.722

68 54.860

 

 

Friedlaender

look for whales

NBP14501.022

Birds

 

 

 

5

25

19:30

s/e

5

25

23:30

68 9.504

68 56.232

878

 

Chapman

Petrel diet sample effort

NBP14501.023

XBT

 

37

300.140

5

25

22:31

s/e

5

26

02:31

67 50.278

71 5.538

480

 

Salihoglu

Bad Cast

NBP14501.024

XBT

 

37

300.140

5

25

22:33

s/e

5

26

02:31

67 50.211

71 5.75

446

 

Salihoglu

Bad Cast

NBP14501.025

XBT

 

37

300.140

5

25

22:34

s/e

5

26

02:31

67 50.121

71 5.99

431

431

Salihoglu

 

NBP14501.026

MOC1

19

37

300.140

5

25

22:51

s

5

26

02:51

67 50.176

70 07.304

416

375

Ashjian

 

NBP14601.001

MOC1

19

37

300.140

5

26

00:23

e

5

26

04:23

67 51.661

71 13.40

 

375

Ashjian

 

NBP14601.002

XBT

 

to 44

 

5

26

01:34

s/e

5

26

05:34

67 52.733

71 39.337

317

50

Salihoglu

wire broke

NBP14601.003

XBT

 

to 44

 

5

26

01:36

s/e

5

26

05:36

67 52.783

71 40.587

317

317

Salihoglu

 

NBP14601.004

XBT

 

to 44

 

5

26

02:29

s/e

5

26

06:29

67 53.189

72 5.165

302

302

Salihoglu

 

NBP14601.005

XBT

 

44

260.180

5

26

03:24

s/e

5

26

07:24

67 53.676

72 25.807

303

303

Salihoglu

 

NBP14601.006

MOC1

20

44

260.180

5

26

03:51

s

5

26

07:51

67 54.4

72 27.7

400

350

Ashjian

 

NBP14601.007

MOC1

20

44

261.180

5

26

05:40

e

5

26

09:40

67 58.9

72 33.96

400

350

Ashjian

 

NBP14601.008

XBT-7

 

to B3

 

5

26

07:11

s/e

5

26

11:11

68 3.967

72 10.355

509

509

Sanay

 

NBP14601.009

XBT-7

 

to B3

 

5

26

08:05

s/e

5

26

12:05

68 8.097

71 46.676

426

426

Sanay

 

NBP14601.010

XBT-7

 

to B3

 

5

26

09:03

s/e

5

26

13:03

68 12.369

71 22.067

604

274

Sanay

wire broke

NBP14601.011

XBT-7

 

to B3

 

5

26

09:05

s/e

5

26

13:05

68 12.552

71 21.037

664

664

Sanay

 

NBP14601.012

XBT-7

 

B3

 

5

26

10:59

s/e

5

26

14:59

68 14.835

70 56.815

530

530

Sanay

 

NBP14601.013

XBT-5

 

to B2

 

5

26

11:41

s/e

5

26

15:41

68 9.917

70 48.173

715

715

Beardsley

 

NBP14601.014

sonob

71

to B2

 

5

26

12:06

s

5

26

16:05

68 07.708

70 37.708

836

305

Berchok

 

NBP14601.015

XBT-5

 

B2

 

5

26

14:01

s/e

5

26

18:01

68 6.407

70 27.259

854

854

Hofmann

 

NBP14601.016

drifter

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beardsley

 

NBP14601.017

sonob

72

to b1

 

5

26

14:40

s

5

26

18:40

68 01.475

70 13.033

740

305

Berchok

 

NBP14601.018

sonob

71

b1

 

5

26

15:48

e

5

26

19:48

67 55.783

69 53.949

---

---

Berchok

 

NBP14601.019

sonob

72

b1

 

5

26

15:48

e

5

26

19:48

67 55.783

69 53.949

---

---

Berchok

 

NBP14601.020

XBT

 

to B1

 

5

26

14:42

s/e

5

26

18:42

68 01.337

70 12.499

747

747

Salihoglu

 

NBP14601.021

XBT

 

B1

 

5

26

18:24

s/e

5

26

22:24

67 56.552

69 50.028

715

715

Hofmann

 

NBP14601.022

BMP

22

 

 

5

26

19:20

s

5

26

23:20

67 45.996

69 46.461

 

 

Wiebe

 

NBP14601.023

Drifter

 

 

 

5

26

20:14

s

5

27

00:14

67 47.285

69 44.784

 

 

Beardsley

 

NBP14701.001

XBT-4

 

to 31

 

5

27

03:51

s/e

5

27

07:51

68 39.719

68 39.719

393

230

Sanay

wire broke

NBP14701.002

XBT-4

 

to 31

 

5

27

03:53

s/e

5

27

07:53

68 39.12

68 39.12

244

213

Sanay

wire broke

NBP14701.003

XBT-4

 

to 31

 

5

27

03:56

s/e

5

27

07:56

68 38.453

68 38.453

336

200.7

Sanay

wire broke

NBP14701.004

sonob

73

to Faure

 

5

27

06:50

s/e

5

27

10:50

68 08.562

68 16.160

321

122

Berchok

Buoy failed

NBP14701.005

BMP

22

to Faure

 

5

27

07:10

e

5

27

11:10

68 07.23

68 25.39

320

 

Wiebe

 

NBP14701.006

sonob

74

to Faure

 

5

27

07:29

s

5

27

11:29

68 07.552

68 27.394

406

122

Berchok

 

NBP14701.007

XBT-4

 

to Faure

 

5

27

07:54

s/e

5

27

11:54

68 6.811

68 30.008

333

333

Sanay

 

NBP14701.008

sonob

75

to Faure

 

5

27

08:11

s

5

27

12:11

68 6.392

68 35.613

345

122

Berchok

 

NBP14701.009

XBT-4

 

near Faure

 

5

27

08:36

s/e

5

27

12:36

68 5.976

68 40.662

161

161

Sanay

 

NBP14701.010

AWS

 

 

 

5

27

 

 

5

27

 

 

 

 

 

Beardsley

 

NBP14701.011

Birds

 

Faure

 

5

27

13:00

s/e

5

27

17:00

68 5.631

68 47.291

161

 

Chapman

 

NBP14701.012

sonob

74

Faure

 

5

27

15:58

e

5

27

19:58

68 5.631

68 47.291

---

---

Berchok

 

NBP14701.013

sonob

75

Faure

 

5

27

16:19

e

5

27

20:19

68 5.504

68 46.463

---

---

Berchok

 

NBP14701.014

BMP

23

Mbay

 

5

27

19:20

s

5

27

23:20

68 04.38

68 37.63

300

--

Wiebe

 

NBP14701.015

sonob

76

bmp#3

 

5

27

22:13

s

5

28

02:13

67 54.022

68 17.291

742

305

Berchok

 

NBP14701.016

sonob

77

bmp#3

 

5

27

22:52

s

5

28

02:52

67 52.88

68 08.96

669

305

Berchok

 

NBP14701.017

sonob

76

 

 

5

27

02:22

e

5

28

06:22

missed

it

---

---

Berchok

 

NBP14701.018

sonob

77

 

 

5

27

02:22

e

5

28

06:22

missed

it

---

---

Berchok

 

NBP14801.001

BMP

23

 

 

5

28

07:01

e

5

28

11:01

67 51.83

68 4.74

 

 

Wiebe

 

NBP14801.002

MOC1

21

 

 

5

28

07:50

s

5

28

11:50

67 52.9

68 6.154

600

100

Ashjian

 

NBP14801.003

sonob

78

 

 

5

28

08:49

s

5

28

12:49

67 53.07

68 10.84

557

305

Berchok

 

NBP14801.004

xbt-7

 

near 29

 

5

28

09:02

s/e

5

28

13:02

67 53.096

68 11.90

726

 

Sanay

 

NBP14801.005

xbt-7

 

near 29

 

5

28

09:05

s/e

5

28

13:05

67 53.135

68 12.269

726

620

Sanay

 

NBP14801.006

MOC1

21

 

 

5

28

09:33

e

5

28

13:33

67 53.54

68 14.78

 

 

Ashjian

 

NBP14801.007

sonob

79

 

 

5

28

09:53

s

5

28

13:53

67 53.561

68 15.318

537

305

Berchok

 

NBP14801.008

Whales

 

 

 

5

28

09:53

s

5

28

13:53

67 53.561

68 15.318

537

 

Friedlaender

 

NBP14801.009

sonob

80

 

 

5

28

12:34

s

5

28

16:34

67 54.601

68 06.029

223

122

Berchok

buoy failed

NBP14801.010

sonob

81

 

 

5

28

12:42

s

5

28

16:42

67 54.239

68 7.87

499

305

Berchok

 

NBP14801.011

RingNet

19

90/KP1

 

5

28

13:00

s/e

5

28

17:00

67 53.581

68 10.234

641

30

Kozlowski

 

NBP14801.012

Whales

 

 

 

5

28

13:00

e

5

28

17:00

67 53.581

68 10.234

641

 

Friedlaender

 

NBP14801.013

CTD

90

367.036

 

5

28

13:08

s

5

28

17:08

67 53.50

68 10.51

541

519

Hofmann

 

NBP14801.014

CTD

90

367.036

 

5

28

13:43

s

5

28

17:43

67 53.50

68 10.51

541

519

Hofmann

 

NBP14801.015

BMP

24

KP1

 

5

28

14:47

s

5

28

18:47

67 54.49

68 10.915

 

 

Wiebe

 

NBP14801.016

sonob

79

 

 

5

28

17:00

e

5

28

21:00

67 50.294

68 22.476

---

---

Berchok

 

NBP14801.017

sonob

80

 

 

5

28

18:15

e

5

28

22:15

67 53.486

68 22.016

---

---

Berchok

 

NBP14801.018

sonob

82

 

 

5

28

18:56

s

5

28

22:56

67 53.538

68 13.276

732

305

Berchok

 

NBP14801.019

sonob

81

 

 

5

28

20:42

e

5

28

00:42

missed

it

---

---

Berchok

 

NBP14801.020

BMP

24

 

 

5

28

21:41

e

5

29

01:42

67 52.87

68 26.7

 

 

Wiebe

 

NBP14801.021

MOC1

22

 

 

5

28

22:02

s

5

29

02:02

67 52.62

68 26.00

 

90

Wiebe

 

NBP14801.022

MOC1

22

 

 

5

28

23:58

 

5

29

03:58

67 55.6

68 21.7

 

 

Wiebe

 

NBP14901.001

sonob

83

 

 

5

29

01:02

s

5

29

05:02

67 55.781

68 21.048

748

122

Berchok

 

NBP14901.002

MOC1

23

 

 

5

29

01:07

s

5

29

05:07

67 55.48

68 21.55

 

90

Davis

 

NBP14901.003

MOC1

23

 

 

5

29

02:17

e

5

29

06:17

67 54.38

68 25.67

 

90

Davis

 

NBP14901.004

MOC1

24

 

 

5

29

03:00

s

5

29

07:00

67 55.3

68 30.69

 

600

Ashjian

 

NBP14901.005

sonob

82

 

 

5

29

03:05

e

5

29

07:05

missed

it

---

---

Berchok

 

NBP14901.006

MOC1

24

 

 

5

29

04:47

e

5

29

08:47

67 54.1

68 23.2

 

600

Ashjian

 

NBP14901.007

sonob

83

 

 

5

29

06:37

e

5

29

10:37

missed

it

---

---

Berchok

 

NBP14901.008

BMP

25

 

 

5

29

22:00

s

5

30

02:00

68 04.186

69 43.775

 

 

Wiebe

 

NBP14901.009

sonob

84

to 91

 

5

29

20:02

s

5

30

00:02

68 04.887

68 37.428

103

27

Berchok

 

NBP14901.010

RingNet

20

91

338.044

5

29

20:55

s/e

5

30

00:55

68 04.217

68 43. 834

364

30

Kozlowski

 

NBP14901.011

CTD

91

91

338.044

5

29

21:06

s

5

30

01:06

68 04.21

68 43.87

374

361

Hofmann

 

NBP14901.012

CTD

91

91

338.044

5

29

21:47

e

5

30

01:47

68 04.21

68 43.87

374

361

Hofmann

 

NBP14901.012

sonob

84

to 92

 

5

29

22:13

e

5

30

02:13

68 03.986

68 43.397

---

---

Berchok

 

NBP15001.001

CTD

92

92

344.052

5

30

00:23

s

5

30

04:23

67 59.03

68 48.22

94

90

Saliheglu

 

NBP15001.002

CTD

92

92

344.052

5

30

00:55

e

5

30

04:55

67 59.03

68 48.22

94

90

Saliheglu

 

NBP15001.003

Ring Net

21

93

 

5

30

04:51

s/e

5

30

08:51

67 49.875

69 04.002

159

30

Thimgan

 

NBP15001.004

CTD

93

93

351.071

5

30

05:13

s

5

30

09:13

67 49.85

69 3.96

159

155

Beardsley

 

NBP15001.005

CTD

93

93

351.071

5

30

05:32

e

5

30

09:32

67 49.85

69 3.96

159

155

Beardsley

 

NBP15001.006

TSG

 

 

 

5

30

04:30

 

5

30

08:30

 

 

 

 

Szelag

Fluorm. Bulb changed

NBP15001.007

sonob

85

to 94

 

5

30

06:37

s

5

30

10:37

67 48.502

69 13.243

210

122

Berchok

 

NBP15001.008

CTD

94

94

348.084

5

30

08:13

s

5

30

12:13

67 46.97

69 21.98

253

245

Beardsley

 

NBP15001.009

CTD

94

94

348.084

5

30

08:35

e

5

30

12:35

67 46.97

69 21.98

253

245

Beardsley

 

NBP15001.010

sonob

86

~94

 

5

30

08:47

s

5

30

12:47

67 46.748

69 21.917

241

122

Berchok

 

NBP15001.011

BMP

25

 

 

5

30

09:28

e

5

30

13:28

67 46.81

69 23.93

181

---

Wiebe

 

NBP15001.012

sonob

87

krkwd ils

 

5

30

10:26

s

5

30

14:26

67 54.968

69 23.948

453

122

Berchok

 

NBP15001.013

Whales

 

krkwd ils

 

5

30

10:26

s

5

30

14:26

67 54.968

69 23.948

453

 

Friedlaender

 

NBP15001.014

sonob

86

krkwd ils

 

5

30

10:29

e

5

30

14:29

67 54.968

69 23.948

---

---

Berchok

crappy buoy

NBP15001.015

sonob

85

krkwd ils

 

5

30

11:07

e

5

30

15:07

68 02.885

69 16.792

512

122

Berchok

 

NBP15001.016

sonob

88

krkwd ils

 

5

30

11:22

s

5

30

15:22

68 05.024

69 16.792

512

122

Berchok

 

NBP15001.017

sonob

87

krkwd ils

 

5

30

11:38

e

5

30

15:38

68 07.434

69 11.060

---

---

Berchok

 

NBP15001.018

sonob

89

krkwd ils

 

5

30

12:32

s

5

30

16:32

68 16.755

69 08.846

900

122

Berchok

 

NBP15001.019

sonob

88

krkwd ils

 

5

30

12:51

e

5

30

16:51

68 20.444

69 11.212

---

---

Berchok

 

NBP15001.020

Whales

 

krkwd ils

 

5

30

12:51

e

5

30

16:51

68 20.444

69 11.212

---

---

Whales

 

NBP15001.021

aws

 

kirkwood

 

5

30

14:00

 

5

30

18:00

68 20.397

69 00.444

 

 

Beardsley

reprogram 8930

NBP15001.022

sonob

88

to 94

 

5

30

16:40

s

5

30

20:40

68 12.356

69 6.556

---

---

Berchok

re-picked up buoy

NBP15001.023

sonob

89

to 94

 

5

30

17:25

e

5

30

21:25

missed

it

---

---

Berchok

 

NBP15001.024

sonob

87

to 94

 

5

30

17:25

s

5

30

21:25

missed

it

---

---

Berchok

re-picked up buoy

NBP15001.025

sonob

87

to 94

 

5

30

18:35

e

5

30

22:35

67 53.160

69 23.815

---

---

Berchok

 

NBP15001.026

sonob

88

to 94

 

5

30

18:35

e

5

30

22:35

67 53.160

69 23.815

---

---

Berchok

 

NBP15001.027

BMP

26

94

 

5

30

19:29

s

5

30

23:29

67 47.734

69 22.72

180

 

Wiebe

 

NBP15001.028

RingNet

22

95

 

5

30

22:05

s/e

5

31

02:05

67 45.88

69 46.646

315

30

Kozlowski

 

NBP15001.029

CTD

95

95

339.099

5

30

22:12

s

5

31

02:12

67 45.88

69 46.65

300

296

Salihoglu

 

NBP15001.030

CTD

95

95

339.099

5

30

22:50

e

5

31

02:50

67 45.88

69 46.65

300

296

Salihoglu

 

NBP15101.001

CTD

96

96

353.099

5

31

01:00

s

5

31

05:00

67 40.06

69 34.51

249

243

Beardsley

 

NBP15101.002

CTD

96

96

353.099

5

31

01:26

e

5

31

05:26

67 40.06

69 34.51

249

243

Beardsley

 

NBP15101.003

Ring Net

23

97

 

5

31

03:23

s/e

5

31

07:23

67 34.427

69 23.029

140

30

Thimgan

 

NBP15101.004

CTD

97

97

367.098

5

31

03:43

s

5

31

07:43

67 34.42

69 23.03

136

127

Beardsley

 

NBP15101.005

CTD

97

97

367.098

5

31

03:57

e

5

31

07:57

67 34.42

69 23.03

136

127

Beardsley

 

NBP15101.006

CTD

98

98

372.110

5

31

06:25

s

5

31

10:25

67 28.05

69 31.92

471

461

Beardsley

 

NBP15101.007

CTD

98

98

372.110

5

31

07:01

e

5

31

11:01

67 28.05

69 31.92

471

461

Beardsley

 

NBP15101.008

BMP

26

to 99

 

5

31

858

e

5

31

1258

67 022.2

69 36.45

 

 

Wiebe

 

NBP15101.009

Ring net

24

99

379.120

5

31

09:11

s/e

5

31

13:11

67 22.241

69 36.401

440

30

Thimgan

 

NBP15101.010

CTD

99

99

379.120

5

31

09:29

s

5

31

13:29

67 22.18

69 36.47

441

436

Beardsley

 

NBP15101.011

CTD

99

99

379.120

5

31

10:01

e

5

31

14:01

67 22.18

69 36.47

441

436

Beardsley

 

NBP15101.012

Whales

 

to a1

 

5

31

1015

s

5

31

1415

 

 

 

 

Friedlaender

 

NBP15101.013

A1 survey

 

 

 

5

31

 

 

5

31

 

 

 

 

 

Beardsley

 

NBP15101.014

sonob

90

to a1

 

5

31

10:36

s

5

31

14:36

67 18.845

69 30.599

470

305

Berchok

 

NBP15101.015

birds

 

to a1

 

5

31

10:58

s

5

31

14:58

67 16.73

69 26.661

420

 

Chapman

 

NBP15101.016

sonob

90

to a1

 

5

31

11:34

e

5

31

15:34

67 11.965

69 18.817

---

---

Berchok

 

NBP15101.017

sonob

91

to a1

 

5

31

11:54

s

5

31

15:54

67 09.824

69 44.899

508

122

Berchok

 

NBP15101.018

sonob

91

to a1

 

5

31

12:38

e

5

31

16:38

67 09.824

69 44.899

---

---

Berchok

 

NBP15101.019

Birds

 

to a1

 

5

31

13:57

e

5

31

17:57

67 01.478

68 59.441

437

 

Chapman

 

NBP15101.020

Whales

 

to a1

 

5

31

13:57

e

5

31

17:57

67 01.478

68 59.441

437

 

Friedlaender

 

NBP15101.021

CTD

100

100

459.115

5

31

17:42

s

5

31

21:42

66 48.67

68 26.86

126

114

Salihoglu

 

NBP15101.022

CTD

100

100

459.115

5

31

18:08

e

5

31

22:08

66 48.67

68 26.86

126

114

Salihoglu

 

NBP15101.023

ROV

7

100

 

5

31

19:00

s

5

31

22:00

66 48.149

68 26.964

126

 

Gallager

 

NBP15101.024

ROV

7

100

 

5

31

20:00

e

5

31

23:00

66 48.149

68 26.964

126

 

Gallager

 

NBP15101.025

BMP

27

100

 

5

31

22:06

s

6

1

02:06

66 47.95

68 27.92

100

0

Wiebe

 

NBP15101.026

XBT

 

at 6

 

5

31

22:32

s/e

6

1

02:32

66 47.526

68 30.543

178

67

Hofmann

wire broke

NBP15101.027

XBT

 

at 6

 

5

31

22:33

s/e

6

1

02:33

66 47.472

68 30.760

190

181

Hofmann

 

NBP15101.028

XBT

 

from 6

 

5

31

23:22

s/e

6

1

03:22

66 44.04

68 36.788

560

560

Hofmann

 

NBP15201.001

XBT

 

from 6

 

6

1

00:02

s/e

6

1

04:02

66 43.398

68 42.55

434

434

Hofmann

 

NBP15201.002

XBT

 

from 6

 

6

1

00:51

s/e

6

1

04:51

66 41.70

68 49.673

354

354

Beardsley

 

NBP15201.003

XBT

 

from 6

 

6

1

02:03

s/e

6

1

06:03

66 38.797

68 59.863

347

347

Beardsley

 

NBP15201.004

XBT

 

from 6

 

6

1

02:42

s/e

6

1

06:42

66 37.149

69 5.116

377

10

Beardsley

wire broke

NBP15201.005

XBT

 

from 6

 

6

1

02:43

s/e

6

1

06:43

66 37.09

69 5.28

372

372

Beardsley

 

NBP15201.006

drifter

 

 

 

 

 

02:52

s

6

1

06:52

66 36.668

69 06.450

 

 

Beardsley

 

NBP15201.007

XBT

 

from 6

 

6

1

03:32

s/e

6

1

07:32

66 34.909

69 11.867

416

416

Sanay

 

NBP15201.008

XBT

 

from 6

 

6

1

04:10

s/e

6

1

08:10

66 33.465

69 17.643

457

457

Sanay

 

NBP15201.009

XBT

 

from 6

 

6

1

04:44

s/e

6

1

08:44

66 31.766

69 23.261

490

490

Sanay

 

NBP15201.010

XBT

 

from 6

 

6

1

05:20

s/e

6

1

09:20

66 29.792

69 29.272

510

510

Sanay

 

NBP15201.011

XBT

 

from 6

 

6

1

05:57

s/e

6

1

09:57

66 27.945

69 35.689

504

504

Sanay

 

NBP15201.012

XBT

 

from 6

 

6

1

06:30

s/e

6

1

10:30

66 26.309

66 41.327

478

478

Sanay

 

NBP15201.013

XBT

 

from 6

 

6

1

07:10

s/e

6

1

11:10

66 48.052

69 48.052

450

450

Sanay

 

NBP15201.014

XBT

 

from 6

 

6

1

07:48

s/e

6

1

11:48

66 22.419

69 54.515

445

445

Sanay

 

NBP15201.015

XBT

 

from 6

 

6

1

08:17

s/e

6

1

12:17

66 21.102

69 59.086

440

440

Sanay

 

NBP15201.016

XBT

 

from 6

 

6

1

09:06

s/e

6

1

13:06

66 18.808

70 7.187

433

433

Sanay

 

NBP15201.017

SONOB

92

from 6

 

6

1

09:22

s

6

1

13:22

66 17.996

70 10.041

442

305

Berchok

 

NBP15201.018

XBT

 

from 6

 

6

1

09:35

s/e

6

1

13:35

66 17.377

70 12.183

442

442

Sanay

 

NBP15201.019

Birds

 

from 6

 

6

1

10:00

s

6

1

14:00

66 16.120

70 16.378

446

 

Chapman

 

NBP15201.020

Whales

 

from 6

 

6

1

10:00

s

6

1

14:00

66 16.120

70 16.378

446

 

Friedlaender

 

NBP15201.021

XBT

 

from 6

 

6

1

10:17

s/e

6

1

14:17

66 15.348

70 18.841

460

460

Sanay

 

NBP15201.022

XBT

 

from 6

 

6

1

10:53

s/e

6

1

14:53

66 13.542

70 24.693

470

467

Sanay

 

NBP15201.023

XBT

 

from 6

 

6

1

11:38

s/e

6

1

15:38

66 11.289

70 32.304

486

486

Sanay

 

NBP15201.024

sonob

92

to 101

 

6

1

12:01

e

6

1

16:01

66 10.195

70 36.199

---

---

Berchok

 

NBP15201.025

XBT

 

from 6

 

6

1

12:14

s/e

6

1

16:14

66 09.596

70 38.333

522

522

Hofmann

 

NBP15201.026

sonob

93

to 101

 

6

1

12:17

s

6

1

16:17

66 09.420

70 38.936

470

305

Berchok

 

NBP15201.027

XBT

 

from 6

 

6

1

12:44

s/e

6

1

16:44

66 08.153

70 43.424

502

502

Hofmann

 

NBP15201.028

XBT

 

from 6

 

6

1

13:23

s/e

6

1

17:23

66 06.347

70 50.19

531

100

Hofmann

wire broke-100 m

NBP15201.029

XBT

 

from 6

 

6

1

13:24

s/e

6

1

17:24

66 06.29

70 50.93

565

565

Hofmann

 

NBP15201.030

sonob

93

to 101

 

6

1

13:52

e

6

1

17:52

66 05.014

70 55.355

1290

305

Berchok

 

NBP15201.031

sonob

94

to 101

 

6

1

14:12

s

6

1

18:12

66 4.163

70 58.569

2122

305

Berchok

 

NBP15201.032

Birds

 

from 6

 

6

1

14:30

e

6

1

18:30

66 3.269

71 1.938

2716

 

Chapman

 

NBP15201.033

Whales

 

from 6

 

6

1

14:30

e

6

1

18:30

66 3.269

71 1.938

2716

 

Friedlaender

 

NBP15201.034

BMP

27

from 6

 

6

1

14:42

e

6

1

18:42

66 2.84

71 3.46

2716

0-250

Wiebe

 

NBP15201.035

RingNet

25

101

458.265

6

1

15:10

s/e

6

1

19:10

66 01.303

71 10.476

2993

30

Kozlowski

 

NBP15201.036

CTD

101

101

458.265

6

1

15:18

s

6

1

19:18

66 1.27

71 10.47

2870

2855

Salihoglu

 

NBP15201.037

CTD

101

101

458.265

6

1

16:53

e

6

1

21:53

66 1.27

71 10.47

2870

2855

Salihoglu

 

NBP15201.038

SONOB

95

to 102

 

6

1

18:00

s

6

1

22:00

66 00.615

71 09.158

2861

305

Berchok

 

NBP15201.039

SONOB

94

to 102

 

6

1

19:14

e

6

1

23:14

65 48.644

70 52.504

---

---

Berchok

 

NBP15201.040

SONOB

95

to 102

 

6

1

19:14

e

6

1

23:14

65 48.644

70 52.504

---

---

Berchok

 

NBP15201.041

CTD

102

102

506.271

6

1

20:26

s

6

2

00:26

65 39.0

70 38.82

3078

3046

Hofmann

 

NBP15201.042

CTD

102

102

506.271

6

1

23:06

e

6

2

03:06

65 39.0

70 38.82

3078

3046

Hofmann

 

NBP15301.001

SONOB

96

To PA

 

6

2

12:48

s

6

2

16:48

63 25.391

69 6.044

3574

122

Berchok

 

NBP15301.002

SONOB

96

To PA

 

6

2

13:38

e

6

2

17:38

63 16.901

69 00.810

---

---

Berchok

 

NBP15301.003

XBT

 

toPA1

 

6

2

21:29

s/e

6

2

01:19

61 59.756

68 14.237

3983

1830

Hofmann

 

NBP15301.004

XBT

 

toPA2

 

6

2

22:19

s/e

6

2

02:19

61 51.584

68 9.426

3914

1830

Salihoglu

 

NBP15301.005

sonob

97

to pa

 

6

2

22:24

s

6

3

02:24

61 50.995

68 9.164

3860

305

Berchok

 

NBP15301.006

sonob

97

to pa

 

6

2

23:13

e

6

3

03:13

61 42.254

68 04.172

---

---

Berchok

 

NBP15301.007

XBT

 

toPA3

 

6

2

23:19

s/e

6

2

03:19

61 41.52

68 3.967

4060

1830

Salihoglu

bad data

NBP15301.008

sonob

98

to pa

 

6

2

23:25

s

6

3

03:25

61 40.813

68 03.633

4020

122

Berchok

 

NBP15301.009

XBT

 

toPA4

 

6

2

23:31

s/e

6

2

03:31

61 40.052

68 3.144

4164

1830

Salihoglu

good data/repetition

NBP15401.001

sonob

98

to PA

 

6

3

00:14

e

6

3

04:14

61 32.578

67 59.121

---

---

Berchok

 

NBP15401.002

XBT

 

toPA5

 

6

3

00:30

s/e

6

3

04:30

61 30.36

67 58.051

3973

1830

Hofmann

 

NBP15401.003

sonob

99

to pa

 

6

3

00:35

s

6

3

04:35

61 29.79

65 57.86

4065

305

Berchok

 

NBP15401.004

sonob

99

to pa

 

6

3

01:21

e

6

3

05:21

61 21.907

67 53.146

---

---

Berchok

 

NBP15401.005

xbt

 

to PA 6

 

6

3

01:27

s/e

6

3

05:27

61 21.051

67 52.637

3995

1830

Salihoglu

 

NBP15401.006

xbt

 

to PA 7

 

6

3

02:23

s/e

6

3

06:23

61 12.246

67 47.515

3985

320

Salihoglu

Wire broke-320 m

NBP15401.007

xbt

 

to PA 8

 

6

3

02:25

s/e

6

3

06:25

61 12.111

67 47.471

3985

1830

Salihoglu

 

NBP15401.008

xbt

 

to PA 9

 

6

3

03:33

s/e

6

3

07:33

61 01.70

67 41.77

4082

1830

Hofmann

 

NBP15401.009

xbt

 

to PA 10

 

6

3

04:34

s/e

6

3

08:34

60 51.904

67 36.749

4181

1830

Hofmann

 

NBP15401.010

xbt

 

to PA 11

 

6

3

05:33

s/e

6

3

09:33

60 42.969

67 32.046

3929

1027

Hofmann

 

NBP15401.011

xbt

 

to PA 12

 

6

3

05:36

s/e

6

3

09:36

60 42.63

67 31.945

3929

1830

Hofmann

 

NBP15401.012

xbt

 

to PA 13

 

6

3

06:41

s/e

6

3

10:41

60 32.708

67 26.745

3441

800

Sanay

 

NBP15401.013

xbt

 

to PA 14

 

6

3

06:45

s/e

6

3

10:45

60 32.3655

67 26.628

3370

1830

Sanay

 

NBP15401.014

xbt

 

to PA 15

 

6

3

07:47

s/e

6

3

11:47

60 22.93

67 21.339

3244

677

Sanay

 

NBP15401.015

xbt

 

to PA 16

 

6

3

07:49

s/e

6

3

11:49

60 22.677

67 21.259

3305

1830

Sanay

 

NBP15401.016

sonob

100

to pa

 

6

3

08:44

s

6

3

12:44

60 13.766

67 16.954

3205

305

Berchok

 

NBP15401.017

xbt

 

to PA 17

 

6

3

08:45

s/e

6

3

12:45

60 13.859

67 16.981

3195

260

Sanay

 

NBP15401.018

xbt

 

to PA 18

 

6

3

08:47

s/e

6

3

12:47

60 13.587

67 16.90

3260

1830

Sanay

 

NBP15401.019

sonob

100

to pa

 

6

3

09:26

e

6

3

13:26

60 7.67

67 13.492

---

---

Berchok

 

NBP15401.020

sonob

101

to pa

 

6

3

09:34

s

6

3

13:34

60 6.043

67 12.599

3644

122

Berchok

 

NBP15401.021

XBT

 

to PA 19

 

6

3

09:54

s/e

6

3

13:54

60 2.931

67 10.947

3482

80

Sanay

Wire broke

NBP15401.022

XBT

 

to PA 20

 

6

3

09:56

s/e

6

3

13:56

60 2.774

67 10.92

3523

1830

Beardsley

 

NBP15401.023

sonob

101

to pa

 

6

3

10:01

e

6

3

14:01

60 02.251

67 10.751

---

---

Berchok

 

NBP15401.024

XBT

 

to PA 21

 

6

3

10:02

s/e

6

3

14:02

60 2.188

67 10.741

3609

760

Beardsley

 

NBP15401.025

SONOB

102

to pa

 

6

3

11:19

s/e

6

3

15:19

59 49.493

67 04.400

3645

305

Berchok

Buoy failed

NBP15401.026

XBT

 

to PA 22

 

6

3

11:54

s/e

6

3

15:54

59 43.701

67 1.508

3538

 

Beardsley

 

NBP15401.027

XBT

 

to PA 23

 

6

3

11:55

s/e

6

3

15:55

59 43.411

67 1.357

3541

197

Beardsley

 

NBP15401.028

XBT

 

to PA 24

 

6

3

11:57

s/e

6

3

15:57

59 43.051

67 1.181

3541

760

Beardsley

 

NBP15401.029

SONOB

103

to pa

 

6

3

12:01

s

6

3

16:01

59 42.227

67 00.754

3485

122

Berchok

 

NBP15401.030

XBT

 

to PA 25

 

6

3

12:51

s/e

6

3

16:51

59 33.835

66 56.396

3710

570

Beardsley

 

NBP15401.031

SONOB

103

to pa

 

6

3

12:53

e

6

3

16:53

59 33.048

66 56.020

---

---

Berchok

 

NBP15401.032

XBT

 

to PA 26

 

6

3

12:54

s/e

6

3

16:54

59 33.396

66 56.19

3710

760

Beardsley

 

NBP15401.033

XBT

 

to PA 27

 

6

3

13:44

s/e

6

3

17:44

59 24.923

66 51.978

3569

760

Beardsley

LAST ONE!!

NBP15401.034

SONOB

104

to pa

 

6

3

13:46

s

6

3

17:46

59 24.395

66 51.687

3541

305

Berchok

 

NBP15401.035

sonob

104

to pa

 

6

3

15:02

e

6

3

19:02

59 11.592

66 45.355

---

---

Berchok

 

NBP15601.001

Dock

 

Arrive

 

6

6

13:30

e

6

3

17:03

PA

PA

 

 

 

Cruise Over

 


Appendix 2:  Summary of the CTD casts made during the first U.S. Southern Ocean GLOBEC survey cruise, NBP01-03.   The casts designated by * are ones on which a Fast Repetition Rate Fluorometer was attached to the Rosette.  These casts extended to only 50 m.   Latitude and longitude are given in degrees south and west, respectively.  Total depth and cast depth are reported in meters.  Event numbers for the CTD casts may change pending final checking against the cruise event log.                   

                                               

STA #

CONSEC STA #

CAST #

EVENT #

LATITUDE

(ES)

LONGITUDE

(EW)

TOT DEPTH

CAST DEPTH

*1

499.251

1

NBP11901.011

65 48.83

70 23.28

718

50

1

499.251

2

NBP11901.013

65 48.83

70 23.28

718

707

*2

500.220

3

NBP11901.021

65 58.4

69 49.61

350

50

2

500.220

4

NBP11901.023

65 58.8

69 49.62

350

327

3

500.180

5

NBP11901.031

66 11.034

69 6.861

341

335

*4

500.180

6

NBP12001.005

66 23.33

68 23.13

675

50

4

500.140

7

NBP12001.007

66 23.19

68 23.05

674

645

5

500.120

8

NBP12001.014

66 29.42

68 02.10

427

417

6

460.120

9

NBP12001.021

66 47.26

68 32.10

258

220

7

460.140

10

NBP12001.026

66 41.005

68 54.17

329

308

8

460.180

11

NBP12101.001

66 28.37

69 38.23

515

492

9

460.220

12

NBP12101.003

66 15.68

70 21.19

470

455

*10

459.250

13

NBP12101.005

66 6.24

70 53.62

880

50

10

459.250

14

NBP12101.007

66 5.88

70 53.01

880

870

*11

419.247

15

NBP12101.022

66 24.82

71 23.07

742

50

11

419.247

16

NBP12101.024

66 24.95

71 23.04

722

697

*12

420.225

17

NBP12101.031

66 31.17

70 58.76

538

50

12

420.225

18

NBP12101.033

66 31.22

70 58.87

542

521

*13

420.180

19

NBP12101.036

66 45.81

71 9.81

534

50

13

420.180

20

NBP12201.001

66 45.85

70 9.83

534

530

14

420.145

21

NBP12201.014

66 56.93

69 31.67

501

491

15

420.125

22

NBP12201.021

67 3.14

69 09.45

390

384

16

380.120

23

NBP12301.004

67 22.32

69 36.35

440

430

*17

380.150

24

NBP12301.006

67 12.58

70 9.91

600

50

17

380.150

25

NBP12301.008

67 12.56

70 9.87

471

590

18

380.180

26

NBP12301.014

67 2.99

70 43.06

488

481

19

380.220

27

NBP12301.018

67 49.80

71 29.24

466

462

*20

380.264

28

NBP12401.002

66 34 93

72 14.12

3310

50

20

380.264

29

NBP12401.004

66 34 72

72 13.31

3383

3368

*22

340.295

30

NBP12401.015

66 41.15

73 21.01

3647

50

22

340.295

31

NBP12401.017

66 41.14

73 20.97

3609

2000

23

340.253

32

NBP12501.002

66 55.47

72 35.38

508

488

24

340.220

33

NBP12501.008

67 6.82

72 0.33

415

406

25

340.180

34

NBP12501.014

67 20.04

71 16.58

463

453

*26

340.140

35

NBP12501.025

67 33.11

70 32.18

762

50

26

340.140

36

NBP12501.027

67 33.10

70 32.17

760

760

27

340.100

37

NBP12501.033

67 45.90

69 46.97

357

349

28

335.060

38

NBP12601.002

68  2.45

69 22.20

415

412

*29

357.046

39

NBP12601.012

67 55.13

68 30.33

650

50

29

357.046

40

NBP12601.014

67 55.11

68 30.43

643

635

30

380.020

41

NBP12601.021

68 53.21

67 41.00

218

210

31

340.020

42

NBP12701.003

68 10.9

68 13.2

507

497

32

340.-020

43

NBP12701.008

68 23:10

67 23.81

226

219

33

300.-020

44

NBP12701.012

68 40.74

67 58.99

266

258

*34

300.020

45

NBP12701.019

68 28.47

68 47.26

695

50

34

300.020

46

NBP12701.020

68 28.50

68 47.37

696

669

*35

300.060

47

NBP12801.003

68 15.90

69 34.48

580

50

35

300.060

48

NBP12801.005

68 15.91

69 34.61

584

574

*36

300.100

49

NBP12801.009

68 3.24

70 22.00

847

50

36

300.100

50

NBP12801.011

68 3.24

70 22.00

847

838

*41

260.295

51

NBP12901.012

67 12.01

74 29.92

2966

50

41

260.295

52

NBP12901.014

67 12.05

74 29.89

2975

2975

42

260.255

53

NBP13001.001

67 28.14

73 49.1

433

425

43

260.220

54

NBP13001.005

67 40.23

73 10.74

492

484

44

260.180

55

NBP13001.013

67 53.87

72 25.90

320

293

*49

236.030

56

NBP13101.006

68 53.21

69 54.77

1259

50

49

236.030

57

NBP13101.008

68 53.18

69 54.60

1260

1245

*50

230.010

58

NBP13101.015

69 2.16

69 35.89

993

50

50

230.010

59

NBP13101.017

69 2.21

69 35.90

978

955

51

215.-015

60

NBP13101.023

69 16.81

69 18.81

815

790

52

260.00

61

NBP13201.002

68 52.12

68 58.27

551

544

53

220.075

62

NBP13201.019

68 44.28

70 58.97

338

315

55

220.140

63

NBP13301.006

68 23.96

72 17.55

467

445

56

220.180

64

NBP13401.001

68 10.56

73 2.53

324

316

57

220.220

65

NBP13401.005

67 56.76

73 47.16

419

412

64

180.241

66

NBP13501.001

68 5.78

74 46.97

411

406

65

180.220

67

NBP13501.006

68 13.21

74 23.76

445

434

66

180.180

68

NBP13501.013

68 27.00

73 39.40

545

516

67

180.140

69

NBP13601.001

68 40.05

72 56.64

508

498

68

180.100

70

NBP13601.007

68 54.12

72 8.61

224

215

69

140.100

71

NBP13601.021

69 11.13

72 46.47

165

146

70

140.140

72

NBP13601.031

68 57.18

73 32.27

195

176

71

140.180

73

NBP13701.005

68 43.38

74 17.59

523

515

72

140.220

74

NBP13701.010

68 29.28

75 2.56

424

416

75

100.220

75

NBP13801.003

68 45.15

75 41.24

460

454

76

100.180

76

NBP13801.011

68 59.57

74 56.57

404

398

77

100.140

77

NBP13801.023

69 13.64

74 10.73

644

615

78

060.140

78

NBP13801.032

69 29.83

74 50.89

337

313

79

060.180

79

NBP13901.006

69 15.43

75 36.72

402

392

80

060.220

80

NBP13901.011

69 1.24

76 21.40

431

426

81

060.255

81

NBP13901.021

68 48.34

77 0.30

710

690

82

020.260

82

NBP14001.001

69 2.16

77 45.74

420

394

83

020.220

83

NBP14001.004

69 17.05

77 1.72

401

393

84

020.180

84

NBP14001.010

69 31.45

76 18.13

418

396

85

-034.161

85

NBP14001.017

69 59.94

76 53.63

862

832

86

-105.132

86

NBP14001.021

70 37.99

77 37.32

586

570

87

062.122

87

NBP14201.018

69 35.02

74 27.22

170

164

88

208.084

88

NBP14401.024

68 47.01

71 24.14

468

442

89

239.057

89

NBP14501.006

68 42.78

70 23.88

361

354

90

367.036

90

NBP14801.013

67 53.50

68 10.51

541

519

91

338.044

91

NBP14901.010

68 04.21

68 43.87

374

360

92

459.115

92

NBP14901.013

67 59.03

68 48.22

94

90

93

458.265

93

NBP15001.005

67 49.85

69 3.96

159

155

94

506.271

94

NBP15001.008

67 46.97

69 21.98

253

245

95

344.052

95

NBP15001.029

67 45.88

69 46.65

300

296

96

351.071

96

NBP15101.001

67 40.06

69 34.51

249

243

97

348.084

97

NBP15101.004

67 34.42

69 23.03

136

127

98

339.099

98

NBP15101.006

67 28.05

69 31.92

471

461

99

353.099

99

NBP15101.010

67 22.18

69 36.47

441

436

100

367.098

100

NBP15101.021

66 48.67

68 26.86

126

114

101

372.110

101

NBP15201.036

66 1.27

71 10.47

2870

2855

102

379.120

102

NBP15201.041

65 39.00

70 38.82

3078

3046


 

 

Appendix 3:  Summary of the water samples taken on each CTD cast during the first U.S. Southern Ocean GLOBEC survey cruise, NBP01-03. The depth (m), salinity (psu), temperature (°C), oxygen (ml L-1), photosynthetically active radiation (PAR,  FE cm2), transmission (trans, % transmission), and fluorescence (fluor., mg L-1) measured by the CTD sensors at the time that the Niskin bottle was tripped is given.  Niskin bottles from which water was taken for oxygen and salinity determinations are indicated by *.  Niskin bottles from which only water for salinity samples was taken are indicated by *.  Water for nutrient samples was taken from every Niskin bottle. Water for chlorophyll determination was taken at standard depths of  50 m, 30 m, 20 m, 15 m, 10 m, 5m, and the surface.  At one station, denoted by **, the bottle file was not created due to a software error, although water samples were taken at this station.   Percent transmission is given as a value relative to a full scale value, which needs to be obtained.

 

Station:499.251/1/2 Latitude=65 48.83S Longitude=070 23.19W Depth:733 m

 Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    2.223     33.743    -0.696     7.839     1.170    70.21      0.123

       *2.    1.903     33.743    -0.696     7.840     1.196    70.21      0.121

       *3.    5.564     33.743    -0.696     7.839     0.563    70.25      0.162

       *4.   10.935     33.743    -0.698     7.857     0.346    70.32      0.128

       *5.    16.448    33.743    -0.697     7.859     0.257    70.360     0.134

       *6.    20.185    33.744    -0.702     7.874     0.238    70.460     0.127

       *7.    31.543    33.744    -0.702     7.895     0.218    70.570     0.120

       *8.    51.868    33.750    -0.723     7.932     0.209    70.740     0.130

       *9.    76.175    34.041    -1.387     7.269     0.207    71.120     0.078

      *10.   200.250    34.513     0.812     4.367     0.206    71.240     0.019

       11.   327.672    34.682     1.619     4.058     0.206    71.260     0.011

       12.   400.147    34.701     1.579     4.099     0.206    71.160     0.047

       13.   475.951    34.722     1.559     4.210     0.206    71.170     0.011

       14.   549.950    34.725     1.474     4.271     0.206    71.170     0.003

      *15.   706.806    34.729     1.232     4.466     0.206    71.160     0.007

      *16.   706.717    34.729     1.234     4.466     0.206    71.160     0.004

Station:500.220/2/2 Latitude=65 58.8S Longitude=69 49.62W Depth:350 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    5.193     33.7195   -0.212     7.769    41.97     70.68      0.111

       *2.    5.003     33.720    -0.222     7.770    44.17     70.68      0.114

       *3.   10.215     33.7198   -0.230     7.785    25.85     70.74      0.149

       *4.   15.509     33.7197   -0.229     7.792    16.30     70.77      0.138

       *5.   20.109     33.720    -0.232     7.793    14.230    70.770     0.117

       *6.   30.764     33.720    -0.229     7.814     7.145    70.860     0.113

        7.   48.936     33.719    -0.230     7.831     2.946    70.870     0.116

        8.   80.244     34.048    -1.392     7.146     0.866    71.030     0.094

        9.  141.008     34.442     0.480     4.667     0.273    71.310     0.013

       10.  200.419     34.611     1.259     4.120     0.220    71.200     0.043

       11.  252.496     34.674     1.526     4.032     0.211    71.130     0.013

      *12.  328.651     34.703     1.533     3.903     0.211    70.350     0.015

      *13.  326.873     34.703     1.533     3.896     0.211    70.360     0.015

Station:500.180/3/1 Latitude=66 11.034S Longitude=69 6.861W Depth:350 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    3.501     33.729    -0.001     7.722     0.770    71.23      0.121

       *2.    3.358     33.729    -0.001     7.715     0.729    71.24      0.126

       *3.    4.811     33.7296   -0.0007    7.725     0.590    71.29      0.141

       *4.    5.659     33.7296   -0.0003    7.72326   0.5652   71.29      0.159

       *5.   10.457     33.729    -0.004     7.747     0.324    71.380     0.116

       *6.   15.385     33.729    -0.005     7.739     0.264    71.460     0.135

       7.    19.963     33.729    -0.007     7.749     0.241    71.510     0.117

       8.    31.951     33.729    -0.012     7.783     0.219    71.570     0.141

       9.    54.010     33.729    -0.134     7.764     0.212    71.770     0.113

       10.   76.434     34.049    -0.969     6.806     0.211    72.050     0.061

       11.  137.149     34.453     0.530     4.513     0.211    72.340     0.011

       12   202.903     34.633     1.490     4.020     0.207    72.410     0.008

       11   262.091     34.678     1.513     4.021     0.207    72.410    -0.003

      *14.  335.359     34.709     1.555     3.942     0.207    71.710     0.052

      *15.  336.127     34.709     1.554     3.944     0.207    71.640     0.018

Station:500.140/4/2 Latitude=66  23.18S Longitude=068  23.07W Depth:704 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     3.544    33.506    -0.087     7.719     0.697    66.860     0.407

       *2.     3.744    33.508    -0.082     7.723     0.702    66.880     0.397

       *3.     3.535    33.502    -0.114     7.729     0.615    66.890     0.397

       *4.     4.857    33.498    -0.115     7.735     0.529    66.870     0.378

       *5.    10.477    33.490    -0.138     7.732     0.377    66.950     0.405

       *6.    15.001    33.547     0.039     7.695     0.320    67.300     0.394

       *7.    20.912    33.657     0.363     7.625     0.309    69.210     0.207

       *8.    29.651    33.696     0.360     7.641     0.299    69.820     0.207

        9.    52.294    33.737     0.442     7.647     0.295    70.830     0.134

       10.    85.253    34.076    -1.543     7.007     0.293    71.470     0.037

       11.   144.085    34.380     0.185     4.895     0.290    71.550     0.049

       12.   203.508    34.569     1.049     4.154     0.294    71.500     0.032

       13.   262.205    34.645     1.362     4.047     0.295    71.560     0.014

       14.   352.729    34.692     1.433     4.077     0.295    71.480     0.013

       15.   502.670    34.714     1.371     4.118     0.295    71.360     0.001

      *16.   655.821    34.720     1.336     4.116     0.295    71.100     0.031

      *17.   655.927    34.720     1.336     4.118     0.293    71.100     0.027

Station:500.120/5/1 Latitude=66  29.40S Longitude=068  01.99W Depth:420 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    10.524    33.512     0.105     7.650     5.481    66.610     0.292

       *2.     9.943    33.512     0.106     7.654     5.537    66.610     0.292

       *3.     9.666    33.531     0.122     7.661     5.790    66.660     0.297

       *4.    15.332    33.530     0.122     7.662     2.521    66.750     0.326

       *5.    20.532    33.509     0.100     7.671     1.458    66.660     0.295

       *6.    31.060    33.562     0.128     7.696     0.835    66.930     0.284

       *7.    51.529    33.644     0.240     7.667     0.393    67.500     0.234

        8.    85.714    33.898     0.590     6.944     0.306    70.110     0.068

        9.   112.608    34.182    -0.043     5.749     0.297    71.060     0.040

       10.   199.060    34.511     0.804     4.233     0.295    71.130     0.024

      *11.   260.324    34.616     1.138     4.117     0.294    71.480     0.007

      *12.   351.515    34.679     1.320     4.069     0.295    71.580     0.020

     ·*13.   412.459    34.710     1.373     4.081     0.294    71.650     0.025

       14.   412.272    34.710     1.373     4.081     0.294    71.660     0.027

Station:460.120/6/1 Latitude=66  47.23S Longitude=068  32.13W Depth:251 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.    20.725    33.215    -0.550     7.791     0.667    64.920     0.566

      ·*2.    31.610    33.227    -0.514     7.775     0.409    65.070     0.584

      ·*3.    50.231    33.378    -0.072     7.428     0.308    67.220     0.272

      ·*4.    51.126    33.450     0.140     7.294     0.308    67.670     0.264

      ·*5.    76.900    33.694     0.444     6.999     0.295    70.090     0.082

      ·*6.   123.945    34.160     0.064     5.525     0.293    71.100     0.049

        7.   161.732    34.290    -0.067     5.084     0.295    71.550     0.019

        8.   200.792    34.454     0.571     4.388     0.298    71.850     0.009

        9.   226.819    34.537     0.878     4.201     0.301    71.910     0.007

     ·*10.   226.937    34.537     0.882     4.185     0.290    71.880     0.017

Station:460.140/7/1 Latitude=66  41.00S Longitude=068  54.15W Depth:327 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.    20.697    33.438    -0.313     7.819     0.305    67.120     0.434

      ·*2.    31.179    33.592    -0.092     7.774     0.298    68.940     0.312

      ·*3.    51.314    33.729     0.244     7.674     0.295    71.270     0.124

      ·*4.    73.764    34.005    -0.704     6.701     0.294    71.460     0.101

      ·*5.   101.222    34.110    -1.219     6.719     0.295    71.980     0.061

        6.   162.351    34.477     0.658     4.336     0.295    71.890     0.008

        7.   242.664    34.642     1.301     4.062     0.295    72.160     0.026

        8.   311.288    34.679     1.374     4.031     0.294    72.070     0.010

      ·*9.   308.478    34.679     1.374     4.028     0.296    72.120     0.014

Station:460.180/8/1 Latitude=66  28.37S Longitude=069 38.22W Depth:520 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.     5.860    33.755    -0.725     7.847     0.571    70.680     0.161

      ·*2.     5.246    33.755    -0.726     7.829     0.607    70.690     0.174

      ·*3.    11.283    33.755    -0.725     7.843     0.375    70.760     0.181

      ·*4.    15.461    33.755    -0.725     7.855     0.338    70.800     0.174

      ·*5.    21.121    33.755    -0.725     7.875     0.315    70.880     0.161

        6.    30.512    33.755    -0.725     7.892     0.299    70.950     0.161

        7.    51.777    33.761    -0.737     7.758     0.294    71.000     0.198

        8.    76.608    34.125    -1.584     6.971     0.295    71.900     0.064

        9.   199.737    34.629     1.209     4.077     0.294    72.080     0.019

       10.   303.274    34.706     1.485     4.070     0.292    72.120     0.006

     ·*11.   492.375    34.727     1.217     4.421     0.295    71.830     0.020

     ·*12.   492.010    34.727     1.217     4.415     0.293    71.820     0.016

Station:460.220/9/1 Latitude=66 15.67S Longitude=070 21.13W Depth:475 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.     3.305    33.746    -0.653     7.801     0.875    70.340     0.149

      ·*2.     2.865    33.746    -0.653     7.802     0.880    70.430     0.141

      ·*3.     6.507    33.746    -0.652     7.804     0.531    70.450     0.177

      ·*4.    11.949    33.746    -0.653     7.813     0.374    70.560     0.160

      ·*5.    16.311    33.746    -0.652     7.824     0.336    70.710     0.137

        6.    20.817    33.746    -0.651     7.843     0.315    70.800     0.153

        7.    30.811    33.746    -0.651     7.853     0.303    70.870     0.149

        8.    50.332    33.756    -0.669     7.857     0.296    70.960     0.157

        9.    90.675    34.160    -1.417     6.798     0.296    72.010     0.015

       10.   163.234    34.527     0.961     4.317     0.294    71.970     0.018

       11.   240.660    34.670     1.744     3.966     0.296    72.030     0.011

     ·*12.   456.078    34.725     1.401     4.216     0.294    71.130     0.056

     ·*13.   456.474    34.725     1.400     4.213     0.294    71.170     0.057

Station:459.250/10/2 Latitude=66 06.02S Longitude=070 53.25W Depth:880 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.     2.715    33.736    -0.778     7.827     1.030    70.740     0.143

      ·*2.     2.854    33.737    -0.776     7.831     1.102    70.750     0.153

        3.     4.711    33.746    -0.750     7.845     0.755    70.800     0.143

        4.     4.290    33.746    -0.753     7.840     0.714    70.840     0.138

        5.    11.058    33.751    -0.744     7.858     0.388    70.890     0.172

        6.    14.761    33.752    -0.742     7.886     0.337    71.040     0.142

        7.    20.388    33.752    -0.743     7.896     0.313    71.100     0.140

        8.    30.040    33.752    -0.749     7.919     0.297    71.170     0.152

        9.    52.355    33.753    -0.760     7.925     0.294    71.270     0.177

       10.    74.821    34.067    -1.419     7.100     0.296    71.880     0.113

       11.   100.444    34.226    -0.711     6.053     0.294    72.160     0.048

       12.   200.932    34.592     1.435     4.088     0.295    72.140     0.007

       13.   302.354    34.680     1.676     4.015     0.296    72.060     0.040

       14.   502.290    34.718     1.528     4.155     0.294    71.850     0.014

       15.   700.768    34.728     1.260     4.417     0.291    71.890     0.005

     ·*16.   893.325    34.727     1.148     4.500     0.294    71.910     0.014

     ·*17.   893.436    34.727     1.148     4.499     0.292    71.900     0.016

Station:419.247/11/2 Latitude=66 24.94S Longitude=071 23.05W Depth:723 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.     5.430    33.761    -0.745     7.782    17.780    69.980     0.169

      ·*2.     3.285    33.761    -0.749     7.795    21.750    70.020     0.162

        3.     3.080    33.761    -0.748     7.799    22.020    70.040     0.172

        4.     6.318    33.760    -0.747     7.806    14.770    70.110     0.178

        5.    10.836    33.760    -0.751     7.799     9.725    70.200     0.194

        6.    14.194    33.760    -0.750     7.820     7.760    70.240     0.160

        7.    20.087    33.760    -0.753     7.834     5.171    70.320     0.199

        8.    30.350    33.760    -0.755     7.849     2.908    70.380     0.168

        9.    52.243    33.759    -0.761     7.879     1.034    70.470     0.169

       10.    76.665    34.037    -1.351     6.957     0.487    71.190     0.050

       11.   224.223    34.635     1.386     4.063     0.296    71.590     0.048

       12.   344.206    34.706     1.467     4.100     0.295    71.510     0.013

     ·*13.   551.450    34.729     1.350     4.328     0.295    71.510     0.010

     ·*14.   697.401    34.730     1.244     4.430     0.295    71.330     0.011

       15.   697.403    34.730     1.244     4.441     0.295    71.330    -0.002

Station:420.225/12/2 Latitude=66 31.25S Longitude=070 58.62W Depth:541 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.     3.359    33.756    -0.753     7.815     0.634    70.330     0.188

      ·*2.     3.707    33.756    -0.753     7.816     0.615    70.350     0.166

        3.     6.910    33.755    -0.733     7.832     0.460    70.490     0.183

        4.     6.407    33.756    -0.740     7.823     0.491    70.400     0.180

        5.    11.015    33.754    -0.759     7.837     0.350    70.540     0.176

        6.    14.891    33.756    -0.757     7.849     0.324    70.550     0.174

        7.    19.487    33.756    -0.756     7.866     0.311    70.700     0.174

        8.    31.026    33.756    -0.757     7.883     0.297    70.750     0.195

        9.    41.721    33.759    -0.752     7.884     0.295    70.790     0.193

       10.    50.638    33.763    -0.757     7.825     0.294    70.740     0.196

       11.   148.701    34.523     0.813     4.287     0.294    71.770     0.014

       12.   242.136    34.661     1.363     4.052     0.296    71.770     0.022

     ·*13.   522.119    34.723     1.258     4.092     0.294    70.900     0.038

     ·*14.   523.456    34.723     1.258     4.084     0.292    70.910     0.051

Station:420.180/13/2 Latitude=66 45.84S Longitude=070 09.82W Depth:534 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.     4.681    33.784    -0.779     7.802     0.556    70.560     0.169

      ·*2.     5.623    33.784    -0.781     7.802     0.503    70.530     0.184

        3.    10.699    33.784    -0.796     7.805     0.360    70.630     0.207

        4.    15.371    33.784    -0.796     7.824     0.326    70.680     0.235

        5.    20.527    33.784    -0.796     7.827     0.306    70.710     0.189

        6.    30.784    33.783    -0.795     7.844     0.298    70.770     0.199

        7.    51.814    33.887    -0.890     7.566     0.295    71.010     0.166

        8.    63.116    34.041    -1.105     6.687     0.294    71.370     0.151

        9.   126.849    34.444     0.414     4.545     0.293    71.760     0.030

       10.   252.043    34.677     1.400     4.052     0.291    71.930     0.015

       11.   402.487    34.725     1.462     4.224     0.295    71.820     0.004

     ·*12.   530.410    34.727     1.263     4.350     0.295    71.180     0.054

     ·*13.   529.789    34.727     1.263     4.349     0.292    71.100     0.050

Station:420.145/14/1 Latitude=66 56.96S Longitude=069 31.59W Depth:501 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.     3.080    33.759    -0.827     7.811    23.010    70.920     0.204

        2.     1.831    33.759    -0.826     7.814    29.340    70.940     0.205

        3.     5.100    33.759    -0.826     7.828    17.050    70.940     0.204

        4.     5.235    33.759    -0.826     7.827    17.030    71.000     0.196

        5.    10.326    33.759    -0.826     7.840    11.510    71.020     0.187

        6.    15.328    33.760    -0.825     7.844     7.880    71.100     0.186

        7.    20.881    33.760    -0.824     7.859     6.075    71.140     0.184

        8.    30.662    33.760    -0.817     7.864     3.354    71.180     0.177

        9.    51.190    33.945    -1.001     7.175     1.563    71.350     0.099

       10.   121.401    34.474     0.583     4.416     0.386    71.990     0.044

       11.   219.816    34.674     1.469     4.042     0.297    71.920     0.009

       12.   350.167    34.707     1.383     4.102     0.294    71.810     0.040

     ·*13.   488.940    34.722     1.297     4.138     0.294    71.260     0.015

       14.   490.781    34.722     1.297     4.138     0.294    71.240     0.014

Station:420.125/15/1 Latitude=67 03.13S Longitude=069 09.48W Depth:380 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.     2.140    33.556    -0.278     7.736     0.820    69.750     0.236

      ·*2.     2.832    33.551    -0.277     7.741     1.111    69.720     0.242

        3.     6.120    33.539    -0.277     7.741     0.532    69.740     0.249

        4.     6.033    33.535    -0.276     7.758     0.518    69.690     0.248

        5.    10.647    33.662    -0.310     7.738     0.388    70.230     0.230

        6.    15.610    33.690    -0.334     7.750     0.331    70.740     0.197

        7.    20.140    33.736    -0.464     7.775     0.317    70.870     0.173

        8.    29.396    33.739    -0.503     7.777     0.302    71.270     0.180

        9.    49.360    33.795    -0.542     7.592     0.296    71.350     0.191

       10.    90.090    34.176    -0.883     6.139     0.295    72.040     0.025

       11.   100.044    34.209    -0.844     6.002     0.295    72.190     0.009

       12.   250.286    34.647     1.285     4.058     0.295    72.020     0.018

     ·*13.   385.880    34.698     1.412     4.036     0.295    71.790     0.006

     ·*14.   386.118    34.698     1.412     4.036     0.293    71.820     0.015

Station:380.120/16/1 Latitude=67 22.24S Longitude=069 36.20W Depth:446 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans      Fluor

      ·*1.     3.857    33.352    -0.597     7.896     2.022    67.050     0.248

      ·*2.     2.941    33.353    -0.595     7.911     1.405    67.060     0.252

        3.     4.166    33.353    -0.596     7.900     1.192    67.110     0.255

        4.     4.145    33.354    -0.595     7.898     1.395    67.150     0.250

        5.    10.263    33.408    -0.428     7.825     0.412    68.000     0.199

        6.    13.362    33.480    -0.179     7.718     0.340    68.620     0.196

        7.    20.017    33.494    -0.167     7.737     0.307    68.890     0.191

        8.    30.776    33.505    -0.126     7.724     0.297    69.050     0.198

        9.    50.004    33.540     0.015     7.673     0.295    69.410     0.201

       10.    76.465    33.712     0.004     7.585     0.295    70.860     0.187

       11.   101.912    34.012     0.099     6.056     0.294    71.050     0.092

       12.   151.917    34.332     0.226     4.769     0.295    71.410     0.036

       13.   250.804    34.611     1.182     4.093     0.294    71.870     0.035

       14.   350.773    34.678     1.365     3.993     0.295    71.690     0.026

     ·*15.   427.342    34.693     1.368     3.938     0.296    71.360     0.029

     ·*16.   425.711    34.693     1.368     3.936     0.292    71.350     0.028

Station:380.150/17/2 Latitude=67 12.57S Longitude=070 09.88W Depth:600 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.     2.579    33.610    -0.363     7.733     0.879    69.950     0.227

      ·*2.     2.679    33.610    -0.364     7.738     0.873    69.960     0.229

        3.     4.639    33.610    -0.365     7.749     0.682    69.990     0.240

        4.     4.317    33.610    -0.364     7.748     0.666    70.010     0.253

        5.     9.714    33.610    -0.361     7.757     0.408    70.070     0.218

        6.    14.590    33.648    -0.429     7.766     0.343    70.310     0.211

        7.    21.011    33.744    -0.653     7.798     0.313    70.960     0.172

        8.    31.094    33.763    -0.715     7.798     0.300    71.060     0.216

        9.    48.703    33.857    -0.862     7.475     0.295    71.170     0.214

       10.    75.718    34.229    -0.706     5.893     0.295    72.260     0.044

       11.    99.859    34.384     0.194     4.875     0.295    72.300     0.048

       12.   151.652    34.554     1.058     4.174     0.296    72.290     0.015

       13.   200.215    34.654     1.435     4.023     0.295    72.230     0.002

       14.   352.034    34.704     1.433     4.065     0.296    72.030     0.002

       15.   499.204    34.722     1.335     4.181     0.295    71.850     0.013

     ·*16.   591.059    34.726     1.220     4.309     0.295    71.290     0.046

     ·*17.   591.124    34.726     1.220     4.310     0.295    71.280     0.042

Station:380.180/18/1 Latitude=67 02.98S Longitude=070 43.05W Depth:489 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.     3.583    33.750    -0.753     7.786    10.870    70.840     0.237

      ·*2.     2.653    33.750    -0.754     7.799    12.090    70.850     0.224

        3.     4.429    33.750    -0.753     7.797     8.849    70.920     0.192

        4.     4.362    33.750    -0.751     7.802     9.040    70.950     0.204

        5.     9.878    33.750    -0.756     7.819     5.177    71.040     0.194

        6.    14.464    33.750    -0.760     7.824     3.678    71.090     0.188

        7.    18.924    33.753    -0.777     7.854     2.552    71.160     0.198

        8.    30.113    33.758    -0.800     7.844     1.296    71.290     0.184

        9.    50.661    34.097    -1.118     6.527     0.635    71.960     0.077

       10.    75.974    34.230    -0.662     5.755     0.444    72.180     0.032

       11.    99.789    34.358     0.018     4.945     0.364    72.220     0.019

       12.   151.498    34.566     1.102     4.150     0.304    72.270     0.010

       13.   200.389    34.654     1.431     4.022     0.293    72.280     0.010

       14.   299.475    34.694     1.368     4.073     0.289    72.220     0.013

       15.   400.410    34.708     1.336     4.082     0.290    72.100     0.032

     ·*16.   477.306    34.719     1.286     4.056     0.289    71.540     0.053

     ·*17.   477.166    34.719     1.287     4.053     0.285    71.550     0.042

Station:380.220/19/1 Latitude=66 49.83S Longitude=071 29.35W Depth:466 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.737    33.752    -0.701     7.835     1.210    71.110     0.166

       *2.     2.348    33.752    -0.700     7.856     0.916    71.100     0.170

       *3.     4.617    33.751    -0.698     7.860     0.602    71.160     0.174

       *4.    10.170    33.751    -0.697     7.854     0.378    71.180     0.154

       *5.    15.282    33.751    -0.700     7.870     0.333    71.130     0.154

       *6.    22.111    33.753    -0.702     7.875     0.309    71.260     0.156

        7.    31.984    33.753    -0.704     7.897     0.298    71.260     0.164

        8.    52.457    33.753    -0.701     7.889     0.294    71.290     0.167

        9.    90.088    34.143    -1.626     7.023     0.292    72.250     0.029

       10.   162.763    34.564     0.972     4.194     0.293    72.340     0.012

       11.   261.534    34.678     1.400     4.051     0.292    72.330     0.025

       12.   379.903    34.720     1.371     4.141     0.292    72.170     0.019

      *13.   463.368    34.723     1.302     4.120     0.293    71.430     0.018

      *14.   461.489    34.723     1.302     4.123     0.288    71.420     0.028

Station:380.264/20/2 Latitude=66 34.87 S Longitude=072 13.84W Depth:3376 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.991    33.736    -1.105     7.975     0.264     0.000     0.085

       *2.     2.842    33.736    -1.104     7.971     0.264     0.000     0.072

        3.     5.232    33.736    -1.103     7.953     0.264     0.000     0.079

        4.     5.610    33.736    -1.104     7.962     0.264     0.000     0.082

        5.     9.140    33.736    -1.102     7.981     0.264     0.000     0.109

        6.    15.479    33.736    -1.107     7.995     0.264     0.000     0.113

       *7.    20.860    33.736    -1.106     8.006     0.264     0.000     0.122

        8.    30.149    33.736    -1.106     8.025     0.264     0.000     0.120

        9.    50.466    33.749    -1.114     7.792     0.264     0.000     0.123

       10.    75.360    34.120    -0.805     6.511     0.264     0.000     0.062

       11.   100.068    34.363     1.134     4.913     0.264     0.000     0.019

       12.   199.569    34.592     2.012     3.928     0.264     0.000     0.013

       13.   299.578    34.649     2.061     3.908     0.264     0.000     0.006

       14.   501.143    34.708     1.933     4.068     0.264     0.000    -0.003

       15.   800.335    34.732     1.632     4.269     0.264     0.000     0.004

       16.  1499.508    34.724     1.022     4.531     0.264     0.000    -0.003

       17.  2601.168    34.708     0.373     4.843     0.264     0.000    -0.002

      *18.  3368.401    34.706     0.152     4.986     0.264     0.000     0.020

      *19.  3368.699    34.706     0.151     4.986     0.264     0.000     0.035

Station:340.295/22/2 Latitude=66 41.16S Longitude=073 21.00W Depth:3650 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.564    33.746    -0.837     7.863     0.264     0.000     0.098

       *2.     2.080    33.746    -0.836     7.870     0.264     0.000     0.095

        3.     5.686    33.746    -0.826     7.873     0.264     0.000     0.087

        4.     5.506    33.746    -0.824     7.883     0.264     0.000     0.085

        5.    16.360    33.747    -0.843     7.830     0.264     0.000     0.123

        6.    10.591    33.745    -0.840     7.898     0.264     0.000     0.104

       *7.    20.413    33.746    -0.840     7.930     0.264     0.000     0.097

        8.    30.227    33.746    -0.841     7.938     0.264     0.000     0.090

        9.    50.703    33.750    -0.865     7.900     0.264     0.000     0.092

       10.    76.259    34.117    -1.604     7.120     0.264     0.000     0.042

       11.   101.962    34.262    -0.500     5.709     0.264     0.000     0.022

       12.   201.696    34.617     1.701     3.933     0.264     0.000     0.014

       13.   301.803    34.686     1.905     3.924     0.264     0.000     0.017

       14.   501.055    34.718     1.742     4.078     0.264     0.000     0.041

       15.   751.695    34.730     1.533     4.247     0.264     0.000    -0.005

       16.  1002.933    34.731     1.319     4.370     0.264     0.000     0.023

       17.  1502.000    34.722     0.959     4.566     0.264     0.000    -0.001

      *18.  2000.516    34.714     0.668     4.757     0.264     0.000    -0.000

      *19.  2001.199    34.714     0.668     4.759     0.264     0.000    -0.002

Station:340.253/23/1 Latitude=66 55.44S Longitude=072 35.34W Depth:504 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     4.913    33.735    -0.750     7.806     0.580    70.420     0.418

       *2.     5.087    33.733    -0.752     7.807     0.534    70.410     0.399

       *3.     5.087    33.717    -0.782     7.804     0.526    70.430     0.437

        4.     4.407    33.722    -0.777     7.797     0.529    70.460     0.390

        5.    12.355    33.750    -0.692     7.794     0.332    70.620     0.428

        6.    14.979    33.752    -0.678     7.826     0.312    70.670     0.354

        7.    19.795    33.755    -0.688     7.831     0.298    70.830     0.381

        8.    30.527    33.755    -0.738     7.863     0.288    70.440     0.472

        9.    50.540    33.758    -0.745     7.871     0.287    70.500     0.535

       10.    76.644    34.033    -1.104     6.406     0.289    70.770     0.531

       11.   100.224    34.164    -1.186     6.343     0.288    73.190     0.067

       12.   201.476    34.561     0.998     4.213     0.286    73.530     0.036

       13.   301.984    34.675     1.589     4.011     0.286    73.500     0.012

      *14.   481.532    34.708     1.413     4.009     0.287    72.890     0.018

      *15.   480.317    34.708     1.418     4.010     0.285    72.880     0.014

Station:340.220/24/1 Latitude=67  06.77S Longitude=072  00.41W Depth:415 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     4.063    33.727    -0.817     7.817     0.672    71.520     0.340

       *2.     4.063    33.726    -0.818     7.831     0.731    71.520     0.346

       *3.     4.558    33.726    -0.820     7.835     0.641    71.510     0.341

        4.     4.263    33.726    -0.817     7.828     0.626    71.530     0.346

        5.     8.725    33.727    -0.817     7.842     0.407    71.610     0.325

        6.    14.793    33.726    -0.820     7.855     0.329    71.640     0.319

        7.    20.737    33.728    -0.815     7.846     0.305    71.680     0.326

        8.    29.960    33.739    -0.792     7.866     0.292    71.580     0.366

        9.    49.228    33.781    -0.822     7.745     0.287    71.470     0.466

       10.    75.526    34.156    -0.889     5.889     0.287    73.770     0.050

       11.   101.072    34.288    -0.302     5.229     0.287    73.800     0.044

       12.   199.593    34.617     1.152     4.064     0.287    74.050     0.011

       13.   301.240    34.690     1.355     4.026     0.287    74.000     0.046

      *14.   397.014    34.705     1.332     3.802     0.286    73.070     0.042

      *15.   399.082    34.705     1.332     3.808     0.285    73.080     0.040

Station:340.180/25/1 Latitude=67 20.01 S Longitude=071 16.55 W Depth: 465 m

       *1.     4.106    33.737    -0.741     7.809    30.680    70.600     0.517

       *2.     3.531    33.737    -0.742     7.789    38.600    70.710     0.496

       *3.     6.613    33.737    -0.741     7.812    18.170    70.790     0.453

       *4.     5.821    33.736    -0.741     7.785    24.280    70.800     0.502

        5.     9.259    33.737    -0.742     7.822    13.730    70.920     0.556

        6.    15.951    33.737    -0.743     7.827     5.407    70.920     0.512

        7.    18.642    33.737    -0.741     7.828     4.054    70.990     0.506

        8.    30.242    33.736    -0.746     7.855     1.259    71.090     0.536

        9.    48.731    33.741    -0.717     7.866     0.466    71.020     0.520

       10.    75.366    34.057    -1.385     6.491     0.308    72.460     0.271

       11.   100.187    34.174    -0.740     5.633     0.299    73.680     0.056

       12.   200.310    34.572     0.988     4.146     0.295    74.140     0.010

       13.   298.804    34.672     1.314     4.034     0.294    74.120     0.004

       14.   399.630    34.699     1.337     4.018     0.295    73.940     0.041

      *15.   452.767    34.710     1.323     3.836     0.295    73.260     0.033

      *16.   453.700    34.710     1.323     3.830     0.294    73.240     0.027

Station:340.140/26/2 Latitude=67 33.08S Longitude=070 32.18W Depth:760 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     3.234    33.695    -0.901     7.879     0.759    72.870     0.202

       *2.     4.394    33.695    -0.902     7.864     0.711    72.950     0.209

        3.     6.635    33.695    -0.901     7.877     0.550    73.000     0.206

       *4.     5.283    33.695    -0.901     7.880     0.542    72.980     0.197

        5.    10.238    33.695    -0.899     7.891     0.409    73.020     0.191

        6.    15.280    33.695    -0.901     7.897     0.345    73.040     0.206

        7.    19.986    33.695    -0.902     7.907     0.319    73.050     0.179

        8.    31.140    33.696    -0.894     7.905     0.301    73.060     0.207

        9.    49.478    33.746    -0.837     7.599     0.294    72.980     0.206

       10.   118.669    34.454     0.467     4.413     0.294    74.070     0.036

       11.   251.978    34.667     1.326     4.013     0.294    74.290     0.057

       12.   500.464    34.711     1.323     4.085     0.295    74.220     0.022

      *13.   760.711    34.720     1.262     4.101     0.293    73.630     0.030

      *14.   760.216    34.720     1.262     4.093     0.293    73.620     0.027

Station:340.100/27/1 Latitude=67 45.90S Longitude=069  46.94W Depth:343 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.680    33.693    -0.346     7.729     0.819    73.410     0.127

       *2.     2.178    33.693    -0.344     7.729     0.853    73.430     0.131

        3.     4.438    33.692    -0.339     7.731     0.606    73.450     0.128

        4.     4.522    33.692    -0.340     7.737     0.579    73.470     0.129

       *5.     8.924    33.692    -0.337     7.733     0.393    73.500     0.122

        6.    14.239    33.692    -0.343     7.741     0.337    73.530     0.123

        7.    20.719    33.694    -0.355     7.753     0.308    73.580     0.148

        8.    30.370    33.740    -0.584     7.764     0.299    73.690     0.146

        9.    50.413    33.815    -0.576     7.342     0.293    74.070     0.090

       10.    76.799    34.095    -0.075     5.707     0.293    74.070     0.040

       11.   120.991    34.294    -0.116     5.280     0.294    74.250     0.015

       12.   190.427    34.553     0.934     4.236     0.293    74.490     0.012

       13.   241.328    34.624     1.179     4.039     0.293    74.290     0.018

       14.   301.881    34.669     1.339     3.993     0.293    74.340     0.041

      *15.   349.103    34.676     1.348     3.975     0.294    74.310     0.029

      *16.   348.479    34.675     1.348     3.976     0.293    74.300     0.022

Station:335.060/28/1 Latitude=68 02.42S Longitude=069  22.29W Depth:435 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     3.398    33.674    -0.239     7.636     0.806    72.970     0.127

       *2.     3.315    33.674    -0.239     7.642     0.857    72.970     0.128

       *3.     4.902    33.674    -0.242     7.650     0.646    73.010     0.143

        4.     4.211    33.674    -0.242     7.653     0.719    73.020     0.148

        5.     9.257    33.676    -0.248     7.637     0.449    73.050     0.139

        6.    14.791    33.677    -0.253     7.656     0.356    73.060     0.125

        7.    19.263    33.677    -0.254     7.651     0.326    73.140     0.133

        8.    30.438    33.681    -0.270     7.662     0.303    73.220     0.172

        9.    50.172    33.697    -0.319     7.656     0.296    73.340     0.148

       10.    74.339    33.784    -0.057     7.221     0.295    73.800     0.085

       11.    93.900    33.952     0.142     6.337     0.294    73.640     0.045

       12.   124.944    34.133    -1.007     6.405     0.295    74.420     0.034

       13.   189.660    34.475     0.597     4.454     0.295    74.320     0.019

       14.   238.557    34.573     1.003     4.145     0.295    74.390     0.021

       15.   297.385    34.642     1.256     4.005     0.295    74.350     0.042

      *16.   423.522    34.675     1.344     3.989     0.295    74.290     0.016

      *17.   423.148    34.675     1.344     3.989     0.294    74.300     0.022

Station:359.046/29/2 Latitude=67 55.11S Longitude=068 30.39W Depth:604 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.050    33.481    -0.288     7.830     6.216    72.220     0.112

       *2.     2.491    33.481    -0.288     7.837     6.056    72.210     0.109

        3.     4.665    33.481    -0.288     7.838     3.883    72.180     0.117

       *4.     4.807    33.480    -0.287     7.838     3.868    72.150     0.123

        5.    10.038    33.481    -0.291     7.839     2.341    72.410     0.125

        6.    15.427    33.481    -0.292     7.850     1.600    72.430     0.116

        7.    20.403    33.481    -0.291     7.844     0.971    72.440     0.141

        8.    30.310    33.482    -0.290     7.855     0.714    72.470     0.148

        9.    50.444    33.488    -0.275     7.835     0.407    72.590     0.153

       10.    74.775    33.518    -0.214     7.723     0.319    72.850     0.125

       11.   100.059    33.696     0.216     7.155     0.301    73.430     0.068

       12.   181.383    34.320     0.241     3.911     0.295    74.230     0.028

       13.   239.669    34.532     0.849     3.744     0.295    74.250     0.025

       14.   402.530    34.641     1.167     3.699     0.295    74.450     0.058

      *15.   635.308    34.660     1.222     3.706     0.296    74.170     0.016

      *16.   634.857    34.660     1.222     3.704     0.296    74.160     0.015

Station:380/020/30/1 Latitude=67 53.11S Longitude=067 40.70W Depth:304 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.020    33.327    -0.634     7.786     1.014    72.520     0.087

       *2.     1.742    33.327    -0.634     7.770     1.059    72.530     0.095

       *3.     4.953    33.328    -0.634     7.774     0.614    72.550     0.084

        4.     4.777    33.328    -0.635     7.765     0.576    72.560     0.091

        5.    10.362    33.328    -0.634     7.775     0.398    72.590     0.098

        6.    15.548    33.328    -0.636     7.755     0.339    72.620     0.127

        7.    20.681    33.328    -0.635     7.768     0.315    72.650     0.094

        8.    30.491    33.328    -0.633     7.763     0.301    72.680     0.101

        9.    45.358    33.328    -0.633     7.750     0.296    72.730     0.093

       10.    45.159    33.328    -0.633     7.762     0.296    72.740     0.093

       11.   130.289    33.731     0.189     6.285     0.295    73.480     0.023

       12.   179.801    34.267     0.140     3.881     0.294    73.460     0.016

      *13.   209.353    34.388     0.457     3.498     0.294    73.850     0.033

      *14.   209.171    34.388     0.456     3.491     0.295    73.820     0.021

Station:340.020/31/1 Latitude=68 10.92S Longitude=068 13.40W Depth:520 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.790    33.454    -0.384     7.653     1.029    73.050     0.096

       *2.     1.776    33.454    -0.384     7.671     0.952    73.050     0.090

        3.     4.879    33.454    -0.383     7.652     0.604    73.070     0.089

       *4.     4.678    33.454    -0.380     7.671     0.625    73.080     0.085

        5.    10.117    33.454    -0.386     7.666     0.402    73.130     0.102

        6.    14.330    33.454    -0.387     7.679     0.350    73.180     0.098

        7.    20.266    33.454    -0.381     7.665     0.318    73.250     0.094

        8.    30.092    33.457    -0.375     7.673     0.302    73.320     0.076

        9.    49.563    33.478    -0.347     7.688     0.296    73.360     0.101

       10.    74.422    33.544    -0.179     7.518     0.295    73.480     0.127

       11.   100.172    33.824    -0.043     6.465     0.295    73.960     0.070

       12.   124.766    34.077    -0.353     5.284     0.295    74.200     0.028

       13.   200.070    34.456     0.617     3.637     0.296    74.330     0.016

       14.   299.552    34.600     1.044     3.562     0.295    74.490     0.053

       15.   400.010    34.636     1.147     3.628     0.296    73.850     0.051

      *16.   496.172    34.648     1.187     3.712     0.296    73.790     0.039

      *17.   497.550    34.649     1.191     3.695     0.296    73.930     0.044

Station:340.-020/32/1 Latitude=68 23.10S Longitude=067 23.79W Depth:232 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.742    33.353    -0.824     7.724     1.109    71.490     0.048

       *2.     1.863    33.352    -0.824     7.733     1.100    71.510     0.052

        3.     4.694    33.353    -0.833     7.741     0.650    71.550     0.045

        4.     4.610    33.353    -0.834     7.731     0.671    71.550     0.048

        5.     9.699    33.354    -0.822     7.732     0.412    71.570     0.073

        6.    14.999    33.357    -0.793     7.707     0.339    71.630     0.075

        7.    20.341    33.361    -0.764     7.726     0.313    72.120     0.065

        8.    30.537    33.371    -0.707     7.709     0.299    72.600     0.050

        9.    50.384    33.396    -0.664     7.612     0.296    72.440     0.036

       10.    75.175    33.489    -0.403     7.670     0.295    73.230     0.098

       11.   100.596    33.593     0.042     7.006     0.295    73.430     0.074

       12.   141.315    34.100    -0.121     4.625     0.295    73.090     0.023

      *13.   218.843    34.427     0.564     3.464     0.295    73.060     0.029

      *14.   219.807    34.429     0.569     3.466     0.294    73.060     0.034

Station:300.-020/33/1 Latitude=68 40.74S Longitude=067 59.04W Depth:279 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.811    33.346    -0.902     7.780    16.450    73.150     0.051

       *2.     1.560    33.346    -0.903     7.802    17.230    73.150     0.054

        3.     4.365    33.346    -0.902     7.803    11.080    73.200     0.052

        4.     4.599    33.346    -0.902     7.791    10.650    73.210     0.046

        5.    10.326    33.353    -0.878     7.773     5.628    73.300     0.064

        6.    14.937    33.355    -0.871     7.780     3.803    73.360     0.073

        7.    19.236    33.361    -0.842     7.749     2.763    73.420     0.079

        8.    29.271    33.362    -0.844     7.751     1.436    73.500     0.043

        9.    39.979    33.363    -0.841     7.765     0.849    73.570     0.043

       10.    50.468    33.363    -0.843     7.764     0.570    73.620     0.044

       11.    75.134    33.425    -0.622     7.663     0.351    73.810     0.047

       12.    99.873    33.673     0.146     6.707     0.309    73.670     0.022

       13.   138.661    34.087    -0.245     4.635     0.297    73.430     0.020

       14.   200.897    34.422     0.517     3.693     0.295    73.790     0.027

      *15.   258.211    34.560     0.907     3.566     0.295    73.040     0.049

      *16.   258.634    34.546     0.911     3.568     0.295    73.010     0.048

Station:300.020/34/2 Latitude=68 28.49S Longitude=068 47.36W Depth:691 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

      ·*1.     1.286    33.374    -0.885     7.800     1.143    73.810     0.073

      ·*2.     1.204    33.373    -0.884     7.795     1.168    73.810     0.073

        3.     5.032    33.376    -0.884     7.794     0.604    73.840     0.067

        4.     5.331    33.375    -0.887     7.786     0.543    73.840     0.066

        5.    10.424    33.384    -0.884     7.815     0.388    73.870     0.049

        6.    15.122    33.384    -0.903     7.817     0.336    73.950     0.050

        7.    20.326    33.387    -0.886     7.814     0.313    73.980     0.057

        8.    30.162    33.388    -0.886     7.815     0.301    73.980     0.047

        9.    50.964    33.395    -0.890     7.718     0.296    74.010     0.061

       10.    76.206    33.744    -0.161     6.152     0.295    74.150     0.038

       11.    91.554    33.928    -0.200     5.474     0.296    74.130     0.048

       12.   142.466    34.239    -0.019     4.165     0.296    73.630     0.031

       13.   261.747    34.585     0.989     3.646     0.296    74.130     0.022

       14.   499.434    34.657     1.207     3.789     0.295    73.290     0.008

      *15.   669.341    34.665     1.233     3.801     0.296    71.580     0.058

       16.   669.076    34.665     1.233     3.807     0.295    71.600     0.053

Station:300.060/35/2 Latitude=68 15.90S Longitude=069  34.52W Depth:580 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     4.261    33.589    -0.137     7.611     0.602    73.090     0.137

       *2.     3.760    33.589    -0.137     7.616     0.619    73.120     0.123

        3.     5.366    33.589    -0.138     7.632     0.543    73.130     0.101

       *4.     5.471    33.589    -0.139     7.629     0.537    73.130     0.096

        5.    11.023    33.589    -0.138     7.618     0.384    73.160     0.093

        6.    14.069    33.588    -0.139     7.625     0.321    73.210     0.090

        7.    19.342    33.592    -0.138     7.614     0.314    73.260     0.097

        8.    30.992    33.647    -0.118     7.464     0.299    73.620     0.102

        9.    49.095    33.715    -0.068     7.290     0.295    73.840     0.125

       10.    70.324    33.771    -0.034     7.106     0.295    73.950     0.089

       11.    90.293    33.862     0.167     6.716     0.295    73.800     0.073

       12.   139.061    34.254    -0.157     5.435     0.295    74.430     0.040

       13.   199.788    34.475     0.600     4.312     0.295    74.540     0.038

       14.   299.896    34.615     1.113     4.017     0.295    74.590     0.019

       15.   401.590    34.667     1.280     3.981     0.296    74.470     0.016

       16.   501.274    34.689     1.321     3.991     0.295    74.250     0.019

      *17.   573.298    34.697     1.332     4.004     0.295    73.980     0.013

      *18.   574.313    34.697     1.333     4.004     0.295    74.020     0.008

Station:300.100/36/2 Latitude=68  03.21S Longitude=070 21.72W Depth:865 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    -0.703    14.970    -0.767     8.900    22.150    54.900     0.089

       *2.     1.432    33.640    -0.782     7.813     6.213    73.340     0.123

        3.     6.600    33.640    -0.780     7.814     2.871    73.400     0.162

        4.     6.714    33.640    -0.780     7.821     2.877    73.390     0.153

        5.    10.301    33.640    -0.790     7.828     1.924    73.450     0.133

        6.    14.092    33.641    -0.790     7.835     1.505    73.710     0.175

        7.    19.579    33.639    -0.794     7.848     1.145    73.840     0.128

       *8.    29.202    33.641    -0.788     7.866     0.754    73.950     0.166

        9.    49.376    33.646    -0.770     7.849     0.424    74.090     0.120

       10.    59.837    33.790    -0.540     7.244     0.356    74.400     0.116

       11.    91.759    34.112    -1.020     6.151     0.310    74.880     0.058

       12.   149.000    34.468     0.535     4.409     0.296    74.880     0.033

       13.   220.886    34.623     1.185     4.031     0.296    74.980     0.050

       14.   299.009    34.677     1.362     4.026     0.296    75.000     0.012

       15.   400.133    34.702     1.355     4.050     0.296    74.980     0.015

       16.   500.618    34.710     1.330     4.081     0.296    74.890     0.024

      *17.   625.165    34.715     1.276     4.121     0.296    74.860     0.046

      *18.   749.936    34.720     1.259     4.120     0.295    74.410     0.025

       19.   837.850    34.721     1.252     4.066     0.296    73.950     0.049

       20.   838.111    34.721     1.252     4.071     0.295    73.950     0.053

Station:260.295/41/2 Latitude=67 11.99S Longitude=074 29.96W Depth:2975 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.782    33.737    -1.130     7.999     3.712     0.000     0.104

       *2.     2.082    33.737    -1.130     7.997     3.965     0.000     0.103

        3.     5.977    33.737    -1.130     8.018     3.008     0.000     0.092

        4.     5.782    33.737    -1.130     8.017     3.047     0.000     0.100

        5.    10.558    33.737    -1.130     8.014     3.095     0.000     0.096

       *6.    13.777    33.737    -1.130     8.041     3.150     0.000     0.113

        7.    19.211    33.737    -1.130     8.047     3.235     0.000     0.125

        8.    31.484    33.737    -1.133     8.050     1.049     0.000     0.146

        9.    50.482    33.737    -1.136     8.072     0.536     0.000     0.114

       10.    74.751    34.034    -1.527     7.203     0.539     0.000     0.043

       11.   100.149    34.118    -1.664     7.094     2.957     0.000     0.024

       12.   250.406    34.548     0.996     4.252     0.569     0.000     0.012

       13.   375.571    34.684     1.545     4.055     0.577     0.000     0.039

       14.   500.755    34.716     1.508     4.144     0.593     0.000     0.006

       15.  1005.918    34.724     1.060     4.489     0.663     0.000     0.006

       16.  2002.323    34.708     0.453     4.805     0.654     0.000     0.003

      *17.  2956.188    34.705     0.156     5.010     2.268     0.000    -0.000

      *18.  2959.156    34.705     0.156     5.014     2.283     0.000     0.005

Station:260.225/42/1 Latitude=67 28.14S Longitude=073 49.18W Depth:403 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     4.448    33.751    -1.158     7.794     0.554    72.810     0.117

       *2.     3.630    33.751    -1.159     7.800     0.540    72.800     0.121

        3.     5.044    33.751    -1.160     7.782     0.434    72.810     0.152

        4.     5.657    33.751    -1.159     7.772     0.491    72.840     0.104

        5.     9.692    33.751    -1.158     7.785     0.370    72.880     0.102

        6.    16.498    33.750    -1.158     7.816     0.319    72.930     0.122

        7.    20.355    33.751    -1.158     7.860     0.308    73.020     0.114

        8.    30.195    33.750    -1.157     7.858     0.298    73.070     0.106

        9.    50.303    33.750    -1.156     7.891     0.295    73.150     0.112

       10.    75.527    33.948    -1.193     6.710     0.295    73.470     0.038

       11.   103.064    34.116    -1.400     6.580     0.293    73.700     0.019

       12.   152.400    34.272    -0.647     5.629     0.295    73.800     0.012

       13.   201.307    34.512     0.877     4.254     0.294    73.670     0.049

      *14.   249.364    34.623     1.504     3.944     0.295    73.560     0.011

      *15.   349.093    34.692     1.554     3.923     0.294    73.290     0.012

       16.   424.377    34.700     1.529     3.858     0.295    72.890     0.009

       17.   422.271    34.700     1.529     3.866     0.294    72.870     0.009

Station:260.220/43/1 Latitude=67 40.22S Longitude=073 10.71W Depth:491 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     4.695    33.672    -1.170     8.044     0.548    73.110     0.116

       *2.     5.338    33.672    -1.170     8.041     0.529    73.100     0.119

        3.     4.708    33.672    -1.169     8.046     0.545    73.150     0.090

       *4.     5.308    33.672    -1.170     8.052     0.526    73.170     0.102

        5.     9.904    33.672    -1.170     8.059     0.390    73.250     0.105

        6.    13.766    33.672    -1.170     8.086     0.343    73.370     0.138

        7.    20.227    33.673    -1.170     8.095     0.311    73.450     0.103

        8.    31.064    33.673    -1.169     8.094     0.301    73.530     0.140

        9.    50.261    33.677    -1.167     8.031     0.296    73.660     0.142

       10.    75.369    34.082    -1.267     6.487     0.295    74.370     0.023

       11.   109.875    34.146    -1.441     6.640     0.295    74.450     0.025

       12.   151.400    34.341    -0.093     5.001     0.295    74.430     0.016

       13.   201.318    34.536     0.859     4.283     0.296    74.440     0.004

       14.   279.242    34.682     1.635     4.032     0.295    74.370     0.014

       15.   349.363    34.698     1.475     4.071     0.294    74.110     0.008

      *16.   485.094    34.717     1.458     4.083     0.295    73.460     0.026

      *17.   484.469    34.717     1.459     4.082     0.295    73.440     0.044

Station:260.180/44/1 Latitude=67  53.81S Longitude=072  26.02W Depth:313 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    10.142    33.724    -1.083     7.997     4.649    74.000     0.096

       *2.     8.394    33.724    -1.082     7.993     5.353    74.020     0.099

        3.    10.683    33.727    -1.085     7.995     4.354    74.110     0.096

        4.    15.938    33.728    -1.086     7.987     3.338    74.140     0.100

       *5.    22.117    33.727    -1.086     8.000     2.594    74.150     0.101

        6.    31.279    33.729    -1.085     7.999     1.607    74.180     0.103

        7.    51.963    33.820    -1.069     7.447     0.687    74.290     0.097

        8.    75.069    34.103    -0.707     5.751     0.428    74.600     0.039

        9.   101.538    34.298    -0.095     4.844     0.350    74.530     0.017

       10.   152.745    34.459     0.538     4.259     0.301    74.390     0.041

       11.   223.939    34.610     1.090     4.083     0.296    74.740     0.027

       12.   262.867    34.687     1.373     3.999     0.296    74.690     0.010

      *13.   292.138    34.694     1.425     3.974     0.293    74.580     0.043

      *14.   293.265    34.694     1.425     3.978     0.293    74.570     0.047

Station:236.030/49/2 Latitude=68 53.18S Longitude=069 54.77W Depth:1259 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.867    33.115    -1.703     7.761     0.264    73.550     0.054

       *2.     2.256    33.116    -1.703     7.763     0.264    73.600     0.058

        3.     5.150    33.124    -1.691     7.763     0.264    73.680     0.074

        4.     5.368    33.126    -1.688     7.775     0.264    73.700     0.083

        5.     9.714    33.147    -1.651     7.790     0.264    73.800     0.068

       *6.    15.652    33.169    -1.616     7.788     0.264    73.860     0.052

        7.    20.724    33.275    -1.542     7.671     0.264    73.860     0.065

        8.    29.132    33.346    -1.334     7.556     0.264    73.910     0.098

        9.    50.270    33.835    -0.380     5.823     0.264    74.010     0.035

       10.    74.125    34.004    -0.409     5.139     0.264    73.960     0.023

       11.    99.858    34.141    -0.265     4.546     0.264    73.910     0.013

       12.   149.754    34.297     0.104     4.298     0.264    74.090     0.020

       13.   199.949    34.408     0.426     4.172     0.264    74.270     0.021

       14.   374.307    34.655     1.138     4.060     0.264    74.420     0.014

       15.   500.414    34.689     1.266     4.055     0.264    74.410     0.026

       16.   750.116    34.695     1.187     4.093     0.264    74.310     0.004

       17.  1001.191    34.716     1.258     4.180     0.264    74.210     0.007

      *18.  1245.677    34.719     1.245     4.177     0.264    73.620     0.012

      *19.  1245.548    34.719     1.244     4.179     0.264    73.630     0.005

Station:230.010/50/2 Latitude=69 02.21S Longitude=069 35.90W Depth:987 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     0.974    33.192    -1.786     7.808     3.196    74.180     0.071

       *2.     0.712    33.189    -1.789     7.810     7.681    74.190     0.069

        3.     5.137    33.197    -1.781     7.798     1.507    74.220     0.068

       *4.     5.299    33.203    -1.773     7.794     1.505    74.220     0.067

        5.    10.253    33.221    -1.751     7.802     1.003    74.240     0.066

       *6.    15.050    33.248    -1.673     7.786     0.757    74.250     0.059

        7.    21.043    33.301    -1.566     7.728     0.587    74.250     0.055

        8.    29.758    33.412    -1.303     7.357     0.438    74.220     0.050

        9.    50.307    33.735    -0.423     6.333     0.325    74.370     0.034

       10.    76.191    33.964    -0.423     5.483     0.297    74.380     0.026

       11.   340.316    34.647     1.197     3.989     0.287    74.740     0.017

       12.   497.870    34.681     1.189     4.067     0.287    74.550     0.030

       13.   650.984    34.689     1.153     4.094     0.287    74.470     0.035

      *14.   966.831    34.700     1.178     4.114     0.287    73.850     0.052

      *15.   966.291    34.700     1.178     4.104     0.288    73.850     0.042

Station:215.-015/51/1 Latitude=69 16.80S Longitude=069 18.85W Depth:807 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.377    32.998    -1.677     7.784     0.953    73.820     0.032

       *2.     1.392    32.997    -1.680     7.778     0.938    73.650     0.030

        3.     5.142    33.002    -1.672     7.798     0.525    73.760     0.047

       *4.     5.017    32.999    -1.674     7.793     0.512    73.910     0.058

       *5.    10.413    33.111    -1.444     7.763     0.367    73.890     0.073

        6.    15.352    33.225    -1.199     7.611     0.326    73.870     0.064

        7.    20.771    33.234    -1.196     7.691     0.309    73.900     0.041

        8.    30.595    33.300    -1.058     7.669     0.300    73.940     0.046

        9.    50.613    33.370    -0.878     7.592     0.296    74.030     0.055

       10.   100.852    33.886    -0.483     4.992     0.295    73.640     0.016

       11.   150.428    34.162    -0.141     4.431     0.295    73.460     0.015

       12.   161.778    34.189    -0.068     4.348     0.295    73.470     0.013

       13.   200.267    34.278     0.153     4.277     0.295    72.990     0.033

       14.   225.691    34.311     0.157     4.337     0.296    73.890     0.019

       15.   320.866    34.546     0.853     4.074     0.296    74.740     0.023

       16.   400.613    34.640     1.174     4.035     0.296    74.740     0.012

      *17.   791.558    34.700     1.188     4.108     0.295    74.380     0.008

      *18.   791.479    34.700     1.188     4.106     0.296    74.360     0.005

Station:260.000/52/1 Latitude=68  52.10S Longitude=068 57.87W Depth:448 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.964    33.320    -0.890     7.863     1.023    73.330     0.042

       *2.     2.065    33.320    -0.890     7.862     1.035    73.340     0.044

        3.     5.484    33.318    -0.888     7.851     0.485    73.390     0.072

        4.     5.709    33.319    -0.886     7.859     0.461    73.400     0.069

       *5.     9.320    33.320    -0.883     7.865     0.361    73.470     0.047

        6.    14.471    33.325    -0.890     7.878     0.321    72.750     0.031

       *7.    19.972    33.327    -0.880     7.859     0.306    73.550     0.052

       *8.    29.989    33.332    -0.858     7.851     0.297    73.610     0.066

        9.    50.822    33.368    -0.727     7.719     0.295    73.720     0.057

       10.    73.982    33.501    -0.294     7.304     0.294    73.850     0.042

       11.    99.268    33.683    -0.018     6.465     0.295    73.850     0.028

       12.   150.292    34.179    -0.153     4.522     0.295    74.080     0.030

       13.   199.266    34.415     0.472     3.967     0.296    73.210     0.034

       14.   250.118    34.475     0.646     3.932     0.296    73.200     0.046

       15.   299.180    34.520     0.780     3.960     0.295    74.310     0.021

       16.   400.688    34.540     0.846     3.941     0.295    74.380     0.017

      *17.   544.634    34.553     0.889     3.888     0.295    73.740     0.012

      *18.   543.791    34.553     0.889     3.897     0.296    73.780     0.020

Station:220.075/53/1 Latitude=68  44.28S Longitude=070 58.97W Depth:338 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.025    33.066    -1.697     7.922     1.214    73.400     0.039

       *2.     1.366    33.066    -1.696     7.926     1.102    73.390     0.046

        3.     5.566    33.065    -1.697     7.922     0.620    73.420     0.039

       *4.     4.910    33.067    -1.695     7.930     0.651    73.440     0.034

       *5.    10.244    33.083    -1.673     7.936     0.445    73.470     0.029

        6.    15.355    33.079    -1.680     7.962     0.373    73.490     0.041

        7.    20.181    33.112    -1.632     7.940     0.344    73.500     0.061

        8.    29.797    33.166    -1.546     7.880     0.318    73.520     0.064

        9.    50.562    33.287    -1.316     7.605     0.300    73.530     0.045

       10.    75.767    33.461    -0.908     6.640     0.296    73.390     0.031

       11.   100.958    33.832    -0.549     5.478     0.295    72.950     0.013

       12.   135.771    34.048    -0.386     4.655     0.294    73.350     0.013

       13.   240.269    34.352     0.270     4.117     0.294    72.460     0.028

      *14.   315.170    34.402     0.404     3.985     0.295    71.640     0.012

      *15.   314.651    34.402     0.403     3.977     0.295    71.650     0.020

Station:220.140/55/1 Latitude=68 23.96S Longitude=072 17.64W Depth:460 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     5.255    33.379    -1.083     7.974     0.721    74.030     0.053

       *2.     4.288    33.377    -1.066     7.962     0.684    74.080     0.048

       *3.     5.894    33.379    -1.085     7.974     0.539    74.100     0.068

        4.     4.371    33.379    -1.084     7.967     0.603    74.110     0.072

       *5.    10.063    33.379    -1.084     7.982     0.401    74.140     0.095

        6.    14.823    33.379    -1.083     7.998     0.341    74.180     0.084

        7.    20.189    33.379    -1.080     7.992     0.317    74.230     0.059

        8.    30.959    33.380    -1.080     7.996     0.301    74.300     0.055

        9.    50.033    33.418    -1.041     7.892     0.295    74.310     0.056

       10.    89.257    33.814    -0.608     6.308     0.295    74.350     0.043

       11.   181.694    34.349     0.221     4.374     0.294    74.310     0.010

       12.   200.442    34.389     0.269     4.621     0.295    74.540     0.013

      *13.   445.622    34.687     1.324     4.069     0.294    74.150     0.021

      *14.   447.482    34.687     1.324     4.076     0.294    74.160     0.003

Station:220.180/56/1 Latitude=68 10.55S Longitude=073 02.47W Depth:335 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     5.260    33.393    -1.230     8.134     0.534    74.060     0.094

       *2.     5.536    33.393    -1.230     8.122     0.509    74.060     0.095

        3.     5.349    33.393    -1.213     8.151     0.584    74.100     0.093

        4.     5.924    33.393    -1.218     8.148     0.567    74.090     0.086

        5.     9.678    33.392    -1.238     8.140     0.375    74.210     0.057

        6.    14.682    33.392    -1.237     8.150     0.334    74.290     0.061

       *7.    21.856    33.393    -1.239     8.166     0.309    74.350     0.097

       *8.    29.540    33.394    -1.238     8.163     0.298    74.410     0.072

        9.    49.255    33.603    -1.077     7.851     0.295    74.380     0.081

       10.    74.629    34.053    -0.458     5.063     0.294    74.440     0.022

       11.    99.725    34.151    -1.359     6.600     0.294    75.000     0.025

       12.   125.040    34.329    -0.019     4.766     0.295    74.740     0.042

       13.   150.895    34.445     0.429     4.444     0.295    74.830     0.030

       14.   200.870    34.539     0.783     4.265     0.294    74.900     0.047

       15.   274.281    34.675     1.348     4.044     0.295    74.800     0.013

      *16.   315.040    34.693     1.375     3.938     0.296    74.240     0.008

      *17.   314.618    34.693     1.375     3.932     0.294    74.210     0.012

Station:220.220/57/1 Latitude=67 56.80S Longitude=073 47.12 W Depth:419 m

       *1.     3.550    33.562    -1.138     7.983     0.647    73.860     0.092

       *2.     5.069    33.562    -1.138     7.977     0.649    73.830     0.080

        3.     4.933    33.562    -1.138     7.974     0.579    73.820     0.074

        4.    11.553    33.562    -1.138     8.004     0.366    73.980     0.083

        5.    13.967    33.562    -1.137     8.006     0.346    74.140     0.112

       *6.    20.029    33.562    -1.135     8.014     0.311    74.230     0.089

       *7.    29.071    33.562    -1.136     8.028     0.300    74.330     0.086

       *8.    50.322    33.577    -1.125     7.976     0.295    74.480     0.080

       *9.    71.222    33.869    -0.719     6.438     0.295    74.730     0.051

       10.    91.912    34.041    -1.020     6.037     0.293    74.940     0.030

       11.   109.340    34.128    -1.344     6.613     0.295    75.150     0.015

       12.   138.210    34.187    -1.424     6.479     0.294    75.320     0.011

       13.   199.752    34.507     0.644     4.389     0.295    75.190     0.018

       14.   243.099    34.586     0.946     4.209     0.294    75.100     0.020

       15.   300.814    34.660     1.320     4.094     0.294    75.010     0.006

      *16.   410.844    34.714     1.455     4.084     0.294    74.520     0.017

      *17.   412.706    34.714     1.454     4.082     0.293    74.500     0.011

Station:180.241/64/1 Latitude=68 05.75S Longitude=074 46.82W Depth:413 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    -0.978     9.473    -1.323     9.317     3.226    59.660     0.040

       *2.     0.327    33.685    -1.346     7.883     1.432    60.850     0.075

       *3.     9.196    33.731    -1.354     7.867     0.404    74.190     0.067

        4.     9.861    33.731    -1.357     7.892     0.383    74.160     0.063

        5.     9.508    33.731    -1.358     7.892     0.405    74.180     0.062

       *6.    11.096    33.731    -1.357     7.903     0.368    74.310     0.061

        7.    15.705    33.731    -1.357     7.913     0.331    74.410     0.108

        8.    19.441    33.731    -1.357     7.913     0.306    74.580     0.053

        9.    29.242    33.731    -1.352     7.941     0.292    74.670     0.076

       10.    49.390    33.732    -1.350     7.960     0.290    74.770     0.100

       11.    72.648    33.757    -1.296     7.727     0.294    74.940     0.064

       12.    95.459    34.050    -1.273     6.550     0.291    75.190     0.017

       13.   118.661    34.135    -1.619     6.829     0.290    75.330     0.022

       14.   149.842    34.174    -1.458     6.563     0.296    75.390     0.019

      *15.   199.283    34.406     0.212     4.819     0.289    75.230     0.047

      *16.   300.363    34.687     1.684     4.059     0.294    75.130     0.038

       17.   400.945    34.700     1.361     4.058     0.285    74.530     0.001

       18.   397.211    34.699     1.362     4.056     0.293    74.490     0.005

Station:180.220/65/1 Latitude=68 13.19S Longitude=074 23.96W Depth:440 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    -0.380    29.536    -1.241     8.214     4.246    58.580     0.088

       *2.     1.262    33.681    -1.242     7.977     1.510    73.820     0.099

        3.     6.007    33.680    -1.243     7.976     0.582    73.990     0.084

        4.     5.515    33.680    -1.245     7.988     0.609    74.020     0.070

       *5.    11.571    33.675    -1.254     7.999     0.440    74.130     0.070

       *6.    11.061    33.675    -1.254     7.998     0.441    74.160     0.083

       *7.     9.215    33.675    -1.255     8.003     0.444    74.180     0.097

        8.    11.221    33.677    -1.252     7.983     0.394    74.180     0.111

        9.    15.501    33.694    -1.212     7.945     0.370    74.290     0.065

       10.    18.002    33.674    -1.260     8.010     0.348    74.440     0.093

       11.    29.313    33.694    -1.213     7.968     0.315    74.580     0.071

       12.    49.267    33.705    -1.186     7.960     0.299    74.690     0.071

       13.    68.947    33.722    -1.188     7.749     0.296    74.810     0.108

       14.    89.089    34.060    -1.510     6.830     0.290    75.190     0.024

       15.   112.016    34.120    -1.588     6.874     0.294    75.280     0.020

       16.   152.443    34.238    -0.836     5.837     0.294    75.300     0.010

      *17.   209.500    34.468     0.500     4.472     0.294    75.130     0.049

      *18.   300.162    34.628     1.089     4.133     0.296    75.060     0.003

       19.   432.957    34.695     1.288     4.006     0.297    74.270     0.015

       20.   430.855    34.694     1.288     4.007     0.290    74.210     0.026

Station:180.180/66/1 Latitude=68 27.06S Longitude=073 39.71W Depth:551 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     0.761    33.212    -1.317     8.172     1.830    73.700     0.054

       *2.     2.277    33.212    -1.318     8.169     0.914    74.070     0.048

       *3.     9.579    33.213    -1.321     8.175     0.475    74.320     0.037

        4.    15.553    33.213    -1.324     8.194     0.382    74.390     0.048

        5.    19.749    33.213    -1.324     8.189     0.363    74.420     0.064

       *6.    28.922    33.217    -1.321     8.209     0.329    74.470     0.045

        7.    50.835    33.444    -1.097     7.753     0.303    74.690     0.057

        8.    75.361    33.949    -0.946     6.404     0.297    74.850     0.072

        9.   103.642    34.114    -1.092     6.216     0.298    74.990     0.026

       10.   200.503    34.454     0.432     4.533     0.294    75.060     0.024

       11.   300.686    34.633     1.106     4.126     0.294    75.010     0.015

      *12.   516.566    34.699     1.294     4.002     0.295    74.090     0.019

      *13.   516.179    34.699     1.294     4.002     0.294    74.070     0.035

Station:180.140/67/1 Latitude=68 40.05S Longitude=072 56.51W Depth:519 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    -0.776    16.195    -1.162     9.182     2.061    45.970     0.041

       *2.     1.535    33.435    -1.185     8.150     0.718    73.860     0.056

        3.     6.163    33.436    -1.185     8.136     0.460    73.990     0.057

        4.     5.525    33.435    -1.175     8.132     0.501    74.030     0.061

        5.     9.804    33.437    -1.202     8.160     0.368    74.280     0.099

        6.    10.543    33.436    -1.203     8.150     0.367    74.280     0.098

        7.    10.510    33.437    -1.201     8.156     0.366    74.310     0.068

        8.     9.540    33.437    -1.200     8.149     0.366    74.320     0.057

       *9.    16.338    33.437    -1.200     8.164     0.317    74.400     0.058

       10.    20.624    33.438    -1.199     8.172     0.303    74.490     0.098

       11.    29.858    33.441    -1.194     8.192     0.298    74.560     0.071

       12.    50.765    33.451    -1.198     8.184     0.294    74.650     0.061

       13.    69.732    33.640    -0.874     7.305     0.295    74.710     0.079

       14.   113.274    34.062    -0.996     6.138     0.295    74.940     0.042

       15.   149.321    34.264    -0.501     5.402     0.295    75.020     0.018

       16.   221.464    34.463     0.458     4.529     0.294    75.310     0.051

       17.   221.949    34.463     0.455     4.524     0.295    75.320     0.039

       18.   263.913    34.528     0.780     4.198     0.295    74.860     0.040

      *19.   261.455    34.529     0.780     4.207     0.296    74.940     0.040

      *20.   349.188    34.637     1.141     4.064     0.295    74.680     0.010

       21.   495.013    34.695     1.325     4.038     0.295    74.570     0.011

       22.   498.261    34.695     1.326     4.039     0.294    74.570     0.022

Station:180.100/68/1 Latitude=68 54.13S Longitude=072 08.48W Depth:245 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    -0.417    28.459    -1.133     8.260     2.066    65.570     0.078

       *2.     0.891    33.351    -1.134     8.004     1.007    73.920     0.079

        3.     2.141    33.351    -1.133     7.988     0.662    73.930     0.075

        4.     6.924    33.351    -1.135     8.000     0.458    74.050     0.079

       *5.     6.177    33.351    -1.132     8.004     0.477    74.070     0.055

       *6.     6.254    33.351    -1.134     8.003     0.469    74.050     0.051

        7.    10.503    33.351    -1.135     7.997     0.371    74.130     0.049

        8.    14.818    33.351    -1.133     8.013     0.327    74.170     0.045

        9.    19.442    33.352    -1.135     8.001     0.312    74.190     0.042

       10.    30.950    33.356    -1.129     7.957     0.300    74.230     0.042

       11.    50.158    33.722    -0.467     6.179     0.295    74.200     0.066

      *12.    75.099    33.930    -0.415     5.289     0.296    73.910     0.038

      *13.   101.140    34.063    -0.369     4.823     0.296    74.040     0.025

       14.   148.844    34.205    -0.094     4.400     0.295    70.230     0.017

       15.   214.285    34.263     0.030     4.255     0.295    69.760     0.045

       16.   214.879    34.263     0.030     4.261     0.295    69.740     0.048

Station:140.100/69/1 Latitude=69 11.14S Longitude=072 46.46W Depth:165m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.806    33.193    -1.429     7.931     0.923    69.420     0.027

       *2.     2.539    33.193    -1.429     7.933     0.922    69.960     0.038

        3.     6.007    33.195    -1.428     7.938     0.573    70.150     0.034

        4.     5.911    33.194    -1.430     7.933     0.552    70.130     0.034

        5.    10.118    33.192    -1.432     7.940     0.390    70.100     0.032

        6.    15.620    33.216    -1.393     7.953     0.326    70.720     0.037

        7.    20.896    33.212    -1.399     7.955     0.305    70.630     0.037

        8.    31.166    33.230    -1.367     7.976     0.298    71.020     0.035

        9.    50.520    33.284    -1.298     7.955     0.294    72.330     0.045

       10.    66.916    33.301    -1.277     7.929     0.294    72.850     0.044

       11.   100.710    33.431    -1.085     7.748     0.294    73.010     0.053

       12.   119.644    33.587    -1.121     5.831     0.294    64.830     0.033

       13.   120.623    33.631    -1.075     5.779     0.294    63.540     0.028

      *14.   145.329    34.012    -0.433     4.925     0.296    60.440     0.073

      *15.   145.043    34.006    -0.438     4.916     0.294    60.130     0.068

Station:140.140/70/1 Latitude=68 57.19S Longitude=073 32.50W Depth:195 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     3.193    33.352    -1.228     8.116     0.709    74.120     0.046

       *2.     2.902    33.351    -1.227     8.123     0.785    74.100     0.047

       *3.     5.042    33.351    -1.231     8.121     0.517    74.150     0.053

        4.     5.588    33.351    -1.232     8.134     0.505    74.130     0.049

        5.     9.747    33.351    -1.231     8.130     0.384    74.130     0.057

        6.    15.753    33.354    -1.233     8.124     0.327    74.160     0.046

        7.    20.919    33.366    -1.225     8.089     0.311    74.160     0.055

        8.    29.765    33.446    -1.159     7.988     0.299    74.160     0.060

        9.    50.997    33.524    -1.075     7.791     0.295    74.040     0.071

       10.    74.964    33.881    -0.557     5.818     0.296    73.820     0.064

       11.   100.257    34.083    -0.372     5.022     0.295    72.020     0.050

       12.   150.634    34.235    -0.108     4.650     0.294    70.920     0.066

      *13.   176.251    34.253    -0.062     4.626     0.295    71.970     0.048

      *14.   175.435    34.249    -0.073     4.614     0.295    72.020     0.051

Station:140.180/71/1 Latitude=68 43.40S Longitude=074 17.65W Depth:532 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    -0.388    24.552    -0.953     8.375     2.920    50.630     0.067

       *2.     1.811    33.435    -0.960     7.871     0.928    74.160     0.070

       *3.     9.878    33.439    -0.964     7.886     0.373    74.650     0.049

        4.    10.420    33.434    -0.960     7.875     0.374    74.690     0.041

        5.     9.722    33.433    -0.961     7.892     0.382    74.710     0.039

        6.    10.017    33.432    -0.960     7.898     0.381    74.720     0.039

        7.    14.700    33.454    -0.967     7.889     0.330    74.810     0.060

       *8.    19.655    33.459    -0.972     7.901     0.319    74.860     0.074

       *9.    30.705    33.570    -0.980     7.877     0.301    74.940     0.058

       10.    51.410    33.594    -0.882     7.723     0.296    75.000     0.049

       11.    73.803    33.810    -0.919     6.390     0.295    75.140     0.022

       12.   101.392    33.996    -0.681     5.610     0.295    74.830     0.025

       13.   149.902    34.307    -0.062     4.895     0.295    75.250     0.008

       14.   199.213    34.479     0.582     4.355     0.295    75.160     0.012

       15.   249.655    34.562     0.869     4.214     0.295    75.370     0.015

      *16.   302.341    34.625     1.124     4.130     0.295    75.470     0.040

      *17.   400.558    34.680     1.262     4.054     0.295    75.170     0.009

       18.   514.619    34.690     1.283     4.029     0.295    74.760     0.014

       19.   516.086    34.690     1.283     4.024     0.295    74.770     0.015

Station:140.220/72/1 Latitude=68 29.33S Longitude=075 02.31W Depth:440 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.554    33.640    -1.338     7.999     2.874    74.430     0.065

       *2.    10.647    33.641    -1.340     8.008     1.357    74.510     0.067

       *3.    10.190    33.640    -1.340     8.021     1.359    74.510     0.066

        4.    13.309    33.642    -1.341     8.012     1.073    74.250     0.102

        5.    13.614    33.640    -1.338     8.022     1.021    74.490     0.110

       *6.    13.475    33.643    -1.342     8.009     1.014    74.590     0.092

       *7.    12.639    33.642    -1.341     8.016     1.056    74.360     0.094

        8.    14.439    33.641    -1.340     8.030     0.980    74.230     0.059

        9.    20.021    33.639    -1.338     8.033     0.782    74.750     0.062

       10.    31.463    33.640    -1.339     8.041     0.526    74.810     0.075

       11.    51.941    33.738    -1.546     7.988     0.385    74.740     0.072

       12.    70.111    33.798    -1.456     7.615     0.336    74.480     0.056

       13.    95.173    34.076    -1.409     6.557     0.308    74.750     0.027

       14.   132.458    34.156    -1.564     6.689     0.298    75.130     0.046

      *15.   200.254    34.419     0.221     4.686     0.296    75.190     0.024

      *16.   319.914    34.648     1.151     4.071     0.296    75.000     0.037

       17.   320.710    34.648     1.153     4.062     0.296    75.040     0.058

       18.   417.973    34.696     1.306     4.011     0.295    74.450     0.009

       19.   420.355    34.696     1.305     4.012     0.295    74.510     0.016

**Station:100.220/75/1 Latitude=68 45.15S Longitude=075 41.24W Depth:460 m

Station:100.180/76/1 Latitude=68 59.60S Longitude=074 56.50W Depth:402 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.754    33.220    -1.225     8.135     0.946    74.140     0.081

       *2.     2.240    33.220    -1.225     8.136     0.867    74.040     0.073

        3.     5.709    33.221    -1.228     8.145     0.481    74.280     0.048

        4.     5.763    33.220    -1.229     8.124     0.511    74.210     0.047

       *5.     5.915    33.220    -1.231     8.140     0.509    74.270     0.041

        6.     5.807    33.220    -1.230     8.144     0.526    74.330     0.036

        7.     9.400    33.220    -1.232     8.160     0.375    74.120     0.069

        8.    14.625    33.221    -1.232     8.174     0.335    74.350     0.045

        9.    19.908    33.221    -1.231     8.166     0.316    74.080     0.036

       10.    31.829    33.222    -1.230     8.173     0.300    74.670     0.040

       11.    50.558    33.226    -1.225     8.166     0.294    74.410     0.071

       12.    75.425    33.447    -0.845     7.454     0.294    74.730     0.030

       13.    98.990    33.758    -0.670     6.635     0.294    74.600     0.031

       14.   125.501    33.986    -0.953     6.005     0.294    74.740     0.015

       15.   149.394    34.105    -1.053     6.076     0.294    75.240     0.020

      *16.   201.727    34.411     0.309     4.564     0.294    74.970     0.049

      *17.   302.074    34.606     1.003     4.129     0.296    74.770     0.010

       18.   398.314    34.626     1.069     4.062     0.294    74.370     0.003

       19.   397.134    34.626     1.069     4.067     0.294    74.150     0.019

Station:100.140/77/1 Latitude=69 13.56S Longitude=074 10.82W Depth:644 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.621    33.249    -1.143     8.088     0.998    74.380     0.082

       *2.     1.672    33.250    -1.143     8.074     0.925    74.400     0.086

        3.     5.168    33.248    -1.143     8.085     0.564    74.440     0.042

       *4.     5.321    33.248    -1.143     8.083     0.565    74.430     0.047

       *5.    10.861    33.249    -1.143     8.092     0.384    74.480     0.024

       *6.    15.268    33.248    -1.143     8.108     0.326    74.530     0.038

        7.    19.568    33.249    -1.143     8.097     0.310    74.460     0.043

        8.    31.119    33.300    -1.109     8.069     0.299    74.520     0.040

        9.    51.392    33.441    -1.020     7.985     0.295    74.550     0.072

       10.    70.909    33.489    -1.095     8.029     0.294    74.730     0.094

       11.   104.446    33.728    -0.715     6.700     0.294    74.810     0.055

       12.   146.218    34.016    -1.142     6.124     0.294    75.130     0.056

       13.   196.161    34.152    -1.694     6.725     0.295    75.330     0.027

       14.   303.525    34.525     0.700     4.256     0.295    74.890     0.006

       15.   433.678    34.595     0.946     4.067     0.295    74.820     0.062

      *16.   615.558    34.614     1.009     3.993     0.295    74.220     0.013

      *17.   615.347    34.614     1.008     4.000     0.295    74.230     0.012

Station:60.140/78/1 Latitude=69 29.80S Longitude=074 50.83W Depth:333 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     0.990    33.349    -1.136     7.958     1.007    73.540     0.028

       *2.     1.432    33.352    -1.134     7.937     0.960    73.500     0.042

       *3.     5.488    33.366    -1.112     7.917     0.516    73.570     0.036

        4.     5.405    33.366    -1.113     7.918     0.535    73.520     0.033

       *5.    10.295    33.356    -1.127     7.949     0.363    73.490     0.042

        6.    15.702    33.345    -1.143     7.987     0.325    73.660     0.039

        7.    20.161    33.342    -1.146     7.971     0.309    73.630     0.038

        8.    30.872    33.381    -1.096     7.913     0.297    73.410     0.027

        9.    50.732    33.404    -1.085     7.748     0.295    72.660     0.038

       10.    99.286    33.748    -0.904     6.025     0.295    68.670     0.019

       11.   168.557    34.164    -0.513     5.383     0.295    73.400     0.027

       12.   290.158    34.458     0.456     4.380     0.294    73.650     0.039

      *13.   311.904    34.458     0.456     4.363     0.295    73.560     0.020

      *14.   313.116    34.459     0.461     4.362     0.295    73.510     0.026

Station:60.180/79/1 Latitude=69 15.47S Longitude=075 36.60W Depth:462 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.085    33.250    -1.151     8.036     0.972    74.310     0.034

       *2.     2.450    33.250    -1.151     8.044     0.706    74.420     0.029

        3.     4.996    33.249    -1.151     8.048     0.600    74.500     0.051

        4.     4.941    33.249    -1.151     8.058     0.591    74.480     0.068

        5.     9.979    33.250    -1.150     8.057     0.402    74.550     0.053

        6.     9.857    33.250    -1.151     8.044     0.401    74.560     0.035

       *7.    14.914    33.250    -1.150     8.061     0.345    74.560     0.031

        8.    19.657    33.250    -1.149     8.068     0.318    74.570     0.035

        9.    30.284    33.274    -1.127     8.053     0.301    74.720     0.067

       10.    49.920    33.448    -0.991     7.926     0.296    74.780     0.055

       11.    75.591    33.812    -0.677     6.286     0.295    74.570     0.019

       12.    99.912    34.031    -0.879     5.812     0.295    74.940     0.018

       13.   125.052    34.143    -0.723     5.625     0.295    75.290     0.014

       14.   150.282    34.222    -0.628     5.545     0.296    75.350     0.019

      *15.   199.489    34.460     0.447     4.438     0.295    75.280     0.006

      *16.   301.556    34.579     0.895     4.120     0.295    74.630     0.010

       17.   391.802    34.620     1.031     4.036     0.295    74.630     0.021

       18.   392.397    34.620     1.031     4.037     0.296    74.620     0.002

Station:60.220/80/1 Latitude=69 01.23S Longitude=076 21.41W Depth:435 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.855    33.586    -1.237     7.929     0.897    74.760     0.046

       *2.     4.626    33.587    -1.233     7.940     0.590    74.840     0.052

        3.     5.379    33.586    -1.233     7.943     0.522    74.840     0.049

        4.    10.130    33.586    -1.238     7.959     0.398    74.930     0.071

        5.    10.044    33.585    -1.240     7.949     0.384    74.930     0.071

        6.    14.570    33.585    -1.264     7.973     0.335    75.000     0.090

        7.    19.158    33.586    -1.258     7.975     0.320    75.060     0.048

        8.    30.096    33.600    -1.254     7.945     0.303    75.100     0.053

       *9.    29.530    33.609    -1.247     7.934     0.303    75.100     0.058

       10.    50.102    33.686    -1.494     7.991     0.296    75.300     0.050

       11.    73.888    33.836    -1.652     7.837     0.295    75.400     0.044

       12.    99.482    34.015    -1.465     6.736     0.295    75.510     0.014

       13.   125.095    34.116    -1.238     6.200     0.295    75.500     0.027

       14.   149.658    34.235    -0.696     5.517     0.295    75.510     0.056

       15.   201.177    34.440     0.317     4.550     0.296    75.510     0.006

       16.   254.498    34.606     0.990     4.131     0.296    75.280     0.046

       17.   253.519    34.606     0.991     4.139     0.296    75.380     0.042

      *18.   299.545    34.657     1.157     4.062     0.296    75.180     0.006

      *19.   425.864    34.710     1.266     4.096     0.296    74.780     0.003

       20.   426.944    34.710     1.267     4.088     0.297    74.810     0.011

Station:60.255/81/1 Latitude=68 48.23S Longitude=077 00.70W Depth:701 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.658    33.805    -1.639     8.033     1.592    75.350     0.046

       *2.     1.847    33.805    -1.653     8.047     1.590    75.340     0.038

        3.     5.096    33.803    -1.613     8.040     1.090    75.370     0.046

        4.     4.269    33.804    -1.635     8.056     1.122    75.420     0.051

        5.    10.277    33.804    -1.659     8.075     0.739    75.430     0.079

       *6.    14.384    33.803    -1.658     8.078     0.630    75.470     0.068

        7.    17.742    33.804    -1.658     8.089     0.563    75.590     0.049

       *8.    29.385    33.803    -1.656     8.121     0.456    75.600     0.045

        9.    50.731    33.811    -1.683     8.110     0.362    75.630     0.038

       10.    74.810    33.833    -1.687     7.876     0.322    75.630     0.042

       11.   101.614    34.104    -1.623     6.752     0.306    75.860     0.023

       12.   180.390    34.425     0.315     4.751     0.297    75.920     0.008

       13.   251.716    34.580     1.153     4.233     0.296    75.930     0.024

       14.   340.440    34.682     1.634     4.072     0.296    75.890     0.023

       15.   355.294    34.685     1.593     4.103     0.296    75.890     0.009

       16.   453.130    34.710     1.611     4.162     0.295    75.760     0.011

       17.   543.693    34.715     1.596     4.182     0.296    75.690     0.012

      *18.   690.544    34.724     1.485     4.271     0.296    75.530     0.004

      *19.   689.050    34.724     1.492     4.277     0.296    75.520     0.002

Station:20.260/82/1 Latitude=69 02.16S Longitude=077 45.74W Depth:420 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.052    33.834    -1.628     7.805     0.780    75.070     0.074

       *2.     4.065    33.834    -1.630     7.780     0.582    75.230     0.064

        3.     6.407    33.834    -1.628     7.793     0.456    75.230     0.071

        4.     9.031    33.833    -1.627     7.795     0.395    75.240     0.077

       *5.    10.915    33.833    -1.625     7.782     0.363    75.170     0.071

        6.    16.363    33.833    -1.620     7.805     0.334    75.240     0.077

        7.    20.346    33.834    -1.623     7.820     0.322    75.290     0.070

        8.    30.917    33.839    -1.616     7.732     0.304    75.360     0.072

        9.    51.250    33.925    -1.625     7.365     0.297    75.310     0.048

       10.   111.056    34.130    -1.693     6.751     0.296    75.440     0.016

       11.   221.714    34.508     0.637     4.456     0.296    75.350     0.040

       12.   300.842    34.666     1.413     4.085     0.295    75.160     0.007

      *13.   393.569    34.700     1.309     4.054     0.295    74.740     0.030

      *14.   394.513    34.701     1.304     4.055     0.295    74.730     0.032

Station:20.220/83/1 Latitude=69 17.05S Longitude=077 01.73W Depth:408 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    -0.183    29.934    -1.464     8.188     2.176    60.140     0.083

       *2.     1.983    33.648    -1.464     7.975     0.856    74.180     0.096

        3.     4.527    33.648    -1.466     7.988     0.579    74.740     0.053

        4.     4.736    33.648    -1.466     7.979     0.575    74.650     0.039

        5.     9.957    33.648    -1.467     7.985     0.404    74.860     0.039

       *6.    10.352    33.648    -1.467     7.975     0.401    74.840     0.045

        7.    15.162    33.647    -1.466     8.005     0.341    74.990     0.070

        8.    20.498    33.664    -1.487     8.006     0.315    75.060     0.082

        9.    30.175    33.660    -1.482     8.024     0.301    75.130     0.049

       10.    50.032    33.747    -1.569     7.977     0.295    75.250     0.046

       11.    50.444    33.747    -1.569     7.984     0.296    75.270     0.039

       12.    75.479    33.780    -1.604     7.961     0.295    75.340     0.040

       13.   101.402    33.868    -1.554     7.390     0.295    75.410     0.049

       14.   125.432    34.117    -1.115     6.089     0.295    75.430     0.034

       15.   151.465    34.177    -1.392     6.420     0.296    75.640     0.023

       16.   199.996    34.438     0.230     4.686     0.295    75.600     0.021

      *17.   248.595    34.580     0.876     4.202     0.295    75.490     0.003

      *18.   300.882    34.645     1.167     4.154     0.296    75.420     0.016

       19.   393.610    34.706     1.355     4.136     0.296    75.050     0.011

       20.   392.897    34.706     1.355     4.137     0.295    75.040     0.013

Station:20.180/84/1 Latitude=69 31.47S Longitude=076 18.02W Depth:418 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.613    33.248    -1.197     8.010     3.261    74.420     0.042

       *2.     4.691    33.248    -1.199     7.993     2.156    74.460     0.036

        3.     5.481    33.248    -1.200     7.985     2.043    74.450     0.039

        4.    10.272    33.247    -1.199     7.996     1.335    74.510     0.070

        5.     9.666    33.247    -1.200     8.011     1.370    74.510     0.079

        6.    15.395    33.259    -1.184     7.982     0.910    74.560     0.049

        7.    19.461    33.322    -1.128     7.963     0.736    74.630     0.040

        8.    29.200    33.426    -1.066     7.892     0.548    74.720     0.047

        9.    50.297    33.490    -1.117     7.859     0.378    74.920     0.053

       10.    48.919    33.495    -1.116     7.853     0.379    74.940     0.047

       11.    73.900    33.726    -0.671     6.392     0.320    74.240     0.022

       12.    98.965    33.887    -0.674     5.827     0.302    74.360     0.013

       13.   124.168    34.014    -0.751     5.687     0.298    75.050     0.011

       14.   149.924    34.078    -1.301     6.420     0.297    75.350     0.023

       15.   202.985    34.297    -0.237     5.116     0.296    75.270     0.040

      *16.   301.278    34.530     1.000     4.033     0.296    74.990     0.010

      *17.   396.142    34.633     1.061     4.019     0.295    74.710     0.034

       18.   397.376    34.632     1.060     4.021     0.295    74.630     0.036

Station:-034.161/85/1 Latitude=69 59.94S Longitude=076 53.63W Depth:860 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.400    33.275    -1.370     8.067     1.021    74.750     0.034

       *2.     1.546    33.276    -1.369     8.076     1.054    74.820     0.030

        3.     5.757    33.275    -1.361     8.076     0.534    74.810     0.066

       *4.     5.987    33.275    -1.361     8.081     0.506    74.860     0.065

       *5.    10.828    33.275    -1.360     8.078     0.371    74.910     0.051

        6.    15.156    33.275    -1.358     8.092     0.337    74.950     0.049

        7.    20.917    33.278    -1.348     8.073     0.314    75.000     0.041

        8.    29.889    33.328    -1.272     8.032     0.300    75.060     0.049

        9.    48.551    33.374    -1.270     8.049     0.295    75.110     0.074

       10.    50.706    33.371    -1.275     8.031     0.296    75.120     0.060

       11.    76.520    33.629    -1.268     7.555     0.295    75.140     0.052

       12.   111.662    33.760    -1.292     7.251     0.294    75.140     0.037

       13.   202.166    34.203    -0.910     5.785     0.294    75.540     0.016

       14.   252.434    34.410     0.095     4.807     0.295    75.590     0.029

       15.   302.541    34.543     0.692     4.268     0.296    75.590     0.017

       16.   402.826    34.646     1.050     4.145     0.296    75.530     0.006

      *17.   833.177    34.711     1.169     4.077     0.296    74.600     0.013

      *18.   834.904    34.712     1.166     4.075     0.296    74.590     0.007

Station:-034.161/86/1 Latitude=70 37.98S Longitude=077 37.28W Depth:585 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.528    33.251    -1.439     8.089     0.976    74.600     0.054

       *2.     1.295    33.251    -1.439     8.081     0.940    74.550     0.063

        3.     5.662    33.252    -1.439     8.084     0.518    74.660     0.044

        4.     5.230    33.251    -1.439     8.078     0.526    74.660     0.040

        5.    11.836    33.254    -1.435     8.100     0.348    74.720     0.051

       *6.    15.251    33.270    -1.393     8.102     0.326    74.760     0.035

        7.    21.198    33.286    -1.345     8.105     0.309    74.790     0.037

        8.    29.995    33.290    -1.341     8.097     0.299    74.810     0.035

        9.    50.980    33.343    -1.262     8.066     0.295    74.810     0.039

       10.   171.809    33.989    -1.181     6.130     0.295    72.770     0.015

       11.   331.726    34.554     0.717     4.280     0.295    75.050     0.009

       12.   382.878    34.634     1.018     4.146     0.295    75.050     0.051

       13.   533.717    34.679     1.160     4.093     0.295    74.830     0.044

      *14.   578.805    34.678     1.155     4.087     0.295    74.610     0.008

      *15.   579.438    34.678     1.155     4.086     0.295    74.660     0.007

Station:062.122/87/1 Latitude=69 35.03S Longitude=074 27.06W Depth:170 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     0.480    33.122    -1.664     8.199     1.139    64.580     0.032

       *2.     0.432    33.122    -1.670     8.209     1.071    64.540     0.034

       *3.     5.109    33.123    -1.662     8.191     0.499    64.870     0.027

        4.     5.092    33.123    -1.672     8.203     0.503    64.750     0.037

        5.    10.375    33.124    -1.639     8.197     0.351    65.420     0.027

        6.    15.256    33.126    -1.615     8.193     0.314    65.730     0.029

        7.    20.149    33.129    -1.599     8.204     0.303    66.120     0.032

        8.    30.169    33.136    -1.565     8.202     0.297    66.610     0.029

        9.    50.644    33.192    -1.438     8.138     0.295    66.000     0.028

       10.    68.998    33.209    -1.404     8.103     0.296    66.190     0.031

       11.    79.957    33.230    -1.361     8.001     0.295    67.240     0.050

       12.   126.219    33.322    -1.249     7.641     0.294    66.530     0.030

      *13.   149.233    33.958    -0.570     5.393     0.295    69.240     0.040

      *14.   150.086    34.025    -0.479     5.402     0.297    69.300     0.046

Station:208.084/88/1 Latitude=68 47.00S Longitude=071 24.14W Depth:457 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     0.892    33.297    -1.366     7.812     1.036    72.930     0.082

       *2.     0.914    33.297    -1.360     7.809     0.996    72.920     0.074

        3.     5.444    33.298    -1.358     7.817     0.504    72.920     0.031

       *4.     5.569    33.298    -1.355     7.808     0.502    72.930     0.038

        5.    10.451    33.304    -1.309     7.806     0.377    72.980     0.043

       *6.    15.328    33.307    -1.305     7.800     0.330    73.000     0.038

        7.    21.031    33.317    -1.283     7.784     0.312    72.980     0.021

        8.    30.206    33.324    -1.234     7.790     0.301    72.970     0.032

        9.    49.487    33.341    -1.244     7.810     0.296    72.980     0.030

       10.    74.779    33.401    -1.087     7.641     0.296    72.970     0.036

       11.   149.794    34.069    -0.262     4.902     0.295    72.270     0.033

       12.   161.833    34.120    -0.185     4.660     0.296    71.970     0.026

       13.   282.714    34.438     0.542     4.142     0.296    71.990     0.023

       14.   358.347    34.565     0.914     4.019     0.295    71.550     0.050

      *15.   446.336    34.592     0.995     3.981     0.296    70.860     0.022

      *16.   445.607    34.592     0.994     3.971     0.296    70.830     0.020

Station:239.057/89/1 Latitude=68 42.86S Longitude=070 24.04W Depth:408 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.822    33.127    -1.774     7.882     0.846    73.050     0.037

       *2.     1.974    33.130    -1.774     7.889     0.848    73.010     0.054

        3.     4.720    33.128    -1.769     7.915     0.537    72.220     0.026

        4.     4.794    33.128    -1.770     7.904     0.527    73.010     0.036

        5.     9.695    33.129    -1.773     7.913     0.371    73.010     0.061

        6.    14.570    33.128    -1.765     7.929     0.327    73.070     0.036

        7.    19.597    33.128    -1.758     7.944     0.308    73.140     0.028

        8.    29.938    33.130    -1.732     7.940     0.299    73.110     0.049

        9.    49.683    33.139    -1.689     7.898     0.296    73.070     0.041

       10.    74.874    33.367    -1.096     7.171     0.296    73.010     0.025

       11.    99.401    33.515    -0.694     6.778     0.296    72.950     0.057

       12.   125.074    33.827    -0.364     5.642     0.296    72.980     0.024

       13.   150.342    33.977    -0.506     4.752     0.296    72.400     0.005

       14.   200.584    34.196    -0.118     4.475     0.296    72.070     0.007

       15.   250.752    34.410     0.464     4.116     0.296    72.080     0.020

      *16.   354.024    34.555     0.898     4.043     0.296    72.300     0.008

      *17.   354.141    34.555     0.899     4.043     0.297    72.290     0.012

Station:367.036/90/1 Latitude=67 53.50S Longitude=068 10.50W Depth:534 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.249    33.389    -0.791     7.964     2.234    71.900     0.050

       *2.     1.144    33.388    -0.790     7.962     2.273    71.900     0.050

        3.     5.628    33.389    -0.794     7.965     1.348    71.930     0.045

       *4.     5.684    33.389    -0.793     7.967     1.342    71.920     0.046

        5.    10.388    33.389    -0.789     7.975     0.944    71.920     0.043

        6.    15.468    33.389    -0.789     7.977     0.717    71.920     0.042

       *7.    20.482    33.389    -0.791     7.998     0.582    71.920     0.069

        8.    29.927    33.390    -0.785     7.990     0.444    71.900     0.087

        9.    50.674    33.397    -0.753     7.954     0.335    71.880     0.063

       10.    77.186    33.551    -0.294     7.529     0.304    72.060     0.044

       11.    96.511    33.610    -0.171     7.106     0.299    72.510     0.021

       12.   125.662    33.822    -0.023     6.160     0.297    72.720     0.047

       13.   175.943    34.295     0.241     3.880     0.297    72.910     0.020

       14.   219.426    34.464     0.665     3.695     0.297    73.270     0.012

       15.   418.603    34.641     1.176     3.772     0.297    73.250     0.042

      *16.   518.373    34.652     1.211     3.734     0.297    72.870     0.014

      *17.   518.604    34.652     1.211     3.735     0.297    72.870     0.013

Station:338.044/91/1 Latitude=68 04.21S Longitude=068 43.90W Depth:374 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.292    33.340    -0.927     7.983     0.764    72.430     0.064

       *2.     1.512    33.339    -0.927     7.985     0.688    72.430     0.062

        3.     5.318    33.341    -0.924     7.976     0.453    72.370     0.039

       *4.     4.915    33.341    -0.924     7.999     0.451    72.380     0.036

       *5.    10.497    33.349    -0.909     7.990     0.350    72.320     0.057

        6.    15.823    33.350    -0.906     7.999     0.317    72.270     0.046

        7.    19.997    33.360    -0.886     8.009     0.307    72.190     0.043

        8.    30.044    33.375    -0.810     7.990     0.299    72.130     0.053

        9.    51.733    33.423    -0.657     7.903     0.297    72.230     0.039

       10.   100.467    33.596    -0.283     7.581     0.297    72.560     0.045

       11.   150.087    33.801    -0.205     6.782     0.297    72.700     0.036

       12.   199.766    34.210     0.154     4.855     0.297    72.740     0.018

       13.   250.138    34.495     0.761     3.812     0.297    72.670     0.015

      *14.   359.832    34.606     1.070     3.693     0.298    72.040     0.048

      *15.   360.011    34.606     1.072     3.684     0.297    71.980     0.036

Station:344.052/92/1 Latitude=67 59.07S Longitude=068 47.95W Depth:126 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     0.463    33.391    -0.797     7.853     1.401    71.300     0.081

       *2.     0.639    33.391    -0.798     7.852     1.243    71.290     0.074

        3.     5.430    33.395    -0.774     7.850     0.509    71.240     0.045

        4.     4.962    33.393    -0.785     7.844     0.545    71.230     0.047

        5.    11.003    33.406    -0.718     7.827     0.354    71.190     0.047

        6.    15.717    33.412    -0.688     7.813     0.305    71.150     0.050

        7.    20.747    33.422    -0.643     7.806     0.298    71.150     0.045

        8.    25.449    33.426    -0.622     7.798     0.298    71.120     0.060

        9.    30.730    33.431    -0.588     7.789     0.299    71.070     0.077

       10.    39.948    33.441    -0.543     7.773     0.298    71.040     0.052

       11.    49.913    33.514    -0.421     7.653     0.297    71.350     0.038

       12.    66.263    33.622    -0.258     7.515     0.296    71.550     0.040

      *13.    89.919    33.640    -0.250     7.463     0.297    71.590     0.076

      *14.    89.788    33.640    -0.250     7.476     0.297    71.580     0.079

Station:351.071/93/1 Latitude=67 49.85S Longitude=069 03.94W Depth:149 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

        1.     2.215    33.392    -0.750     7.789     0.435    71.140     0.090

        2.     1.783    33.393    -0.750     7.798     0.480    71.140     0.064

        3.     6.151    33.392    -0.750     7.803     0.498    71.050     0.041

        4.     5.595    33.392    -0.753     7.805     0.462    71.030     0.036

       *5.     9.373    33.393    -0.748     7.778     0.322    70.970     0.059

       *6.    15.064    33.393    -0.740     7.790     0.308    70.880     0.041

        7.    19.664    33.406    -0.719     7.787     0.317    70.990     0.061

        8.    31.552    33.446    -0.515     7.751     0.299    71.030     0.045

        9.    49.350    33.498    -0.398     7.740     0.297    71.180     0.059

       10.    69.674    33.525    -0.360     7.755     0.296    71.350     0.059

       11.    69.384    33.526    -0.359     7.739     0.296    71.350     0.071

      *12.    98.790    33.559    -0.446     7.772     0.297    71.550     0.054

      *13.   118.629    33.594    -0.409     7.758     0.297    71.670     0.060

       14.   157.464    34.137     0.392     5.609     0.297    71.400     0.028

       15.   156.533    34.132     0.388     5.620     0.296    71.410     0.031

Station:348.084/94/1 Latitude=67 47.03S Longitude=069 22.13W Depth:265 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.079    33.581    -0.568     7.803     0.768    72.720     0.055

       *2.     1.422    33.580    -0.561     7.803     0.732    72.730     0.057

        3.     5.483    33.581    -0.555     7.795     0.444    72.690     0.048

        4.     5.308    33.581    -0.546     7.802     0.480    72.690     0.044

        5.     9.331    33.581    -0.532     7.807     0.363    72.670     0.052

        6.    14.973    33.582    -0.520     7.814     0.319    72.620     0.047

        7.    19.714    33.584    -0.513     7.810     0.308    72.590     0.047

        8.    29.912    33.595    -0.430     7.793     0.299    72.560     0.044

        9.    50.617    33.632    -0.205     7.680     0.296    72.530     0.046

       10.    75.031    33.709    -0.062     7.545     0.296    72.670     0.049

       11.    99.013    33.744    -0.050     7.380     0.296    72.610     0.050

       12.   118.905    33.887     0.014     6.697     0.296    72.530     0.037

       13.   150.387    34.104     0.112     5.883     0.296    72.530     0.023

      *14.   200.997    34.290     0.368     5.173     0.296    72.410     0.016

       15.   244.967    34.331     0.426     5.005     0.297    72.090     0.010

       16.   244.535    34.332     0.428     5.010     0.296    72.130     0.012

Station:339.099/95/1 Latitude=67 45.87S Longitude=069 46.46W Depth:312 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.785    33.693    -0.747     7.864     0.698    73.070     0.061

       *2.     0.740    33.694    -0.740     7.866     0.715    73.070     0.058

       *3.     4.864    33.696    -0.741     7.897     0.455    73.060     0.067

        4.     5.069    33.699    -0.728     7.883     0.465    73.080     0.069

        5.    10.758    33.720    -0.659     7.898     0.348    73.110     0.091

        6.    15.436    33.724    -0.652     7.901     0.321    73.110     0.063

        7.    20.693    33.727    -0.664     7.919     0.308    73.090     0.068

        8.    31.000    33.743    -0.685     7.904     0.299    73.080     0.061

        9.    50.730    33.766    -0.873     7.942     0.297    73.140     0.063

       10.    87.729    34.135    -0.314     5.939     0.297    72.880     0.030

       11.   113.860    34.294     0.305     4.846     0.296    72.550     0.046

       12.   166.050    34.466     0.655     4.343     0.297    72.580     0.004

      *13.   295.714    34.598     1.115     4.086     0.297    72.470     0.014

      *14.   295.785    34.598     1.114     4.085     0.297    72.460     0.017

Station:353.099/96/1 Latitude=67 40.06S Longitude=069 34.72W Depth:226 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.397    33.576    -0.346     7.732     0.643    72.250     0.038

       *2.     2.133    33.576    -0.345     7.734     0.698    72.260     0.040

       *3.     5.046    33.576    -0.331     7.731     0.479    72.240     0.048

        4.     4.791    33.576    -0.353     7.746     0.455    72.240     0.045

        5.     5.263    33.576    -0.358     7.735     0.475    72.230     0.041

        6.     9.808    33.575    -0.360     7.722     0.356    72.220     0.059

        7.    14.900    33.580    -0.370     7.734     0.320    72.190     0.083

        8.    19.966    33.634    -0.188     7.714     0.305    72.420     0.061

        9.    30.017    33.655    -0.319     7.747     0.298    72.550     0.055

       10.    50.269    33.687    -0.311     7.702     0.296    72.670     0.049

       11.    76.424    33.788    -0.229     7.331     0.296    72.760     0.045

      *12.   110.085    34.014     0.157     6.079     0.296    72.470     0.018

       13.   141.537    34.211     0.170     5.224     0.296    72.510     0.016

      *14.   198.759    34.377     0.425     4.603     0.295    72.820     0.012

       15.   242.753    34.479     0.698     4.370     0.296    73.060     0.005

       16.   244.106    34.484     0.717     4.374     0.296    73.070     0.003

Station:367.098/97/1 Latitude=67 34.41 S Longitude=069 23.07W Depth:137 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

        1.     1.474    33.271    -1.313     7.939     0.980    69.020     0.081

        2.     1.379    33.265    -1.322     7.951     0.821    68.940     0.078

        3.     5.663    33.276    -1.284     7.931     0.456    68.930     0.054

        4.     5.647    33.255    -1.352     7.963     0.462    69.010     0.054

        5.     9.360    33.291    -1.257     7.936     0.352    69.500     0.047

        6.    14.416    33.390    -1.063     7.843     0.320    71.130     0.052

        7.    19.003    33.543    -0.736     7.791     0.307    72.120     0.075

        8.    29.725    33.632    -0.701     7.814     0.298    72.590     0.049

        9.    49.166    33.694    -0.485     7.778     0.297    72.720     0.063

      *10.    83.705    33.734    -0.696     7.833     0.296    72.880     0.072

      *11.    99.596    33.763    -0.640     7.712     0.295    72.850     0.057

       12.   127.912    33.832    -0.103     7.020     0.297    72.470     0.073

       13.   126.744    33.827    -0.176     7.055     0.295    72.600     0.083

Station:372.110/98/1 Latitude=67 28.02S Longitude=069 31.93W Depth:488 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.516    33.374    -0.831     7.828     0.847    71.900     0.042

       *2.     1.633    33.372    -0.836     7.836     0.839    71.910     0.042

       *3.     4.885    33.371    -0.844     7.848     0.520    71.900     0.038

        4.     4.498    33.371    -0.846     7.855     0.534    71.900     0.040

        5.    10.044    33.375    -0.827     7.862     0.373    71.910     0.031

        6.    15.414    33.375    -0.826     7.852     0.325    71.910     0.037

        7.    20.088    33.402    -0.743     7.826     0.311    72.070     0.060

        8.    31.499    33.457    -0.452     7.793     0.301    72.080     0.074

        9.    50.462    33.490    -0.336     7.769     0.297    72.080     0.078

       10.    75.470    33.622    -0.032     7.652     0.296    72.530     0.075

       11.   101.508    33.723    -0.071     7.726     0.296    73.200     0.057

       12.   160.147    34.279     0.284     4.991     0.296    73.090     0.015

       13.   201.569    34.424     0.570     4.488     0.296    73.310     0.014

      *14.   271.998    34.588     1.056     4.114     0.296    73.330     0.036

      *15.   350.693    34.676     1.331     3.945     0.296    73.310     0.037

       16.   461.376    34.693     1.384     3.964     0.297    73.130     0.013

       17.   460.405    34.693     1.384     3.964     0.296    73.120     0.007

Station:379.120/99/1 Latitude=67 22.22S Longitude=069 36.40W Depth:438 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     2.047    33.287    -1.495     7.882     0.996    72.240     0.053

       *2.     2.574    33.288    -1.491     7.886     0.940    72.240     0.041

        3.     5.036    33.305    -1.419     7.884     0.680    72.240     0.048

        4.     5.069    33.320    -1.398     7.914     0.694    72.270     0.047

        5.    10.005    33.494    -0.526     7.782     0.475    72.470     0.037

        6.    15.965    33.531    -0.435     7.726     0.385    72.570     0.041

        7.    20.332    33.568    -0.177     7.455     0.350    72.340     0.040

        8.    29.757    33.643    -0.301     7.772     0.322    72.710     0.048

        9.    49.938    33.697    -0.306     7.868     0.303    73.250     0.059

       10.    74.513    33.714    -0.383     7.853     0.298    73.290     0.056

       11.   108.709    34.076     0.292     5.450     0.296    72.550     0.051

       12.   142.100    34.295    -0.159     5.335     0.296    73.840     0.019

       13.   201.790    34.519     0.835     4.234     0.296    73.720     0.050

      *14.   304.386    34.656     1.333     4.031     0.296    73.690     0.038

      *15.   385.307    34.679     1.360     3.974     0.296    73.490     0.039

       16.   436.530    34.684     1.367     3.950     0.297    73.300     0.017

       17.   436.868    34.684     1.367     3.945     0.296    73.310     0.012

Station:459.115/100/1 Latitude=66 48.76S Longitude=068 26.96W Depth:117 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     0.394    33.171    -1.573     7.943     0.648    70.030     0.055

       *2.     0.126    33.171    -1.579     7.956     0.906    70.010     0.052

       *3.     5.870    33.179    -1.501     7.934     0.345    70.100     0.070

        4.     6.040    33.176    -1.538     7.945     0.345    70.110     0.070

        5.    10.167    33.183    -1.565     7.947     0.317    70.220     0.078

        6.    15.238    33.210    -1.205     7.914     0.328    70.380     0.076

        7.    19.965    33.243    -1.021     7.867     0.312    70.710     0.076

        8.    30.935    33.283    -0.761     7.789     0.298    70.890     0.046

        9.    50.270    33.349    -0.661     7.742     0.296    70.660     0.043

       10.    63.905    33.465    -0.390     7.564     0.296    71.020     0.036

      *11.   114.456    33.779     0.073     6.674     0.296    70.760     0.076

      *12.   114.489    33.779     0.074     6.672     0.296    70.740     0.055

Station:458.265/101/1 Latitude=66 01.23S Longitude=071 10.20W Depth:2889 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.     1.273    33.692    -1.376     8.129     0.265     0.000     0.052

       *2.     1.046    33.692    -1.375     8.147     0.265     0.000     0.058

        3.     5.250    33.692    -1.360     8.160     0.265     0.000     0.059

        4.     5.542    33.694    -1.361     8.164     0.265     0.000     0.065

        5.     9.773    33.703    -1.330     8.171     0.265     0.000     0.090

        6.    16.316    33.717    -1.283     8.175     0.265     0.000     0.092

        7.    20.145    33.724    -1.258     8.162     0.266     0.000     0.079

        8.    28.997    33.730    -1.300     8.187     0.266     0.000     0.094

        9.    52.793    33.751    -1.197     8.169     0.267     0.000     0.095

       10.    79.511    33.982    -0.991     7.172     0.266     0.000     0.064

      *11.   153.219    34.467     1.036     4.457     0.265     0.000     0.013

       12.   246.607    34.631     1.851     3.922     0.265     0.000     0.043

      *13.   350.156    34.685     1.891     3.974     0.265     0.000    -0.002

       14.   452.357    34.708     1.867     4.102     0.265     0.000     0.045

       15.   551.432    34.720     1.772     4.203     0.265     0.000     0.002

       16.   606.569    34.722     1.716     4.217     0.265     0.000     0.005

       17.   864.930    34.728     1.461     4.352     0.265     0.000    -0.002

       18.  1526.148    34.716     0.915     4.613     0.265     0.000    -0.002

       19.  2045.289    34.706     0.580     4.765     0.265     0.000     0.008

       20.  2243.247    34.704     0.466     4.825     0.265     0.000    -0.001

       21.  2417.821    34.703     0.350     4.886     0.265     0.000    -0.005

       22.  2840.297    34.701     0.219     4.974     0.265     0.000     0.004

      *23.  2855.357    34.701     0.215     4.980     0.265     0.000     0.025

      *24.  2853.768    34.701     0.216     4.979     0.265     0.000     0.036

Station:506.271/102/1 Latitude=65 38.99S Longitude=070 38.81W Depth:3078 m

Bottle no    Depth     Salinity   Temp.    Oxygen     PAR     Trans       Fluor

       *1.    -0.740    33.690    -1.423     8.170     0.266     0.000     0.064

       *2.    -0.572    33.690    -1.422     8.173     0.266     0.000     0.056

        3.     4.977    33.692    -1.418     8.184     0.266     0.000     0.054

        4.     5.205    33.692    -1.418     8.186     0.266     0.000     0.056

        5.    10.663    33.699    -1.388     8.202     0.266     0.000     0.058

        6.    14.771    33.715    -1.318     8.199     0.266     0.000     0.055

        7.    20.250    33.734    -1.249     8.192     0.266     0.000     0.056

       *8.    30.792    33.748    -1.267     8.189     0.266     0.000     0.052

        9.    49.705    33.764    -1.259     8.127     0.266     0.000     0.064

       10.   100.748    34.301    -0.116     5.302     0.266     0.000     0.051

      *11.   179.659    34.602     2.012     3.918     0.266     0.000     0.009

       12.   250.043    34.649     2.037     3.917     0.266     0.000     0.016

      *13.   348.805    34.684     1.976     3.976     0.265     0.000     0.016

      *14.   390.461    34.697     1.934     4.021     0.266     0.000     0.010

       15.   448.177    34.704     1.903     4.067     0.266     0.000     0.028

       16.   581.957    34.721     1.730     4.171     0.266     0.000     0.004

       17.   820.522    34.724     1.457     4.269     0.266     0.000     0.006

       18.  1552.560    34.716     0.914     4.575     0.266     0.000     0.020

       19.  1860.613    34.710     0.697     4.671     0.266     0.000    -0.006

       20.  2049.469    34.707     0.580     4.725     0.266     0.000    -0.002

       21.  2259.190    34.705     0.466     4.783     0.266     0.000     0.003

       22.  2544.325    34.703     0.347     4.860     0.266     0.000     0.031

      *23.  3046.446    34.702     0.209     4.962     0.266     0.000     0.011

      *24.  3047.979    34.702     0.206     4.953     0.266     0.000     0.005


 

 

 

           

Appendix 4:  Summary of expendable conductivity-temperature-depth (CTD) probe drops made during the first U.S. Southern Ocean GLOBEC survey  cruise, NBP01-03.  Latitude and longitude are given in degrees south and west, respectively.  Total depth and cast depth are given in meters.  Event numbers for the XCTD drops may change pending final checking against the cruise event log.

 

DROP #

EVENT #

PROBE

LATITUDE

LONGITUDE

TOTAL DEPTH

CAST DEPTH

DATA QUALITY

1

NBP11701.030

XCTD

63 51.710

67 06.780

3160

 

Did not work

2

NBP11901.002

XCTD

64 59.779

69 29.829

2808

1000

Good  Cast

3

NBP11901.004

XCTD

65 10.966

69 41.62

2879

 

Did not work

4

NBP12401.007

XCTD

66 24.667

69 50.784

 

150

Good to 150 m

5

NBP12501.003

XCTD

67 01.32

72 18.38

420

180

Good to 180 m

6

NBP12801.016

XCTD

67 49.510

71 06.309

450

450

Good cast

7

NBP12801.017

XCTD

67 49.023

71 06.855

450

450

Good cast

8

NBP12801.019

XCTD

67 36.895

71 51.184

389

389

Good cast

9

NBP12901.002

XCTD

67 23.270

72 35.130

374

374

Good cast

10

NBP12901.005

XCTD

67 06.225

73 21.441

2363

1000

Good cast

11

NBP13001.016

XCTD

68 07.341

71 40.634

503

503

Good cast

12

NBP13001.018

XCTD

68 20.887

70 55.246

498

498

Good cast

13

NBP13101.001

XCTD

68 27.690

70 32.199

529

529

Good cast

14

NBP13101.003

XCTD

68 31.213

69 59.70

976

976

Good cast

15

NBP13401.011

XCTD

67 49.39

74 11.87

1132

175

Good to 175 m

16

NBP13401.017

XCTD

67 46.27

74 18.84

2360

1000

Good cast

17

NBP13401.021

XCTD

67 40.60

74 34.941

2514

1000

Good cast

18

NBP13401.027

XCTD

67 35.783

74 51.55

2747

1000

Good cast

19

NBP13401.029

XCTD

67 30.552

75 07.23

2900

1000

Good cast

20

NBP13701.015

XCTD

68 16.741

75 40.328

2081

1000

Good cast

21

NBP13701.022

XCTD

68 32.774

76 19.256

996

996

Good cast


Appendix 5:  Summary of the expendable bathythermograph (XBT) drops made during the first U.S. Southern Ocean GLOBEC survey cruise, NBP01-03.  Latitude and longitude are given in degrees south and west, respectively.  Total depth and cast depth are given in meters.  The event numbers for the XBT probe drops may change pending final checking against the cruise event log. 

 

 

DROP #

EVENT #

PROBE

LATITUDE

LONGITUDE

DEPTH

CAST DEP

DATA QUALITY

1

NBP11601.001

T7

59 11.299

65 55.755

4678

760

Good Cast

 

2

NBP11601.004

T7

59 20.855

65  58.032

3505

-

Bad Cast

3

NBP11601.005

T7

59 21.327

65  58.150

3505

760

Good Cast

4

NBP11601.006

T7

59 29.444

66 00.203

3628

-

Bad Cast

5

NBP11601.007

T7

59 29.941

66 00.319

3628

760

Good Cast

6

NBP11601.008

T7

59 39.329

66 02.519

3416

-

Bad Cast

7

NBP11601.009

T7

59 39.740

66 02.625

3308

-

Bad Cast

8

NBP11601.010

T7

59 40.207

66 02.751

3308

-

Bad Cast

9

NBP11601.011

T7

59 40.847

66 02.870

3308

-

Bad Cast

10

NBP11601.012

T7

59 41.662

66 02.970

3308

300

Wire Broke-300 m

11

NBP11601.013

T7

59 49.518

66 05.049

4269

413

Wire Broke-413 m

12

 

 

NBP11601.014

T7

59 50.083

66 05.195

4200

-

Bad Cast

13

NBP11601.015

T7

59 50.389

66 05.288

4194

760

Good Cast

14

NBP11601.016

T7

60 00.393

66 07.888

3349

760

Good Cast

15

NBP11601.017

T7

60 09.727

66 10.511

3575

300

Wire Broke-300 m

16

NBP11601.018

T7

60 10.290

66 10.660

3164

575

Wire Broke-575 m

17

NBP11601.019

T7

60 19.654

66 13.002

3122

760

Good Cast

18

NBP11601.020

T7

60 29.593

66 15.153

3074

760

Good Cast

19

NBP11601.021

T7

60 39.381

66 17.600

3438

760

Good Cast

20

NBP11701.001

T7

60 49.550

66 20.065

3879

176

Wire Broke-176 m

21

NBP11701.002

T7

60 50.450

66 20.270

3879

368

Wire Broke-368 m

22

NBP11701.003

T7

60 59.860

66 22.940

2657

59

Wire Broke-59 m

23

NBP11701.004

T7

61 00.210

66 23.080

2700

143

Wire Broke-143 m

24

NBP11701.005

T7

61 00.530

66 23.160

2700

668

Wire Broke-668 m

25

NBP11701.006

T7

61 09.470

66 25.360

3400

90

Wire Broke-90 m

26

NBP11701.007

T7

61 09.890

66 25.480

3400

164

Wire Broke 164 m

27

NBP11701.008

T7

61 10.280

66 25.570

3400

668

Wire Broke-668 m

28

NBP11701.009

T7

61 19.280

66 27.790

4287

564

Wire Broke-564 m

29

NBP11701.010

T7

61 30.320

66 30.560

4396

240

Wire Broke-240 m

30

NBP11701.011

T7

61 30.620

66 30.680

4397

543

Wire Broke-543 m

31

NBP11701.012

T7

61 31.080

66 30.860

4397

344

Wire Broke-344 m

32

NBP11701.013

T7

61 39.450

66 33.070

3978

760

Good Cast

33

NBP11701.014

T7

61 49.590

66 35.800

3819

760

Good Cast

34

NBP11701.015

T7

61 59.950

66 38.590

2505

325

Wire Broke-325 m

35

NBP11701.016

T7

62 00.490

66 38.740

3110

760

Good Cast

36

NBP11701.017

T7

62 09.469

66 40.881

3707

638

Wire Broke-638 m

37

NBP11701.018

T7

62 19.718

66 43.811

3585

760

Good Cast

38

NBP11701.019

T7

62 29.582

66 46.461

3626

760

Good Cast

39

NBP11701.020

T7

62 39.969

66 54.426

3523

735

Wire Broke-735 m

40

NBP11701.021

T7

62 49.432

67 08.076

3551

374

Wire Broke-374 m

41

NBP11701.022

T7

62 59.560

67 15.940

3530

200

Wire Broke-200 m

42

NBP11701.023

T7

62 59.980

67 16.211

3541

300

Wire Broke-300 m

43

NBP11701.024

T7

63 09.980

67 22.209

3771

760

Good Cast

44

NBP11701.025

T7

63 19.579

67 20.663

3715

760

Good Cast

45

NBP11701.026

T7

63 29.585

67 16.878

3535

760

Good Cast

46

NBP11701.027

T7

63 39.827

67 12.948

3374

760

Good Cast

47

NBP11701.031

T7

63 51.710

67 06.780

3160

121

Wire Broke-121 m

48

NBP11701.032

T7

63 52.000

67 06.100

3160

129

Wire Broke-129 m

49

NBP11701.033

T7

63  52.210

67  05.580

3160

391

Wire Broke-391 m

50

NBP11701.035

T7

64  06.733

66 31.283

979

760

Good Cast

51

NBP11901.005

T7

65  10.966

69 41.620

2879

-

Bad Cast

52

NBP11901.006

T7

65  10.966

69 41.620

2879

760

Good Cast

53

NBP11901.007

T7

65 19.203

69 50.521

2755

760

Good Cast

54

NBP11901.008

T7

65 27.656

69 59.776

2877

760

Good Cast

55

NBP11901.009

T7

65 37.403

70 10.395

2727

760

Good Cast

56

NBP12401.024

T7

66 49.500

72 55.190

3250

760

Good Cast

57

NBP12501.004

T7

67 01.566

72 17.580

407

407

Good Cast

58

NBP12901.001

T7

67 23.507

72 34.791

370

370

Good Cast

59

NBP12901.004

T7*

67 06.225

73 21.441

2363

760

Good Cast

60

NBP13101.029

T7

69 10.825

69 18.301

905

200

Wire Broke-200 m

61

NBP13101.030

T7

69 10.618

69 17.651

881

400

Wire Broke-400 m

62

 

NBP13201.024

T7

68 36.193

71 31.479

421

200

Wire Broke-200 m

63

NBP13201.025

T7

68 35.761

71 31.360

311

266

Wire Broke-266 m

64

NBP13201.028

T7

68 27.820

71 28.174

628

622

Wire Broke-622 m

65

NBP13401.008

T7

67 53.400

73 58.281

424

449

Good Cast

66

NBP13401.012

T5

67 48.936

74 13.042

1368

-

Bad Cast

67

NBP13401.013

T5

67 48.800

74 13.200

1368

-

Bad Cast

68

NBP13401.014

T7

67 48.758

74 13.425

1547

220

Wire Broke-220 m

69

NBP13401.015

T7

67 48.620

74 13.665

1553

200

Wire Broke-200 m

70

NBP13401.018

T7

67 45.792

74 18.898

2398

760

Data Questionable

71

NBP13401.022

T7

67 40.202

74 35.366

2515

200

Wire Broke-200 m

72

NBP13401.023

T7

67 40.080

74 35.486

2515

700

Data Questionable

73

NBP13401.031

T5

67 30.290

75 7.500

2931

-

Bad Cast

74

NBP13401.033

T7

67 29.770

75 08.121

2998

760

Good Cast

75

NBP13401.035

T7

67 41.909

75 00.891

2803

760

Good Cast

76

NBP14301.036

T7

67 42.206

75 00.726

2801

760

Good Cast

77

NBP14301.037

T7

67 53.770

74 53.800

2832

760

Good Cast

78

NBP13601.003

T4

68 45.370

72 39.850

156

156

Good Cast

79

NBP13601.004

T4

68 49.010

72 21.760

131

131

Good Cast

80

NBP13601.012

T4

69 02.609

72 27.291

165

165

Good Cast

81

NBP13601.026

T4

69 06.611

73 00.562

224

250

Good Cast

82

NBP13601.029

T4

69 01.144

73 19.535

132

140

Good Cast

83

NBP13701.001

T7

68 51.910

73 48.140

402

402

Good Cast

84

NBP13701.002

T4

68 47.850

74 02.206

425

425

Good Cast

85

NBP13701.019

T5

68 24.313

75 58.415

2008

1800

Good Cast

86

NBP13701.025

T4

68 38.734

76 01.864

431

431

Good Cast

87

NBP13801.005

T4

68 52.500

75 18.768

396

396

Good Cast

88

NBP13801.017

T7

69 06.914

74 32.478

517

517

Good Cast

89

NBP13801.025

T7

69 21.465

74 29.956

540

540

Good Cast

90

NBP13901.004

T4

69 22.330

75 15.200

305

305

Good Cast

91

NBP13901.008

T7

69 08.707

75 58.202

429

429

Good Cast

92

NEP13901.014

T7

68 55.135

76 39.742

423

423

Good Cast

93

NBP13901.027

T7

68 55.088

77 21.580

543

543

Good Cast

94

NBP14001.002

T7

69 09.310

77 25.075

417

417

Good Cast

95

NBP14001.004

T7

69 23.972

76 40.556

414

250

Wire Broke-250 m

96

NBP14001.005

T7

69 24.159

76 40.059

401

100

Wire Broke-100 m

97

NBP14001.005

T7

69 24.316

76 39.591

401

401

Good Cast

98

NBP14001.019p

T7

70 18.610

77 14.678

526

526

Good Cast

99

NBP14101.001

T4

70 34.958

77 10.376

167

167

Good Cast

100

NBP14101.002

T5

70 31.857

76 41.827

1150

1150

Good Cast

101

NBP14101.003

T4

70 28.652

76 13.699

334

348

Good Cast

102

NBP14101.004

T5

70 27.384

76 02.379

920

198

Wire Broke-198 m

103

NBP14101.005

T5

70 27.384

76 02.379

920

151

Wire Broke-198 m

104

NBP14101.006

T7

70 27.292

76 01.249

940

198

Wire Broke-198 m

105

NBP14101.007

T7

70 23.450

75 36.337

724

724

Good Cast

106

NBP14101.011

T7

70 19.338

75 09.555

595

595

Good Cast

107

NBP14201.001

T4

69 27.799

75 50.790

296

295

Good Cast

108

NBP14201.002

T4

69 24.221

75 26.207

262

262

Good Cast

109

NBP14201.005

T4

69 20.748

75 00.012

373

373

Good Cast

110

NBP14201.021

T4

69 30.676

74 00.692

330

330

Good Cast

111

NBP14201.022

T4

69 30.497

73 56.621

275

275

Good Cast

112

NBP14201.023

T4

69 29.405

73 32.910

161

161

Good Cast

113

NBP14301.001

T4

69 23.611

73 09.147

150

150

Good Cast

114

NBP14301.003

T4

69 19.001

72 43.658

121

121

Good Cast

115

NBP14301.015

T4

69 10.819

72 43.070

138

138

Good Cast

116

NBP14401.001

T7

69 03.218

72 31.779

1063

760

Good Cast

117

NBP14401.002

T7

69 02.956

7231.899

1171

760

Good Cast

118

NBP14401.003

T4

68 53.890

72 08.747

212

212

Good Cast

119

NBP14401.006

T4

68 46.615

71 52.688

158

158

Good Cast

120

NBP14401.008

T7

68 44.729

71 24.698

420

50

Wire Broke-50 m

121

NBP14401.009

T7

68 44.773

71 24.083

420

90

Wire Broke-90 m

122

NBP14401.011

T7

68 44.830

71 22.926

423

423

Good Cast

123

NBP14501.001

T4

68 42.860

70 50.059

240

240

Good cast

124

NBP14501.002

T4

68 42.863

70 50.059

240

45

Wire Broke-45 m

125

 NBP14501.003

T4

68 40.837

70 34.163

254

-

Bad Cast

126

NBP14501.004

T4

68 40.837

70 34.163

254

254

Good Cast

127

NBP14501.007

T4

68 40.814

70 16.606

405

405

Good Cast

128

NBP14501.008

T4

68 38.731

70 09.815

412

412

Good Cast

129

NBP14501.009

T5

68 37.712

70 04.060

1360

1360

Good Cast

130

NBP14501.010

T5

68 36.183

69 57.547

1068

1068

Good Cast

131

NBP14501.011

T7

68 34.442

69 49.868

724

724

Good Cast

132

NBP14501.012

T7

68 30.819

69 35.810

493

493

Good Cast

133

NBP14501.013

T4

68 27.350

69 21.263

209

209

Good Cast

134

NBP14501.014

T4

68 27.209

69 20.623

246

246

Good Cast

135

NBP14501.015

T7

68 23.868

69 07.063

723

723

Good Cast

136

NBP14501.021

T7

67 50.278

71 05.538

480

480

Good Cast

137

NBP14501.022

T7

67 50.211

71 05.750

446

446

Bad Cast

138

NBP14501.023

T7

67 50.121

71 05.990

431

431

Good Cast

139

NBP14601.002

T4

67 52.733

71 39.337

317

50

Wire Broke-50 m

140

NBP14601.003

T4

67 52.783

71 40.587

317

317

Good Cast

141

NBP14601.004

T4

67 53.189

72 05.165

302

302

Good Cast

142

NBP14601.005

T4

67 53.676

72 25.807

303

303

Good Cast

143

NBP14601.008

T7

68 03.967

72 10.355

509

509

Good Cast

144

NBP14601.009

T7

68 08.087

71 46.676

426

426

Good Cast

145

NBP14601.010

T7

68 10.369

71 22.067

604

604

Good Cast

146

NBP14601.011

T7

68 12.552

71 21.037

664

664

Good Cast

147

NBP14601.012

T7

68 14.835

70 56.815

530

530

Good Cast

148

NBP14601.013

T5

68 09.917

70 48.173

715

715

Good Cast

149

NBP14601.015

T5

68 06.407

70 27.253

854

854

Good Cast

150

NBP14601.020

T5

68 01.337

70 12.499

747

747

Good Cast

151

NBP14601.021

T7

67 56.552

69 50.028

715

715

Good Cast

152

NBP14701.021

T4

68 11.289

68 39.716

343

230

Wire Broke-230 m

153

NBP14701.002

T4

68 11.276

68 39.120

344

213

Wire Broke-213 m

154

NBP14701.003

T4

68 11.261

68 38.453

336

200

Wire Broke-200 m

155

NPB14701.006

T4

68 06.891

68 30.008

333

333

Good Cast

156

NBP14701.007

T4

68 05.976

68 40.662

161

161

Good Cast

157

NBP14801.004

T7

67 53.096

68 11.900

726

273

Wire Broke-273 m

158

NBP14801.005

T7

67 53.135

68 12.269

726

600

Wire Broke-600 m

159

NBP15101.026

T4

66 47.526

68 30.543

178

67

Wire Broke-67 m

160

NBP15101.027

T4

66 47.472

68 30.760

190

190

Good Cast

161

NBP15101,028

T7

66 44.040

68 36.788

560

560

Good Cast

162

NBP15201.001

T4

66 43.398

68 42.550

434

434

Good Cast

163

NBP15201.002

T4

66 41.700

68 49.673

354

354

Good Cast

164

NBP15201.003

T4

66 38.797

68 59.863

361

361

Good Cast

165

NBP15201.004

T4

66 37.149

69 05.116

377

377

Good Cast

166

NBP15201.005

T4

66 37.090

69 05.280

372

372

Good Cast

167

NBP15201.007

T4

66 34.909

69 11.867

416

416

Good Cast

168

NBP15201.008

T4

66 33.465

69 17.643

457

457

Good Cast

169

NBP15201.009

T7

66 31.766

69 23.261

490

490

Good Cast

170

NBP15201.010

T7

66 29.792

69 29.272

510

510

Good Cast

171

NBP15201.011

T7

66 27.945

69 35.689

504

504

Good Cast

172

NBP15201.012

T7

66 26.309

69 41.327

478

478

Good Cast

173

NBP15201.013

T7

66 24.293

69 48.052

450

450

Good Cast

174

NBP15201.014

T7

66 22.419

69 54.515

445

445

Good Cast

175

NBP15201.015

T7

66 21.102

69 59.086

440

440

Good Cast

176

NBP15201.016

T4

66 18.808

70 07.187

433

433

Good Cast

177

NBP15201.018

T4

66 17.377

70 12.183

442

442

Good Cast

178

NBP15201.021

T7

66 15.348

70 18.841

460

460

Good Cast

179

NBP15201.022

T7

66 13.542

70 24.693

470

467

Good Cast

180

NBP15201.023

T5

66 11.289

70 32.304

486

486

Good Cast

181

NBP15201.025

T7

66 09.596

70 38.333

522

522

Good Cast

182

NBP15201.027

T7

66 08.153

70 43.424

502

502

Good Cast

183

NBP15201.028

T7

66 06.347

70 50.190

531

100

Wire Broke-100 m

184

NBP15201.029

T7

66 06.290

70 50.390

531

565

Good Cast

185

NBP15301.003

T5

61 59.756

68 14.237

3983

1830

Good Cast

186

NBP15301.004

T5

61 51.584

68 09.426

3914

1830

Good Cast

187

NBP15301.007

T5

61 41.520

68 03.967

4060

1830

Data Questionable

188

NBP15301.009

T5

61 40.052

68 03.144

4164

1830

Good Cast

189

NBP15401,002

T5

61 30.360

67 58.051

3973

1830

Good Cast

190

NBP15401.005

T5

61 21.051

67 52.637

3995

1830

Good Cast

191

NBP15401.006

T5

61 12.246

67 47.515

3985

320

Wire Broke-320 m

192

NP15401.007

T5

61 12.111

67 47.471

3985

1830

Good Cast

193

NBP15401.008

T5

61 01.700

67 41.770

4082

1830

Good Cast

194

NBP15401.009

T5

60 51.904

67 36.749

4181

1830

Good Cast

195

NBP15401.010

T5

60 42.969

67 32.046

3929

1830

Good Cast

196

NBP15401.011

T5

60 42.630

67 31.945

3929

1830

Good Cast

197

NBP15401.012

T5

60 32.708

67 26.745

3441

1830

Good Cast

198

NBP15401.013

T5

60 32.365

67 26.628

3370

1830

Good Cast

199

NBP15401.014

T5

60 22.930

67 21.339

3244

1830

Good Cast

200

NBP15401.015

T5

60 22.677

67 21.259

3305

1830

Good Cast

201

NBP15401.017

T5

60 13.859

67 16.981

3195

260

Wire Broke-260 m

202

NBP15401.018

T5

60 13.587

67 16.900

3260

1830

Good Cast

203

NBP15401.021

T5

60 02.931

67 10.947

3482

325

Wire Broke-325 m

204

NBP15401.022

T5

60 02.774

67 10.920

3523

1830

Data Questionable

205

NBP15401.024

T7

60 02.188

67 10.941

3609

760

Good Cast

206

NBP15401.025

T7

59 43.701

67 01.508

3538

150

Wire Broke-150 m

207

NBP15401.026

T7

59 43.411

67 13.570

3541

197

Wire Broke-197 m

208

NBP15401.027

T7

59 43.051

67 01.181

3541

760

Good Cast

209

NBP15401.030

T7

59 33.835

66 56.396

3710

570

Wire Broke-570 m

210

NBP15401.032

T7

59 33.396

66 56.190

3710

760

Good Cast

211

NBP15401.032

T7

59 24.923

66 51.978

3569

760

Good Cast

 


Appendix 6:  AWS Installation and Repair Operations

 

A. Kirkwood Island AWS Deployment ‑ 25 May 2001

 

                Automated Weather Station (AWS) #8930 was installed on the main island in the Kirkwood Islands group on 25 May 2001.  The main island (Kirkwood Island) has a number of rock outcroppings and ridges leading up from the water and spray line with a relatively flat snow cap covering most of the top. A crude estimate of the top of the snow cap is ~ 100 ft.  The other close islands in this group were smaller pieces of exposed rock that would be covered or exposed to severe sea spray during periods of high winds and waves.

                The AWS site is on a slab rock shoulder on a ridge heading approximately northwest on the northwestern tip of the island.  The site has open exposure from west through northeast; winds from the south may be distorted by the main snow cap. The N.B. Palmer approached from the west and took up station roughly one-half nm west of this ridge. A Zodiac was used to transport the AWS and crew around the north end of this ridge, passing between the main island and some very low rocky islands, before landing cargo and crew in a small cove on the northeast side of the ridge.  Winds and a small swell were from the west during the day, so this cove was somewhat protected; however, there was no place to beach or tie off the zodiac or leave it unattended.  Getting crew and cargo out of the boat and up the first ten feet of altitude was difficult due to steep, smooth rock walls coated with ice.  Once above this danger zone and onto more protected rock, most of the crew changed from dry suits to mustang suits before continuing. The rest of the ascent starts out on glacial smoothed bedrock, then turns into permanent snowpack before reaching the rocky shoulder from the northeast.  Even though we had difficulty landing, the fur seals clearly did not.  A large group (25 or more) of fur seals covered the northern snow face of this island, with a number on the highest pieces of snow and rock.  There was a pair of seals on the ridge within 10 m of the AWS site and evidence of seals around the site and the ascent route.

                Once on top, installation of the AWS went smoothly.  Holes for three steel pins were drilled into the base rock, and the pins inserted with epoxy for cement. The three‑sided pipe tower was lowered onto the base pins, and three wire guy lines run to self‑locking bolts drilled into outlying rock faces.  Washers were used on the base pins to align the tower with vertical.  The portable electric rock drill and generator were essential for making the base and guy‑wire anchor points, and the generator exhaust doubled as an excellent hand warmer.  The generator also powered a portable heat gun that was used to dry out the terminations before final mating, and heating the self‑vulcanizing tape used to wrap the connectors into the base of the electronics box.

                The AWS consists of: a) a horizontal sensor beam that supports a RM Young wind monitor on top and a temperature sensor in a solar shield and a relative humidity sensor on the bottom of the beam; b) an electronics datalogger box with barometric pressure sensor inside; c) a satellite transmitter and antenna; and d) a battery box and a solar panel.  The sensor beam was mounted on top of the tower, with the satellite antenna and solar panel mounted lower.  The datalogger box was mounted about 5 ft above ground, and all wires were run inside the tower if possible and attached with tie‑wraps. The battery box was tied to the tower base with nylon rope.

                During installation, the datalogger outputs, battery voltage, and satellite transmitter were all checked and found to be working. The final task was to determine the alignment of the sensor beam, since the wind monitor returns the wind direction relative to the sensor beam orientation.   First the GPS position of the AWS was measured with a handheld unit.  Then the ship was asked to move slighty so that her GPS antenna was in line with the AWS sensor beam, in the "windbird south" direction.  When aligned, the ship's GPS position and the AWS position determine the AWS bearing.  These positions were AWS (‑68E 20.397 S, ‑69E 00.444 W) and NBP (‑68E 20.504 S, ‑69E 01.720 W), giving a "windbird north" direction of 77E relative to true north.

                The installation was finished about 1545 local time, well after dusk. The NBP kept one spotlight aimed at the AWS site, which helped during the final assembly and anchoring of the guy wires.  The descent from the site back to the cove was straightforward, with the generator being the only heavy piece to carry down.  The transfer to the waiting Zodiac and back to the ship was smooth.  All in all, it was a very successful trip.  The installation crew were Alice Doyle, Jessie Doren, Dave Green, Jeff Otten, and Bob Beardsley and Sue Beardsley.

               

B. Faure Island AWS Deployment ‑ 27 May 2001

 

                Automated Weather Station (AWS) #8932 was installed on a small rocky island just east of Dismal Island in the Faure Island group in Marguerite Bay on 27 May 2001.  The island is on the eastern edge of this island group, and the N.B. Palmer was able to approach to within one-quarter nm from the east.  The island is elongated in shape, roughly one-eighth nm long and perhaps one-quarter of that length in width, with the main axis oriented roughly 20EN.  The island is relatively low, with snow covered ridges and exposed rocky patches on top.

                It was a quick Zodiac ride from the ship around the northern end of the island to a landing site on the northwest shore. There are possibly several different places to make a landing.  We landed along the snout of a permanent snow pack, then trekked to the left with a short climb up a small rock face to get on top of the snow.  From there it was an easy walk to a high point on the northern end of the island. We had snow and poor visibility in the morning, but shortly after we landed, the snow stopped, the mountains of south Adelaide Island appeared, and with winds of only 10‑15 kts, it was a pleasant day for work.  We encountered a fur seal and penguin at our landing spot and found evidence of seals over the top of the island.  Fur seals and penguins were seen on the small islands to the west.

                The AWS installation went smoothly, using similar methods to those used on Kirkwood.  Three holes were drilled into the rock and threaded rod pieces placed in the holes.  On Kirkwood, washers were used on the threaded posts to level the base for the tower.  Here, two nuts with a washer above were used on each rod to support and level the tower. Holes were drilled and anchors inserted into the holes to secure the guy wires.  As on Kirkwood, two‑hole brackets were bolted onto the anchors, and shackles were used to attach the guy wire thimbles to the two‑hole brackets. After the guy wires were attached, the nuts beneath the tower legs were raised slightly to put more tension on the guy wires.  This was an improvement over the Kirkwood Island AWS installation, where we just used human strength to tighten the guys. However, turnbuckles should be used on any future installation or station refurbishment.

                The Faure AWS is similar to the Kirkwood AWS but features a Belfort wind monitor.  The pressure sensor serial number is 55180 and the CS program is 55180‑2, as shown on the paper note left inside the electronics datalogger box. As before, the datalogger outputs, the battery voltage, and the satellite transmitter were checked and found to be working.  After final assembly and checkout, the AWS GPS position was determined, and the ship was moved so that it was aligned with the AWS sensor beam. The AWS position is ‑68E05.243 S, ‑68E49.480 W.   With the ship at ‑68E 05.429 S, ‑68E48.735 W, the anemometer "north" was determined to be 124EN.

                The installation was completed around 1515 local time.  The descent and return to the ship was straightforward.  The installation crew were Jessie Doren, Dave Green, Jeff Otten, Andy Girard, Mark Christmas, and Bob Beardsley.  Mark documented the installation plus the penguin sampling conducted on the next island during the day. It was a very successful day in Marguerite Bay.

 

C. Kirkwood Island AWS Repair ‑ 30 May 2001

 

                Automated Weather Station (AWS) #8930 on Kirkwood Island was revisited on 30 May 2001 to repair a software error.  The station was installed on Kirkwood on Friday, 25 May 2001. On Saturday (26 May 2001) afternoon, George Weidner, the AWS engineer at the University of Wisconson, contacted Jeff Otten on the NBP with the message that the Kirkwood Island AWS was transmitting data via ARGOS in the correct format.  On Sunday (27 May 2001), the NBP deployed AWS #8932 in the Faure Island group.  On Monday (Memorial Day, 28 May 2001), George Weidner contacted Jeff Otten with the message that the second AWS was correctly transmitting data, but that the Kirkwood Island AWS was reporting a constant wind speed of 5.35 m s-1 due to a software problem.  George Weidner contacted Campbell Scientific and determined that the RM Young anenemeter counter circuit works differently than thought, resulting in an overflow that causes a constant speed output.  George Weidner determined a software fix that could be programmed in the field if we could return to the AWS.  After testing the fix at the University of Wisconson using spare equiptment, George Weidner sent a facsimile message to the NBP on Wednesday morning at 0900 that the fix should work, and the final decision was made for the NBP to steam immediately to the Kirkwood Islands to attempt the repair.

                The NBP arrived at the Kirkwood Islands near 1400, and a repair team of Jeff Otten, Dave Green, Jesse Doren, Scott Gallager, Andy Girard, and Bob Beardsley departed the NBP by Zodiac. Winds were moderate (15 kts) from the east but large swell from the northwest made the original landing site unsafe, so we continued eastward along the northern coast looking for a suitable landing site.  About 100 m from the initial site, a site was found that provided some reduction in the swell and breaking waves. By making repeated runs into a small but steep rocky indentation, Jesse Doren was able to land Dave Green, Jeff Otten, Scott Gallager, and Bob Beardsley with a toolbox and one small bag of electronics equipment.  Doren and Andy Girard then remained offshore as the group on land climbed up a short rocky ridge to the main snow field and then walked west over the snow to the AWS.  Jeff Otten quickly reprogrammed the AWS data logger, and Green, Gallager, and Beardsley tightened the southern guy wire.  After waiting to confirm that the system was logging reasonable data and the ARGOS transmitter working, the group quickly returned to the landing site in the fading light.  After clearing the front of the Zodiac, Doren showed great skill in getting the boat close enough for us to "dive" into the boat safely.  We then returned to the NBP and helped test the Trackpoint system before getting back on the NBP.

                On Thursday, 31 May 2001, George Weidner sent a facsimile message to the NBP to report that the Kirkwood Island AWS had reported a wind of 5.51 m s-1, indicating that the software fix appears to be working.  Also, the Kirkwood and Faure Islands AWSs were reporting similar wind speeds, which was also reassuring that both AWS systems were working properly.  The AWS data will soon be available on the University of Wisconsin web site, and by link, the SO GLOBEC meteorology web site at WHOI.

                The software fix involved changing the interval used to average the wind speed from 20 minutes to 140 seconds. Thus, data reported by the AWS is the 140‑second average wind speed and the instantaneous wind direction at the start of the 140 second.

 


Appendix 7:  BIOMAPER-II Tape Log

 

NBP0103

BIOMAPER-II TAPE AND FILE LOG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AC

ESS

BM

VIDEO TAPES

VPR ESS

VPR

Broad‑

Scale

 

TOW

Stn #

Date (GMT)

Date (EDT)

G

M

T

E

D

T

L

A

T

min

L

O

N

min

DAT #

FILE

NAME

FILE

NAME

DAY

CAM 2#

CAM 4#

 FILENAME

DAY

Transect

#

Comments

Sound test

Punta Arenas Dock

 

4/23/01

2219

1819

 

 

 

 

Wet noise

N1131819

 

 

 

 

 

 

 

 

Sound test

Strait of Magellan

 

4/24/01

1633

1233

52

42.949

70

18.570

 

N1141255

SOUND

TESTXE

 

 

 

 

 

 

 

 

 

 

4/24/01

1658

1258

 

 

 

 

 

 

 

 

 

 

 

 

 

Restart ESS

 

 

4/24/01

4/24/01

1703

1303

 

 

 

 

 

 

 

 

test no #

test no #

04241709.y06

 

 

Bathy 3.5MHz + Furuno run

 

 

4/24/01

4/24/01

1714

1314

52

42.548

70

18.040

 

 

Soundtest

NBP0103

 

 

 

 

 

 

 

 

 

4/24/01

4/24/01

1721

1321

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4/24/01

4/24/01

1840

1440

 

 

 

 

 

N1141440

 

 

 

 

 

 

 

Noise file

 

 

4/24/01

4/24/01

1855

1455

 

 

 

 

 

N1141455

 

 

 

 

 

 

 

SOUNDER ON

Relaunch

 

4/24/01

4/24/01

1900

1500

52

41.250

70

78.000

 

 

 

 

 

 

 

 

 

VPR fault/ FISH OUT

 

 

4/24/01

4/24/01

2133

1733

 

 

 

 

Dat2 0:00

N1141733

 

 

 

 

 

 

 

fixed fuse

On deck

 

4/24/01

4/24/01

2152

1752

52

40.964

70

7.517

 

N1141752

 

 

 

 

 

 

 

Noise run

3

 

4/29/01

4/29/01

1257

857

 

 

 

 

 

 

 

119

 

 

04291257.01

118

1

 

 

1

4/29/01

4/29/01

1259

859

 

 

 

 

1

1190839?

 

119

 

 

 

118

1

 

3

 

4/29/01

4/29/01

1300

900

 

 

 

 

 

 

 

119

no sig

1

 

118

1

 

3

 

4/29/01

4/29/01

1302

902

 

 

 

 

1

1190902

 

119

 

 

 

118

1

 

3

 

4/29/01

4/29/01

1330

930

 

 

 

 

 

 

B4290930

119

 

 

 

118

1

 

3

 

4/29/01

4/29/01

1332

932

 

 

 

 

 

 

 

119

 

 

04291332.y01

118

1

 

3

 

4/29/01

4/29/01

1336

936

 

 

 

 

 

 

 

119

 

 

04291336.y01

118

1

 

3

 

4/29/01

4/29/01

1503

1103

65

52.700

70

9.510

2

 

 

119

 

3

 

118

1

 

3

 

4/29/01

4/29/01

1531

1131

 

 

 

 

 

(gps@1131)

 

119

 

 

 

118

1

 

3

 

4/29/01

4/29/01

1608

1208

65

55.490

69

59.610

 

 

 

119

 

 

 

118

1

bottom

3

 

4/29/01

4/29/01

1637

1237

 

 

 

 

 

 

 

119

 

 

 

118

1

red sonar fault

3

 

4/29/01

4/29/01

1658

1258

 

 

 

 

 

 

 

119

 

 

 

118

1

top 5m

3

 

4/29/01

4/29/01

1701

1301

 

 

 

 

 

end files

end

119

 

 

 

118

1

 

3

 

4/29/01

4/29/01

1700

1300

65

58.247(?)

69

50.794(?)

 

 

 

119

 

 

 

118

1

 

3

 

4/29/01

4/29/01

1705

1305

65

57.979 (?)

69

51.130

end

 

 

119

 

end

 

118

1

 

4

3

4/30/01

4/30/01

403

3

66

11.038

69

13.710

 

 

 

120

 

 

 

119

1

END TOW #

4

 

4/30/01

4/30/01

411

11

66

10.972

69

15.160

 

 

B4300012

120

 

 

 

119

1

START TOW $

4

 

4/30/01

4/30/01

417

17

66

11.260

69

15.954

 

P1200017

 

120

 

 

 

119

1

 

4

 

4/30/01

4/30/01

424

24

66

11.606

69

14.939

3

 

 

120

4

3

04300412.y01

119

1

towyo down

4

 

4/30/01

4/30/01

507

107

66

12.926

69

8.756

 

 

 

120

 

 

 

119

1

towyo up

4

 

4/30/01

4/30/01

548

148

66

14.777

69

8.476

 

 

 

120

 

 

 

119

1

top 30 m

4

 

4/30/01

4/30/01

625

225

66

16.133

68

54.840

4

 

 

120

5

6

 

119

1

 

4

 

4/30/01

4/30/01

627

227

66

16.133

68

54.840

 

 

 

120

 

 

 

119

1

bottom 255 m

4

 

4/30/01

4/30/01

709

309

66

17.948

68

46.520

 

 

 

120

 

 

 

119

1

top 20 m

4

 

4/30/01

4/30/01

749

349

66

19.402

68

39.910

 

 

 

120

 

 

 

119

1

bottom 259 m

4

 

4/30/01

4/30/01

829

429

66

20.980

68

33.070

5

P1200429

 

120

7

8

 

119

1

 

4

4

4/30/01

4/30/01

937

537

66

23.200

68

21.870

"

problems

B4300013.*

120

"

"

04030938.01

119

1

restart BIOMAPER

4

 

4/30/01

4/30/01

1031

631

66

23.170

68

23.090

 

 

 

120

end

end

 

119

1

 

4

 

4/30/01

4/30/01

1035

635

"

"

"

"

end

 

 

120

 

 

 

119

1

 

4

 

4/30/01

4/30/01

1058

658

"

"

"

"

 

 

 

120

 

 

end

119

1

 

4

 

4/30/01

4/30/01

1226

826

66

22.286

68

25.601

 

 

 

120

 

 

 

119

1

 

4

 

4/30/01

4/30/01

1254

854

66

21.340

68

30.150

BIOMAPER ABOARD, END OF TOW

 

 

120

 

 

 

119

1

End Tow 4

 

10

5/01/01

5/01/01

425

25

66

12.206

70

33.323

 

P1210022

 

121

 

 

 

120

 

reterminated wires warming

5

10‑11

5/01/01

5/01/01

1300

900

66

9.166

70

58.311

 

P1210900

 

121

 

 

 

120

 

Start Tow 5

5

 

5/01/01

5/01/01

1307

907

 

 

 

 

 

P1210907

 

121

 

 

 

120

 

 

5

 

5/01/01

5/01/01

1312

912

 

 

 

 

 

 

 

121

11

12

 

120

 

 

5

 

5/01/01

5/01/01

1315

915

 

 

 

 

7

 

 

121

 

 

05011314.01

120

 

 

5

 

5/01/01

5/01/01

1325

925

 

 

 

 

 

 

 

121

 

 

05011325.01

120

 

 

5

 

5/01/01

5/01/01

1358

958

 

 

 

 

 

 

 

121

 

 

05011358.01

120

 

 

5

 

5/01/01

5/01/01

1516

1116

66

17.878

71

12.630

8

P1211119

B5010919

121

13

14

 

120

 

 

5

 

5/01/01

5/01/01

1701

1301

66

24.731

71

23.004

 

P1211301

 

121

 

 

 

120

 

 

5

 

5/01/01

5/01/01

1716

1316

66

24.770

71

23.009

9

 

 

121

 

 

 

120

 

 

5

 

5/01/01

5/01/01

1717

1317

66

25.162

71

23.315

 

P1211428

 

121

15

16

 

120

3

 

5

11‑12

5/01/01

5/01/01

1919

1519

66

26.597

71

14.038

10

 

 

121

17

18

 

120

3

 

5

12

5/01/01

5/01/01

2124

1724

66

31.210

70

58.680

11

P1211725

 

121

19

20

 

120

3

 

5

12‑13

5/01/01

5/01/01

2326

1926

66

34.979

70

46.800

12

P1211927

 

121

21

22

 

120

3

 

5

 

05/02/01

05/01/01

118

2118

66

40.311

70

28.176

 

P1212118

B5012119

121

 

 

 

121

3

 

5

12‑13

05/02/01

05/01/01

127

2127

66

40.700

70

26.670

13

 

 

122

23

24

 

121

3

 

5

13

05/02/01

05/01/01

327

2327

66

45.770

70

9.860

14

P1212328

 

122

25

26

 

121

3

 

5

13

05/02/01

05/02/01

405

5

66

45.830

70

9.629

14

P1220005

 

122

 

 

 

121

3

 

5

13

05/02/01

05/02/01

456

56

66

46.470

70

11.230

 

 

 

 

 

 

 

 

 

End Tow 5

6

13‑14

05/02/01

05/02/01

952

552

66

48.920

70

33.270

 

P1220005

 

122

 

 

 

121

3

Launch, Start Tow 6

6

13‑14

05/02/01

05/02/01

 

546

 

 

 

 

 

 

B5020542

122

 

 

 

121

3

 

6

13‑14

05/02/01

05/02/01

1002

602

 

 

 

 

15

P1220559

 

122

27

28

05020956.01

121

3

not all ducers enabled

6

13‑14

05/02/01

05/02/01

1010

610

 

 

 

 

 

 

 

122

 

 

 

121

3

Enabled cams 2 and 4; start capture program

6

13‑14

05/02/01

05/02/01

1204

804

66

50.680

70

25.010

16

P1220807

 

122

29

30

 

121

3

ducers enabled

6

13‑14

05/02/01

05/02/01

1406

1006

66

53..56

70

2.580

17

P1221008

 

122

31

32

 

121

3

 

6

13‑14

05/02/01

05/02/01

1511

1111

66

54.970

69

49.810

17

P1221111

 

122

 

 

 

121

3

 

6

13‑14

05/02/01

05/02/01

1602

1202

 

 

 

 

 

 

 

122

 

 

 

121

3

Tow up from 200 meters begins

6

13‑14

05/02/01

05/02/01

1608

1208

66

56.186

69

37.460

18

 

 

122

33

34

 

121

3

 

6

14

05/02/01

05/02/01

1635

1235

 

 

 

 

 

P1221235

 

122

 

 

 

121

3

 

6

14

05/02/01

05/02/01

1637

1237

 

 

 

 

 

P1221237

 

122

 

 

 

121

3

 

6

14

05/02/01

05/02/01

1645

1245

 

 

 

 

 

P1221245

 

122

 

 

05021645.01

121

3

 

6

14

05/02/01

05/02/01

1654

1254

 

 

 

 

 

P1221254

 

122

 

 

 

121

3

 

6

14‑15

05/02/01

05/02/01

1811

1411

66

58.253

69

27.889

19

 

 

122

35

36

 

121

3

tape change

6

14‑15

05/02/01

05/02/01

 

1417

 

 

 

 

19

 

 

122

 

 

 

121

3

start DAT tape

6

14‑15

05/02/01

05/02/01

1827

1427

 

 

 

 

 

 

 

122

 

 

 

121

3

HTI software crash due to zoom in lock up

6

14‑15

05/02/01

05/02/01

1828

1428

 

 

 

 

 

P1221428

 

122

 

 

 

121

3

new file; ducers disabled at startup

6

14‑15

05/02/01

05/02/01

1830

1430

 

 

 

 

 

P1221430

 

122

 

 

 

121

3

ducers enabled; 200 looks very light; retry ducer enabling

6

14‑15

05/02/01

05/02/01

1833

1433

 

 

 

 

 

P1221433

 

122

 

 

 

121

3

ducers are enabled; 200 just very little backscatter

6

14‑15

05/02/01

05/02/01

1835

 

 

 

 

 

 

 

 

122

 

 

 

121

3

towyo up from 250 meters

6

14‑15

05/02/01

05/02/01

1936

 

 

 

 

 

 

 

 

122

 

 

 

121

3

towyo up from 80 meters; winch fine

6

15

05/02/01

05/02/01

2012

1612

67

3.160

69

9.080

end

end files

 

122

end

end

05022012.01

121

3

END TOW 6

7

15

05/03/01

05/02/01

15

2015

67

0.051

69

20.260

20

P1222015

B5022017

122

37

38

05030016.01

122

 

BEGIN TOW 7

7

15‑16

05/03/01

05/02/01

21

2021

67

0.544

69

20.936

 

P1222022

 

122

 

 

 

122

 

 

7

15‑16

05/03/01

05/02/01

119

2119

67

5.020

69

24.390

20

P1222022

 

122

 

 

 

122

 

TAPE 20 starts here; noticed tape wasn't recording @ 0919 5/2/01 (?)

7

15‑16

05/03/01

05/02/01

221

2221

67

9.907

69

27.578

21

P1222223

 

122

39

40

 

122

 

 

7

15‑‑16

05/03/01

05/03/01

419

19

 

 

 

 

 

 

 

123

 

 

 

122

 

TOW YO UP from 250 meters

7

15‑16

05/03/01

05/03/01

423

23

67

19.445

69

34.440

22

 

 

123

41

42

 

122

 

 

7

15‑16

05/03/01

05/03/01

452

52

 

 

 

 

 

 

 

123

 

 

 

122

 

Tape 22 starts; tape wasn't running. Flakey DAT record?  ForNT definitely was on screen 1st time.

7

16

05/03/01

05/03/01

458

58

67

22.244

69

36.200

 

P1230058

 

123

 

 

 

122

4

STATION 16

7

16‑17

05/03/01

05/03/01

609

209

 

 

 

 

 

P1230210

 

123

 

 

 

122

4

Leaving stn 16

7

16‑17

05/03/01

05/03/01

625

225

 

 

 

 

23

 

 

123

43

44

 

122

4

Tape 23

7

16‑17

05/03/01

05/03/01

641

241

 

 

 

 

 

 

 

123

 

 

 

122

4

Tow up from 250 meters @ 10 m/min; drifter deployed; turb on ducers

7

16‑17

05/03/01

05/03/01

650

250

 

 

 

 

 

 

 

123

 

 

 

122

4

clock check by vpr group

7

16‑17

05/03/01

05/03/01

826

426

67

15.350

70

0.432

24

P1230429

 

123

45

46

 

122

4

 

7

16‑17

05/03/01

05/03/01

851

451

 

 

 

 

 

 

 

123

 

 

 

122

4

acoustics lock up and REBOOT

7

17

05/03/01

05/03/01

1012

612

 

 

 

 

 

 

 

123

 

 

05031012.01

122

4

 

7

17‑18

05/03/01

05/03/01

1036

636

67

12.560

70

9.880

25

P1230656

 

123

47

48

05031033.01

122

4

 

7

17‑18

05/03/01

05/03/01

1118

718

67

11.771

70

12.730

 

 

 

123

 

 

05031118.01

122

4

 

7

17‑18

05/03/01

05/03/01

1235

835

67

8.189

70

24.853

26

P1230834

 

123

49

50

 

122

4

 

7

17‑18

05/03/01

05/03/01

1408

1008

67

3.546

70

41.026

 

P1231008

 

123

 

 

 

122

4

spontaneous file generation

7

18

05/03/01

05/03/01

1406

1036

67

3.004

70

43.105

27

 

 

123

51

52

 

122

4

 

7

18‑19

05/03/01

05/03/01

1837

1237

66

59.535

70

54.259

28

P1231432

 

123

53

54

 

122

4

 

7

18‑19

05/03/01

05/03/01

1837

1237

 

 

 

 

29

 

 

123

55

56

 

122

4

 

7

18‑19

05/03/01

05/03/01

1842

1442

66

53.390

71

15.920

 

 

 

123

 

 

 

122

4

top of towyo wind 35 knots; bar 980, air ‑0.3 tension 1200

7

19

05/03/01

05/03/01

1953

1553

 

 

 

 

end

 

 

123

 

 

 

122

4

 

7

19

05/03/01

05/03/01

1958

1558

66

46.230

71

37.041

 

 

 

123

 

 

 

122

4

 BMP out END 7

8

19‑20

05/04/01

05/03/01

36

2036

66

49.667

71

29.667

 

 

 

123

 

 

 

123

4

BMP in   START 8

8

19‑20

05/04/01

05/03/01

39

2039

66

49.667

71

29.667

 

P1232039

B5032028

123

 

 

05040041.01

123

4

 

8

19‑20

05/04/01

05/03/01

44

2044

 

 

 

 

30

 

 

123

57

58

 

123

4

 

8

19‑20

05/04/01

05/03/01

235

2235

66

42.645

71

49.596

30

 

P1232235

123

 

 

 

123

4

 

8

19‑20

05/04/01

05/03/01

245

2245

66

42.000

71

51.790

31

 

 

123

59

60

 

123

4

 

8

20

05/04/01

05/04/01

449

49

66

35.000

72

14.268

32

P1240040

 

124

61

62

 

123

4

spontaneous file generation?

8

20

05/04/01

05/04/01

516

116

 

 

 

 

 

P1240116

 

124

 

 

 

123

4

 

8

20

05/04/01

05/04/01

654

254

66

34.729

72

13.448

33

P1240257

 

124

63

64

 

123

 

DAT tape started after t‑cut error on first try…

8

20

05/04/01

05/04/01

857

457

66

35.094

72

15.530

34

P124059

B5040458

124

65

66

 

123

 

 

8

20

05/04/01

05/04/01

1059

659

66

37.480

72

39.660

35

P1240700

 

124

67

68

 

123

 

 

8

20‑22

05/04/01

05/04/01

1300

900

66

39.800

73

4.530

36

P1240904

 

124

69

70

 

123

 

 

8

22

05/04/01

05/04/01

1407

907

66

41.260

73

18.810

End of Tow

 

 

124

 

 

 

123

 

End tow 8

9

22

05/04/01

05/04/01

2122

1722

66

40.180

73

22.050

37

P1241723

B5041723

124

 

 

 

123

 

Start Tow 9, No acoustic transmit, Cam 2 scrod

9

22

05/04/01

05/04/01

2126

1726

 

 

 

 

 

P1241726

 

124

 

 

 

123

 

 

9

22

05/04/01

05/04/01

2207

1807

66

39.329

73

22.556

 

 

 

124

 

 

 

123

 

End of Tow 9

10

22

05/05/01

05/04/01

38

2238

66

44.725

73

8.816

38

P1242039

B5042035

124

71

72

05050036.01

124

5

Start Tow 10

10

22‑23

05/05/01

05/04/01

242

2242

66

50.750

72

51.350

39

P1242242

 

124

73

74

 

124

5

 

10

23

05/05/01

05/05/01

446

46

66

55.489

72

35.350

40

P1250049

 

125

75

76

 

124

5

 

10

23‑24

05/05/01

05/05/01

527

127

 

 

 

 

 

P1250127

 

125

 

 

 

124

5

Attempt to get acoustics to work

10

23‑24

05/05/01

05/05/01

531

131

 

 

 

 

 

P1250131

 

125

 

 

 

124

5

Attempt to get acoustics to work

10

23‑24

05/05/01

05/05/01

533

133

 

 

 

 

 

P1250133

 

125

 

 

 

124

5

Attempt to get acoustics to work

10

23‑24

05/05/01

05/05/01

546

146

 

 

 

 

 

P1250140

 

125

 

 

 

124

5

Attempt to get acoustics to work

10

23‑24

05/05/01

05/05/01

558

158

 

 

 

 

 

P1250158

 

125

 

 

 

124

5

Attempt to get acoustics to work

 

23‑24

05/05/01

05/05/01

604

204

 

 

 

 

 

 

B5050202

125

 

 

05050604.01

124

5

ESS Restarted, new vpr log file

10

23‑24

05/05/01

05/05/01

647

247

67

0.109

72

22.220

41

 

 

125

77

78

 

124

5

Calibrator file works on all freq.;

10

23‑24

05/05/01

05/05/01

 

 

 

 

 

 

 

P1250253

 

125

 

 

 

124

5

Data comes through O‑A board

10

23‑24

 

 

 

 

 

 

 

 

 

P1250258

 

125

 

 

 

124

5

 

10

24

05/05/01

05/05/01

849

449

67

6.000

72

2.450

42

P1250457

B5050529

125

79

80

 

124

5

 

 

24

05/05/01

05/05/01

931

 

 

 

 

 

 

 

 

125

 

 

05050930.01

124

5

ESS Restarted, new vpr log file

10

24

 

 

1009

609

Shut down all files and tapes to recover BM

 

 

 

 

 

 

125

 

 

 

124

5

 

10

24

05/05/01

05/05/01

1026

626

67

6.830

72

24.300

 

 

 

125

 

 

 

124

5

END TOW 10

11

26‑27

05/05/01

05/05/01

2155

1755

67

33.600

72

28.203

43

 

 

125

 

 

 

124

5

START TOW 11, tow 11 acoustics data no good

11

26‑27

05/05/01

05/05/01

2208

1808

67

33.900

72

27.490

 

 

 

125

81

82

05052208.01

124

5

 

11

26‑27

05/05/01

05/05/01

2228

1828

67

35.200

72

24.780

 

 

B5051824

125

 

 

05052228.01

124

5

 

11

26‑27

05/06/01

05/05/01

54

2054

67

41.900

72

1.700

 

 

 

125

83

84

 

124

5

END TOW 11

On deck

 

05/07/01

05/07/01

834

434

 

 

 

 

 

P 1270434

 

125‑127

 

 

 

124

 

decktest; noise file in van

12

35

05/08/01

05/08/01

505

105

 

 

 

 

44

 

 

128

85

86

05080531.01

127

6

START TOW 12; noise file

12

35

05/08/01

05/08/01

 

118

 

 

 

 

 

P1280032

 

128

 

 

 

127

6

Start up

12

35

05/08/01

05/08/01

 

129

 

 

 

 

 

P1280018

 

128

 

 

 

127

6

 

12

35

05/08/01

05/08/01

 

136

 

 

 

 

 

P1280129

 

128

 

 

 

127

6

 

12

35

05/08/01

05/08/01

731

 

 

 

 

 

 

P1280136

 

128

87

88

 

127

6

 

12

35

05/08/01

05/08/01

744

344

68

15.857

69

34.946

 

 

 

128

 

 

 

127

6

 

12

35

05/08/01

05/08/01

746

346

 

 

 

 

 

P1280349

B5080346

128

 

 

 

127

6

 

12

35‑36

05/08/01

05/08/01

754

354

 

 

 

 

45

 

 

128

 

 

 

127

6

restart 45

12

35‑36

05/08/01

05/08/01

934

534

68

11.036

69

52.220

46

P1280534

 

128

89

90

 

127

6

 

12

35‑36

05/08/01

05/08/01

1136

736

68

4.810

70

14.490

47

P1280737

 

128

91

92

 

127

6

 

12

36

05/08/01

05/08/01

1338

938

68

3.284

70

22.096

48

P1280939

 

128

93

94

 

127

6

 

12

36‑37

05/08/01

05/08/01

1539

1139

67

58.760

70

35.840

49

P1281140

 

128

95

96

 

127

6

 

12

36‑37

05/08/01

05/08/01

1842

1442

67

52.740

70

57.449

50

P1281345

 

128

97

98

 

127

6

 

12

37‑38

05/08/01

05/08/01

1943

1543

67

47.442

70

9.356

51

 

 

128

99

100

 

127

6

 

12

37‑38

05/08/01

05/08/01

1948

1548

 

 

 

 

 

P1281548

 

128

 

 

 

127

6

 

12

37‑38

05/08/01

05/08/01

2148

1748

67

42.070

71

30.700

52

P1281749

B5081748

128

101

102

05082150.01

127

6

 

12

38

05/08/01

05/08/01

2351

1951

67

36.739

71

50.960

53

P1281953

 

128

103

104

 

127

6

 

12

38

05/09/01

05/08/01

53

2053

 

 

 

 

 

 

 

128

 

 

05090053.01

128

6

 

12

38

05/09/01

05/08/01

114

2104

 

 

 

 

 

 

 

128

 

 

05090114.01

128

6

 

12

38‑39

05/09/01

05/08/01

159

2159

67

30.730

72

11.465

54

P1282201

 

128

105

106

 

128

6

 

12

38‑39

05/09/01

05/08/01

347

2347

 

 

 

 

 

P1282347

 

128

 

 

 

128

6

tried changing settings in ac. Soft

12

38‑39

05/09/01

05/08/01

148

2348

67

26.221

72

26.580

 

P1282348

 

128

 

 

05090306.01

128

6

 

12

38‑39

05/09/01

05/09/01

402

2

67

25.613

72

28.569

55

P1290003

 

129

107

108

 

128

6

 

12

38‑39

05/09/01

05/09/01

606

206

67

19.171

72

43.241

56

P1290207

 

129

109

110

 

128

6

 

12

39‑40

05/09/01

05/09/01

810

410

67

14.310

73

2.940

57

P1290411

B5090410

129

111

112

 

128

6

 

12

40

05/09/01

05/09/01

1009

609

67

8.170

73

22.290

58

P1290611

 

129

113

114

 

128

6

 

12

40‑41

05/09/01

05/09/01

1212

812

67

8.345

73

40.007

59

P1290813

 

129

115

116

 

128

6

not recording, so changed DAT tape with 43 min remaining

12

40‑41

05/09/01

05/09/01

1332

932

67

10.553

73

57.818

60

P1290935

 

129

117

118

 

128

 

 

12

40‑41

05/09/01

05/09/01

1536

1136

67

13.650

74

24.690

61

P1291138

 

129

119

120

 

128

 

 

12

41

05/09/01

05/09/01

1600

1200

 

 

 

 

 

P1291200

 

129

 

 

 

128

 

 

12

 

05/09/01

05/09/01

1736

1236

67

13.456

74

31.600

 

P1291222

 

129

 

 

 

128

 

noise file to check 1mHz mux

12

 

05/09/01

05/09/01

1755

1255

67

12.640

74

30.670

 

 

 

129

 

 

 

128

 

END TOW 12 BMP ON BOARD

13

41‑42

05/10/01

05/09/01

50

2050

67

14.026

74

31.453

 

 

B5092052

129

 

 

 

129

7

START TOW 13 BMP IN WATER

13

 

05/10/01

05/09/01

58

2058

67

14.026

74

31.453

‑62

P1292057

 

129

121

122

050100101.01

129

7

tape 62 starts recording 2238

13

 

05/10/01

05/09/01

236

2236

67

19.020

74

16.560

62

P1292236

 

129

 

 

 

129

7

 

13

 

05/10/01

05/09/01

300

2300

67

20.170

74

12.990

63

 

 

129

123

124

 

129

7

 

13

 

05/10/01

05/10/01

502

102

67

26.761

73

53.022

64

P1300103

 

130

125

126

 

129

7

 

13

42

05/10/01

05/10/01

705

305

67

28.161

73

49.279

65

P1300306

 

130

127

128

 

129

7

 

13

42‑43

05/10/01

05/10/01

910

510

67

34.390

73

28.980

66

P1300510

B5100510

130

129

130

 

129

7

 

13

43

05/10/01

05/10/01

1112

712

67

40.250

73

10.560

67

P1300712

 

130

131

132

 

129

7

 

13

43‑44

05/10/01

05/10/01

1314

914

67

42.840

73

2.030

68

P1300914

 

130

133

134

 

129

7

 

13

43‑44

05/10/01

05/10/01

1516

1116

67

48.670

72

43.050

69

P1301117

 

130

135

136

 

129

7

 

13

43‑44

05/10/01

05/10/01

1718

1318

 

 

 

 

70

 

 

130

137

138

 

129

7

 

13

44‑45

05/10/01

05/10/01

1803

1403

 

 

 

 

70

 

 

130

 

 

 

129

7

cable jam, fixed

13

44‑45

05/10/01

05/10/01

1901

1501

 

 

 

 

70

 

 

130

 

 

 

129

7

resume towyoing

13

44‑45

05/10/01

05/10/01

1925

1525

 

 

 

 

70

 

 

130

139

140

 

129

7

 

13

44‑45

05/10/01

05/10/01

1952

1552

 

 

 

 

 

P1301552

 

130

 

 

 

129

7

 

13

44‑45

05/10/01

05/10/01

2039

1639

 

 

 

 

 

 

B51011639

130

 

 

 

129

7

now with gps

13

44‑45

05/10/01

05/10/01

2111

1711

 

 

 

 

 

 

 

130

 

 

05102111.01

129

7

with gps

13

44‑45

05/10/01

05/10/01

2128

1728

68

4.580

71

50.410

72

P1301728

 

130

141

142

 

129

7

 

13

44‑45

05/10/01

05/10/01

2239

1839

68

17.970

71

38.430

 

P1301838

 

130

 

 

 

129

7

file started by itself

13

45‑46

05/10/01

05/10/01

2329

1929

68

10.405

71

29.980

73

P1301930

 

130

143

144

 

129

7

 

13

45‑46

05/11/01

05/10/01

131

2131

68

16.240

71

10.180

74

P1302131

 

130

145

146

 

130

7

 

13

45‑46

05/11/01

05/10/01

333

2333

68

21.530

70

53.510

75

P1302334

 

130

147

148

 

130

7

hard time starting DAT

13

46‑47

05/11/01

05/11/01

535

135

68

28.269

70

29.775

76

 

 

131

149

150

 

130

7

 

13

47‑48

05/11/01

05/11/01

541

141

68

28.500

70

28.588

 

P1310141

 

131

 

 

 

130

7

REBOOT computer

13

47‑48

05/11/01

05/11/01

736

336

68

30.889

70

3.237

77

P1310339

 

131

151

152

 

130

7

 

13

47‑48

05/11/01

05/11/01

940

540

68

39.120

69

54.960

78

P1310542

 

131

153

154

 

130

7

 

13

47‑48

05/11/01

05/11/01

1142

742

68

48.220

69

51.080

79

P1310743

 

131

155

156

 

130

7

 

13

48‑49

05/11/01

05/11/01

1302

902

68

0.883

68

0.892

 

 

 

131

 

 

 

130

Mbay

END TOW 13

14

48‑49

05/12/01

05/12/01

450

50

69

1.280

69

4.655

 

 

 

132

 

 

05120459.01

131

Mbay

START TOW 14

14

49

05/12/01

05/12/01

500

100

69

1.035

69

4.416

80

P1320100

B1520057

132

157

158

 

131

Mbay

dat tape restarted due to oscilloscope

14

51‑52

05/12/01

05/12/01

705

305

68

52.163

68

57.422

81

P1320307

 

132

159

160

 

131

Mbay

t cut error again

14

51‑52

05/12/01

05/12/01

800

400

 

 

 

 

 

P1320400

 

132

 

 

 

131

Mbay

 

14

52

05/12/01

05/12/01

907

507

68

48.660

69

10.360

82

P1320513

 

132

161

162

 

131

8

 

14

52‑53

05/12/01

05/12/01

1111

711

68

43.390

69

29.970

83

P1320711

 

132

163

164

 

131

8

 

14

52‑53

05/12/01

05/12/01

1313

913

68

37.394

69

52.608

84

P1320917

 

132

165

166

 

131

8

 

14

52‑53

05/12/01

05/12/01

1407

1007

68

36.190

70

3.380

84

P1320917

 

132

 

 

05121407.01

131

8

change vprlog to ship's gps

14

52‑53

05/12/01

05/12/01

1426

1026

68

36.616

70

7.127

 

 

B5121023

132

 

 

05121423.01

131

8

 

14

52‑53

05/12/01

05/12/01

1514

1114

68

38.270

70

18.480

85

P1321116

 

132

167

168

 

131

8

 

14

52‑53

05/12/01

05/12/01

1717

1317

68

42.758

70

45.526

86

P1321320

 

132

169

170

 

131

8

 

14

53

05/12/01

05/12/01

1918

1518

68

44.308

70

58.975

87

P1321520

 

132

171

172

 

131

8

 

14

53

05/12/01

05/12/01

1931

1531

 

 

 

 

 

P1321531

 

132

 

 

 

131

8

 

14

53

05/12/01

05/12/01

2120

1720

68

40.230

71

6.740

88

P1321721

 

132

173

174

 

131

8

 

14

53

05/12/01

05/12/01

2322

1922

68

37.390

71

31.390

89

P1321923

 

132

175

176

 

131

8

 

14

54

05/12/01

05/12/01

2340

1940

 

All files and tapes stopped to recover fish

 

 

 

 

 

132

 

 

 

131

8

 

14

54

05/13/01

05/12/01

17

2017

 

No recovery, steaming north

 

 

 

 

 

132

 

 

05130017.01

132

8

all restart when couldn't recover fish

14

54

05/13/01

05/12/01

21

2021

 

 

 

 

 

P1322021

 

132

 

 

 

132

8

 

14

54‑55

05/13/01

05/12/01

35

2035

 

 

 

 

89

 

 

132

175

176

 

132

8

 

14

54‑55

05/13/01

05/12/01

215

2215

68

27.717

71

28.140

90

P1322215

 

132

177

178

05130017.01

132

8

 

14

54‑55

05/13/01

05/13/01

416

16

68

34.444

71

37.525

91

P1330017

 

133

179

180

 

132

8

 

14

54‑55

05/13/01

05/13/01

619

219

68

9.848

71

20.072

92

P1330220

 

133

181

182

 

132

8

 

14

54‑55

05/13/01

05/13/01

822

422

68

0.248

71

18.125

93

P1330424

B5130423

133

183

184

 

132

8

 

14

54‑55

05/13/01

05/13/01

852

452

 

 

 

 

 

P1330452

 

133

 

 

 

132

8

 

14

54‑55

05/13/01

05/13/01

1024

624

67

52.000

71

21.210

94

P1330626

 

133

185

186

 

132

8

 

14

54‑55

05/13/01

05/13/01

1226

826

67

45.576

71

25.464

95

P1330835

 

133

187

188

 

132

8

sonar program bombed‑‑ reobbo computer at tape change; lost 9 min data

14

54‑55

05/13/01

05/13/01

1429

1029

67

55.896

71

38.232

96

P1331047

 

133

189

190

 

132

8

lost time to reboot

14

54‑55

05/13/01

05/13/01

1633

1233

68

5.136

71

52.353

97

P1331233

 

133

191

192

 

132

8

 

14

54‑55

05/13/01

05/13/01

1651

1251

68

7.935

71

55.841

 

P1331251

 

133

 

 

 

132

8

E:\ drive error

14

54‑55

05/13/01

05/13/01

1710

1310

 

 

 

 

 

P1331310

 

133

 

 

 

132

8

 

14

54‑55

05/13/01

05/13/01

1751

1351

68

11.219

72

0.356

 

P1331351

 

133

 

 

 

132

8

 

14

54‑55

05/13/01

05/13/01

1848

1448

 

 

 

 

end

end

end

133

end

end

 

132

8

sonar cycled

14

54‑55

05/13/01

05/13/01

1902

1502

 

 

 

 

 

P1331502

 

133

 

 

 

132

8

coming around into the seas

14

54‑55

05/13/01

05/13/01

1911

1511

68

15.364

72

8.031

 

 

 

133

 

 

 

132

8

END TOW 14

15

55

05/14/01

05/13/01

15

2015

68

19.631

72

30.626

98

P1332024

B5132022

133

193

194

05140025.01

133

8

START TOW 15

15

55‑56

05/14/01

05/13/01

227

2227

68

13.220

72

53.020

99

P1332228

 

133

195

196

 

133

8

 

15

56

05/14/01

05/14/01

430

30

68

10.568

73

2.703

100

P1340030

 

134

197

198

 

133

8

 

15

56‑57

05/14/01

05/14/01

633

233

68

5.193

73

19.661

101

P1340233

 

134

199

200

 

133

8

 

15

56‑57

05/14/01

05/14/01

835

435

67

58.420

73

41.360

102

P1340435

B5140435

134

201

202

 

133

8

 

15

57

05/14/01

05/14/01

950

550

67

5.270

73

47.150

 

End Tow 15 for bad weather

 

134

 

 

 

133

8

END TOW 15

16

64

05/15/01

05/15/01

1008

608

68

4.540

74

46.160

103

P1350611

B5150608

135

203

204

05151015.01

134

9

BMP IN WATER START TOW 16

16

64‑65

05/15/01

05/15/01

1214

814

68

11.680

74

28.670

104

P1350756

 

135

205

206

 

134

9

 

16

65‑66

05/15/01

05/15/01

1416

1016

68

14.220

74

20.510

105

P1351016

 

135

207

208

 

134

9

 

16

65‑66

05/15/01

05/15/01

1616

1216

68

20.580

74

0.167

106

P1351217

 

135

209

210

 

134

9

 

16

66

05/15/01

05/15/01

1823

1433

68

26.917

73

38.370

 

END OF TOW 16

 

135

 

 

 

134

9

END TOW 16, PRESSURE SENSOR READS 5 m when fish is already coming out of water; reads 3.5 m on deck. DEPTH GAUGE UNRELIABLE

17

66‑67

05/16/01

05/15/01

100

2100

68

26.123

73

39.205

 

START PF TOW 17

 

135

 

 

 

135

9

Start Tow 17

17

66‑67

05/16/01

05/15/01

112

2112

68

25.982

73

38.723

107

P1352106

B5152104

135

211

212

05160106.01

135

9

 

17

66‑67

05/16/01

05/15/01

313

2313

68

33.853

73

17.170

108

P1352314

 

136

213

214

 

135

9

 

17

67

05/16/01

05/16/01

515

115

68

40.774

72

54.296

109

P1360117

 

136

215

216

 

135

9

Station is 300‑500 m deep, not 66

17

67‑68

05/16/01

05/16/01

718

318

68

41.624

72

50.900

110

P1360319

 

136

217

218

 

135

9

 

17

67‑68

05/16/01

05/16/01

921

521

68

47.180

72

31.160

111

P1360519

B5160518

136

219

220

 

135

9

 

17

67‑68

05/16/01

05/16/01

1125

725

68

51.390

72

13.840

112

P1360725

 

136

221

222

 

135

9

 

17

68

05/16/01

05/16/01

1323

923

68

54.020

72

8.840

113

 

 

136

223

224

 

135

9

 

17

68‑69

05/16/01

05/16/01

1528

1128

68

57.180

72

15.290

114

P1361129

 

136

225

226

 

135

 

 

17

68‑69

05/16/01

05/16/01

1731

1331

69

4.495

72

31.660

115

P1361331

 

136

227

228

 

135

 

RESTART DES due to JAZ AFFAIR

17

69

05/16/01

05/16/01

1907

1507

69

10.694

72

45.170

 

END OF TOW 17

 

136

 

 

 

135

10

END TOW 17, 151 meters to bottom for event log

18

69

05/16/01

05/16/01

2207

1807

69

10.630

72

45.380

116

P1361811

B5161809

136

229

230

05162211.01

135

10

START TOW 18

18

69‑70

05/17/01

05/16/01

14

2014

69

5.110

73

5.440

117

P1362024

 

136

231

232

 

136

10

 

18

69‑70

05/17/01

05/16/01

217

2217

68

59.420

73

24.680

118

P1362217

 

136

233

234

 

136

10

 

18

70

05/17/01

05/16/01

324

2324

68

57.137

73

32.350

 

end file

 

136

 

 

 

136

10

 

18

70‑71

05/17/01

05/17/01

408

8

68

56.806

73

33.180

 

P1370006

 

137

 

 

 

136

10

 

18

70‑71

05/17/01

05/17/01

420

20

68

56.225

73

35.350

119

 

 

137

235

236

 

136

10

 

18

70‑71

05/17/01

05/17/01

626

226

68

49.815

73

56.209

120

P1370225

 

137

237

238

 

136

10

 

18

70‑71

05/17/01

05/17/01

826

426

68

43.930

74

16.140

121

P1370430

B5170429

137

239

240

 

136

10

 

18

71‑72

05/17/01

05/17/01

1030

630

68

41.710

74

22.910

122

P1370632

 

137

241

242

 

136

10

 

18

71‑72

05/17/01

05/17/01

1230

830

68

35.330

74

43.200

123

P1370831

 

137

243

244

 

136

10

 

18

72

05/17/01

05/17/01

1432

1032

68

29.340

75

2.280

124

P1371034

 

137

245

246

 

136

10

 

18

72‑73

05/17/01

05/17/01

1632

1232

68

26.154

75

11.830

125

P1371232

 

137

247

248

 

136

10

 

18

72‑73

05/17/01

05/17/01

1836

1436

68

19.500

75

31.560

126

P1371436

 

137

249

250

 

136

10

 

18

73‑74

05/17/01

05/17/01

2037

1637

68

19.410

75

47.360

127

P1371640

B5171639

137

251

252

 

136

 

 

18

73‑74

05/17/01

05/17/01

2237

1837

68

26.640

76

4.140

128

P1371840

 

137

253

254

 

136

 

 

18

74

05/18/01

05/17/01

41

2041

68

32.840

76

19.420

129

P1372042

 

137

255

256

 

137

11

 

18

74‑75

05/18/01

05/17/01

243

2243

68

38.310

76

2.190

130

P1372244

 

137

257

258

 

137

11

 

18

75

05/18/01

05/18/01

445

45

68

44.719

75

42.406

131

P1380041

 

138

259

260

 

137

11

 

18

75‑76

05/18/01

05/18/01

647

247

68

47.491

75

34.044

132

P1380248

 

138

261

262

 

137

11

 

18

75‑76

05/18/01

05/18/01

850

450

68

53.450

75

15.470

133

P1380452

 

138

263

264

 

137

11

 

18

76

05/18/01

05/18/01

1041

641

68

59.073

74

56.270

 

END TOW

 

138

 

 

 

137

11

END TOW 18

19

76‑77

05/18/01

05/18/01

1545

1145

68

59.420

74

54.520

 

P1381149

B5181145

138

 

 

05181549.01

137

11

StartTow19

19

76‑77

05/18/01

05/18/01

1557

1157

69

0.129

74

52.827

134

 

 

138

265

266

 

137

11

 

19

76‑77

05/18/01

05/18/01

1801

1401

 

 

 

 

135

 

 

138

267

268

 

137

11

 

19

76‑77

05/18/01

05/18/01

1852

1452

68

53.880

75

9.909

 

P1381452

 

138

 

 

 

137

11

 

19

77

05/18/01

05/18/01

2004

1604

68

53.880

75

9.910

136

P1381606

 

138

269

270

 

137

11

 

19

77‑78

05/18/01

05/18/01

2207

1807

69

16.385

74

17.660

137

P1381808

 

138

271

272

 

137

 

 

19

77‑78

05/19/01

05/18/01

10

2010

69

24.160

74

36.640

138

P1381808

 

138

273

274

 

138

 

 

19

77‑78

05/19/01

05/18/01

213

2211

69

29.885

74

50.840

 

 

 

138

275

276

 

138

 

 

19

77‑78

05/19/01

05/18/01

315

2315

69

29.460

74

50.050

139

P1382315

 

138

 

 

 

138

 

 

19

78

05/19/01

05/19/01

416

16

68

53.880

75

9.909

140

P1390014

 

139

277

278

 

138

12

 

19

78‑79

05/19/01

05/19/01

618

218

 

 

 

 

141

P1390218

 

139

279

280

 

138

12

 

19

79

05/19/01

05/19/01

0820

0420

69

15.47

75

36.710

142

P1390422

B5190421

139

281

282

 

138

12

 

19

79‑80

05/19/01

05/19/01

1025

0625

69

9.34

75

56.170

143

P1390640

 

139

283

284

 

138

12

 

19

79‑80

05/19/01

05/19/01

1224

824

69

2.810

76

16.410

144

P1390827

 

139

285

286

 

138

12

 

19

80‑81

05/19/01

05/19/01

1426

1026

68

59.670

76

26.070

145

P1391026

 

139

287

288

 

138

12

 

19

80‑81

05/19/01

05/19/01

1630

1230

68

52.667

76

46.910

146

P1391242

 

139

289

290

 

138

12

 

19

80‑81

05/19/01

05/19/01

1726

1326

 

 

 

 

 

P1391326

 

139

 

 

 

138

12

 

19

81

05/19/01

05/19/01

1749

1349

68

48.191

76

58.730

 

END TOW 19

 

139

 

 

 

138

12

End Tow 19

20

81‑82

05/19/01

05/19/01

2230

1830

68

48.390

76

59.060

147

P1391829

B5191827

139

291

292

05192228.01

138

 

Start Tow 20

20

81‑83

05/19/01

05/19/01

2311

1911

 

 

 

 

 

P1391911

 

 

 

 

 

138

 

 

20

81‑82

05/20/01

05/19/01

31

2031

68

54.760

77

20.430

148

P1392032

 

139

293

294

 

139

 

 

20

81‑82

05/20/01

05/19/01

233

2233

69

0.710

77

40.690

149

P1392233

 

139

295

296

 

139

 

 

20

82‑83

05/20/01

05/20/01

436

36

69

3.098

77

42.930

150

P1400037

 

140

297

298

 

139

13

 

20

82‑83

05/20/01

05/20/01

518

118

 

 

 

 

 

P14000118

 

140

 

 

 

139

13

 

20

82‑83

05/20/01

05/20/01

640

240

 

 

 

 

151

 

 

 

299

300

 

139

13

 

20

82‑83

05/20/01

05/20/01

708

308

 

 

 

 

 

P1400308

 

 

 

 

 

139

13

 

20

83

05/20/01

05/20/01

842

442

69

17.030

77

1.730

152

P1400444

B5200443

140

301

302

 

139

13

 

20

83‑84

05/20/01

05/20/01

1044

644

69

20.860

76

50.040

153

P1400645

 

140

303

304

 

139

13

 

20

83‑84

05/20/01

05/20/01

1245

845

69

27.470

76

29.770

154

P1400845

 

140

305

306

 

139

13

 

20

84

05/20/01

05/20/01

1357

0957

69

32

76

17.340

 

End Tow 20, End Survey

 

 

 

 

 

 

 

End Tow 20, End Survey

21

 

5/24/01

5/24/01

1925

1525

68

44.449

71

27.700

155

P1441528

B5241528

144

 

 

5241929.01

143

 

Start Tow 21

21

 

5/24/01

5/24/01

1941

1541

 

 

 

 

 

 

 

144

307

308

 

143

 

 

21

 

5/24/01

5/24/01

2043

1643

 

 

 

 

 

P1441643

 

144

 

 

 

143

 

 

21

 

5/24/01

5/24/01

2132

1732

68

45.016

71

24.118

156

P1441733

 

144

309

310

 

143

 

 

21

 

5/24/01

5/24/01

2335

1935

68

46.230

71

27.520

157

P1441935

 

144

311

312

 

143

 

 

21

 

5/25/01

5/24/01

131

2131

68

47.525

71

23.860

 

End Tow 21

 

144

 

 

 

143

 

End Tow 21

22

 

5/26/01

5/26/01

2320

1920

67

46.997

69

47.014

 

 

B5261920

146

 

 

 

145

 

Started on Deck

22

 

5/26/01

5/26/01

2343

1943

67

45.996

69

46.461

 

 

 

146

 

 

 

145

 

Launch tow 22

22

 

5/27/01

5/26/01

9

2009

67

47.130

69

45.000

158

P1462010

B5261920

146

313

314

05270012.01

146

 

Redeploy after camera adjustment

22

 

5/27/01

5/26/01

153

2153

67

54.470

69

34.110

158

P1462153

 

146

 

 

 

146

 

 

22

 

5/27/01

5/26/01

210

2210

67

55.570

69

31.930

159

 

 

146

315

316

 

146

 

 

22

 

5/27/01

5/27/01

412

12

 

 

 

 

160

 

 

147

317

318

 

146

 

No GPS for acoustics, lost DES/15020 Delta time

22

 

5/27/01

5/27/01

452

52

68

6.682

69

12.814

 

P1470052

 

147

 

 

 

146

 

 

22

 

5/27/01

5/27/01

518

118

 

 

 

 

 

P1470118

 

147

 

 

 

146

 

 

22

 

5/27/01

5/27/01

618

218

68

11.446

69

0.254

161

P1470229

 

147

319

320

 

146

 

 

22

 

5/27/01

5/27/01

709

309

 

 

 

 

 

P1470309

 

147

 

 

 

146

 

 

22

 

5/27/01

5/27/01

821

421

68

11.180

68

32.760

162

P1470420

 

147

321

322

 

146

 

 

22

 

5/27/01

5/27/01

1022

622

68

10.350

68

14.200

163

P1470623

 

147

323

324

 

146

 

 

22

 

5/27/01

5/27/01

1115

710

68

7.230

68

25.390

 

 

 

147

 

 

 

146

 

End Tow 22

23

 

5/27/01

5/27/01

2320

1920

68

4.380

68

37.630

164

P1471926

B5271916

147

325

326

05272320.01

146

 

 

23

 

5/28/01

5/27/01

129

2129

67

55.270

68

27.190

165

 

 

147

327

328

 

147

 

 

23

 

5/28/01

5/27/01

330

2330

67

51.090

68

10.310

166

P1472328

 

147

329

330

 

147

 

 

23

Patch#1

5/28/01

5/28/01

532

132

67

55.015

68

3.101

167

P1480134

 

148

331

332

 

147

 

 

23

Patch#2

5/28/01

5/28/01

733

333

67

52.870

68

8.066

168

P1480334

 

148

333

334

 

147

 

 

23

 

5/28/01

5/28/01

935

535

67

54.370

68

19.560

169

P1480536

 

148

335

336

 

147

 

 

23

 

5/28/01

5/28/01

1101

701

67

51.830

68

4.740

 

END TOW 23

 

148

 

 

 

147

 

End Tow 23

24

Patch #3

5/28/01

5/28/01

1847

1447

67

54.490

68

10.915

 

P1481446

B5281446

148

 

 

05281857.01

147

 

 

24

 

5/28/01

5/28/01

1908

1508

 

 

 

 

 

 

B5281508

148

 

 

05281910.01

147

 

 

24

 

5/28/01

5/28/01

2038

1638

67

48.610

68

21.280

171

P1481638

 

148

339

340

 

147

 

 

24

 

5/28/01

5/28/01

2241

1841

67

53.540

68

16.680

172

P1481841

 

148

341

342

 

147

 

 

24

 

5/29/01

5/28/01

42

2042

67

55.780

68

20.600

173

P1482042

 

148

343

344

 

148

 

 

24

 

5/29/01

5/28/01

141

2141

67

52.870

68

26.700

 

End Tow 24

 

148

 

 

 

148

 

End Tow 24

25

91

5/30/01

5/29/01

200

2200

68

4.186

68

43.775

 

 

B5292200

149

 

 

 

149

 

START TOW 25 (ess start ondeck)

25

91

5/30/01

5/29/01

212

2212

68

3.982

68

43.490

174

P1492214

 

149

345

346

050300216.01

149

 

in the water

25

91‑92

5/30/01

5/30/01

421

21

67

59.098

68

48.402

175

P1500022

 

150

347

348

 

149

 

 

25

92‑93

5/30/01

5/30/01

623

223

67

53.625

68

48.378

176

P1500224

 

150

349

350

 

149

 

 

25

92‑93

5/30/01

5/30/01

704

304

 

 

 

 

 

P1500304

 

150

 

 

 

149

 

spontaneous file generation

25

92‑93

5/30/01

5/30/01

824

424

67

50.020

69

3.420

177

P1500424

 

150

351

352

 

149

 

 

25

93‑94

5/30/01

5/30/01

1026

626

67

48.720

69

11.390

178

P1500626

 

150

353

354

 

149

 

 

25

94

5/30/01

5/30/01

1228

828

67

46.980

69

21.890

179

P1500829

 

150

355

356

 

149

 

 

25

94

5/30/01

5/30/01

1313

913

67

46.510

69

23.520

 

 

 

150

 

 

 

149

 

TAPES STOP/END #25

25

94

5/30/01

5/30/01

1328

928

67

46.810

69

23.930

 

 

 

150

 

 

 

149

 

ON DECK

26

94‑95

5/30/01

5/30/01

2329

1929

67

47.374

69

22.720

 

 

 

150

 

 

 

149

 

START 26 IN WATER

26

94‑95

5/30/01

5/30/01

2334

1934

67

47.528

69

23.170

180

P1501932

B5301930

150

357

358

05302334.01

149

 

Start tapes

26

94‑95

5/31/01

5/30/01

12

2012

 

 

 

 

 

 

 

150

 

 

05310012.01

150

 

?text 6? Not sure filenames set correctly at begin of tow 26

26

94‑95

5/31/01

5/30/01

135

2135

67

46.140

69

43.370

181

P1502134

 

150

359

360

 

150

 

 

26

95‑96

5/31/01

5/30/01

337

2337

67

43.710

69

42.560

182

P1502337

 

150

361

362

 

150

 

 

26

96‑97

5/31/01

5/31/01

537

137

67

39.632

69

32.910

183

P1510139

 

151

363

364

 

150

 

HTI GPS BAD again

26

97

5/31/01

5/31/01

740

340

67

34.419

69

23.071

184

P1510341

 

151

365

366

 

150

 

 

26

97‑98

5/31/01

5/31/01

942

542

67

29.000

69

30.530

185

P1510542

 

151

367

368

 

150

 

 

26

98‑99

5/31/01

5/31/01

1144

744

67

25.880

69

33.640

186

P1510745

 

151

369

370

 

150

 

 

26

99

5/31/01

5/31/01

1258

858

67

22.200

69

36.450

 

 

End Tow

 

 

 

 

150

 

End Tow 26

27

100

6/01/01

5/31/01

206

2206

66

47.950

68

27.920

187

p1512217

B5312206

151

371

372

06010201.01

151

 

 

27

100‑101

6/01/01

6/01/01

419

19

66

42.829

68

45.380

188

p1520020

 

152

373

374

 

151

 

 

27

100‑101

6/01/01

6/01/01

624

224

66

37.893

69

2.875

189

p1520224

 

152

375

376

 

151

 

 

27

100‑101

6/01/01

6/01/01

826

426

66

32.620

69

20.450

190

p1520426

 

152

377

378

06010826.01

151

 

 

27

100‑101

6/01/01

6/01/01

1029

629

66

26.275

69

41.420

191

P1520629

 

152

379

380

 

151

 

 

27

100‑101

6/01/01

6/01/01

1231

831

66

20.410

70

1.570

192

P1520831

 

152

381

382

 

151

 

 

27

100‑101

6/01/01

6/01/01

1432

1032

66

14.510

70

21.430

193

P1521034

 

152

383

384

 

151

 

 

27

100‑101

6/01/01

6/01/01

1637

1237

66

8.518

70

42.170

194

P1521235

 

152

385

386

 

151

 

End Towyoing

27

100‑101

6/01/01

6/01/01

1756

1356

 

 

 

 

 

P1521356

 

152

 

 

 

151

 

Noise File from 50 m

27

101

6/01/01

6/01/01

1842

1442

66

2.844

71

3.461

 

 

 

152

 

 

 

151

 

End Tow 27


 

Appendix 8:  Sonabuoy deployments

 

#

Date

Time(gmt)

latdeg

latmin.min

latitude

longdeg

longmin.min

longitude

Mn

Ba

Bp

Bm

Odt

Seal

reason

1

26‑Apr‑01

19:18

59

14.25

‑59.238

65

56.62

‑65.944

x

location

2

27‑Apr‑01

0:00:01

63

50.979

‑63.850

67

8.638

‑67.144

location

3

28Apr00

16:20

64

52.533

‑64.876

64

8.099

‑64.135

whales

4

29‑Apr‑01

4:52

64

59.677

‑64.995

69

29.732

‑69.496

x

location

5

29‑Apr‑01

16:45:54

65

57.262

‑65.954

69

53.59

‑69.893

location

6

30‑Apr‑01

18:25:41

66

47.197

‑66.787

68

31.954

‑68.533

x

whales

7

01‑May‑01

13:54:00

66

12.234

‑66.204

71

3.541

‑71.059

x

whales

8

01‑May‑01

14:48:30

66

16.06

‑66.268

71

9.65

‑71.161

x

whales

9

01‑May‑01

18:48:45

66

25.81

‑66.430

71

19.96

‑71.333

x

whales

10

01‑May‑01

20:02:04

66

28.878

‑66.481

71

6.977

‑71.116

x

whales

11

02‑May‑01

13:39

66

52.887

‑66.881

70

9.128

‑70.152

whales

12

02‑May‑01

20:37:49

67

3.131

‑67.052

69

9.41

‑69.157

x

x?

x

whales

13

02‑May‑01

22:17:28

67

2.344

‑67.039

69

12.287

‑69.205

x

x

sounds

14

04‑May‑01

8:42:15

66

34.784

‑66.580

72

13.131

‑72.219

location

15

04‑May‑01

13:21:44

66

40.239

‑66.671

73

8.971

‑73.150

location

16

05‑May‑01

18:24

67

24.5

‑67.408

71

4.9

‑71.082

x

whales

17

05‑May‑01

19:19

67

30.33

‑67.506

70

42.4

‑70.707

location

18

06‑May‑01

12:51:30

68

1.142

‑68.019

69

24.88

‑69.415

x?

location

19

06‑May‑01

17:45

67

58.33

‑67.972

68

32.83

‑68.547

x

location

20

06‑May‑01

20:04

67

52.13

‑67.869

68

11.35

‑68.189

x

whales

21

06‑May‑01

0:12:34

67

53.359

‑67.889

67

41.607

‑67.693

x

location

22

07‑May‑01

17:51

68

34.157

‑68.569

68

25.231

‑68.421

x

x?

location

23

09‑May‑01

1:05

67

14.212

‑67.237

74

32.237

‑74.537

x

location

24

10‑May‑01

15:31

67

49.432

‑67.824

72

40.615

‑72.677

location

25

11‑May‑01

15:30

68

52.707

‑68.878

69

54.021

‑69.900

location

26

11‑May‑01

17:18

69

0.089

‑69.001

69

43.595

‑69.727

x

location

27

11‑May‑01

21:04

69

11.343

‑69.189

69

23.541

‑69.392

location

28

12‑May‑01

12:53

68

38.401

‑68.640

69

48.858

‑69.814

x?

x?

location

29

12‑May‑01

16:48

68

41.8

‑68.697

70

39.604

‑70.660

x

whales

30

12‑May‑01

17:35

68

43.11

‑68.718

70

49.25

‑70.821

whales

31

12‑May‑01

22:18

68

39.443

‑68.657

71

18.309

‑71.305

x

location

32

13‑May‑01

16:58

68

7.028

‑68.117

71

54.611

‑71.910

x?

x?

location

33

13‑May‑01

19:52

68

18.852

‑68.314

72

13.152

‑72.219

x?

x?

location

34

14‑May‑01

13:48

67

52.449

‑67.874

74

1.875

‑74.031

location

35

14‑May‑01

17:58

67

41.068

‑67.684

74

33.664

‑74.561

x?

location

36

14‑May‑01

21:45

67

29.907

‑67.498

75

7.959

‑75.133

location

37

15‑May‑01

16:57

68

22.861

‑68.381

73

53.222

‑73.887

location

38

15‑May‑01

1:53

68

29.162

‑68.486

73

31.883

‑73.531

x

location

39

16‑May‑01

13:42:20

68

53.927

‑68.899

72

9.283

‑72.155

x

seals

40

16‑May‑01

16:01:43

68

59.209

‑68.987

72

19.564

‑72.326

x

x?

sounds

41

16‑May‑01

17:16

69

4.05

‑69.068

72

30.527

‑72.509

x

sounds

42

16‑May‑01

18:16

69

8.453

‑69.141

72

40.023

‑72.667

x

sounds

43

17‑May‑01

15:52

68

28.431

‑68.474

75

4.795

‑75.080

x

location

44

17‑May‑01

19:39:30

68

16.399

‑68.273

75

40.533

‑75.676

x

location

45

18‑May‑01

14:54

68

56.422

‑68.940

74

48.267

‑74.804

x

location

46

18‑May‑01

18:50

69

9.674

‑69.161

74

24.946

‑74.416

x

x?

location

47

18‑May‑01

0:23:33

69

25.059

‑69.418

74

38.863

‑74.648

x

location

48

18‑May‑01

3:21

69

29.226

‑69.487

74

52.962

‑74.883

x

sounds

49

19‑May‑01

4:36

69

25.277

‑69.421

75

5.251

‑75.088

failed

50

19‑May‑01

16:36:58

68

52.226

‑68.870

76

48.234

‑76.804

x?

sounds

51

20‑May‑01

13:37

69

30.481

‑69.508

76

20.71

‑76.345

x

x

location

52

20‑May‑01

18:19

69

36.516

‑69.609

76

23.097

‑76.385

sounds

53

20‑May‑01

23:09

70

12.414

‑70.207

77

7.639

‑77.127

x

location

54

21‑May‑01

12:12

70

17.904

‑70.298

75

18.611

‑75.310

failed

55

21‑May‑01

12:34

70

18.204

‑70.303

75

14.42

‑75.240

x?

location

56

22‑May‑01

11:55:37

69

23.441

‑69.391

75

20.721

‑75.345

x

location

57

22‑May‑01

12:52:10

69

21.015

‑69.350

75

3.614

‑75.060

x

x?

sounds

58

22‑May‑01

13:48:59

69

26.115

‑69.435

74

53.635

‑74.894

x

sounds

59

22‑May‑01

14:31:54

69

32.705

‑69.545

74

51.903

‑74.865

x

sounds

60

22‑May‑01

15:13:21

69

37.358

‑69.623

74

50.785

‑74.846

x

sounds

61

22‑May‑01

17:40

69

33.049

‑69.551

74

28.145

‑74.469

x

sounds

62

23‑May‑01

12:32:04

69

15.578

‑69.260

72

29.879

‑72.498

seals

63

23‑May‑01

15:11:05

69

21.522

‑69.359

72

24.525

‑72.409

location

64

24‑May‑01

8:15:29

68

49.793

‑68.830

71

58.905

‑71.982

x

whales

65

24‑May‑01

8:42:41

68

47.526

‑68.792

71

54.486

‑71.908

failed

66

24‑May‑01

8:58

68

46.287

‑68.771

71

51.855

‑71.864

x

sounds

67

24‑May‑01

10:51:18

68

44.811

‑68.747

71

23.333

‑71.389

x

sounds

68

24‑May‑01

11:26

68

45.227

‑68.754

71

13.625

‑71.227

x

sounds

69

24‑May‑01

16:01:40

68

44.841

‑68.747

71

23.34

‑71.389

x

whales

70

25‑May‑01

16:40

68

19.722

‑68.329

68

54.86

‑68.914

x

location

71

26‑May‑01

16:05

68

7.374

‑68.123

70

37.708

‑70.628

x

location

72

26‑May‑01

18:40

68

1.475

‑68.025

70

13.033

‑70.217

x

location

73

27‑May‑01

10:50

68

8.562

‑68.143

68

16.16

‑68.269

failed

74

27‑May‑01

11:29:20

68

7.552

‑68.126

68

22.394

‑68.373

x

location

75

27‑May‑01

12:11:45

68

5.504

‑68.092

68

46.463

‑68.774

x

sounds

76

27‑May‑01

2:13:56

67

54.022

‑67.900

68

17.291

‑68.288

x

sounds

77

27‑May‑01

2:52

67

52.88

‑67.881

68

8.96

‑68.149

x

location

78

28‑May‑01

12:49:55

67

53.07

‑67.884

68

10.84

‑68.181

x

whales

79

28‑May‑01

13:53:59

67

63.561

‑68.059

68

15.318

‑68.255

x

sounds

80

28‑May‑01

16:34

67

54.301

‑67.905

68

6.029

‑68.100

failed

81

28‑May‑01

16:42

67

54.239

‑67.904

68

7.87

‑68.131

x

sounds

82

28‑May‑01

22:56

67

53.538

‑67.892

68

13.276

‑68.221

x

sounds

83

28‑May‑01

5:02:08

67

55.781

‑67.930

68

21.048

‑68.351

x

sounds

84

29‑May‑01

0:02

68

4.887

‑68.081

68

37.428

‑68.624

x

location

85

30‑May‑01

10:37:05

67

48.502

‑67.808

69

13.243

‑69.221

x

whales

86

30‑May‑01

12:47

67

46.748

‑67.779

69

21.917

‑69.365

x

sounds

87

30‑May‑01

14:26:50

67

54.968

‑67.916

69

23.948

‑69.399

x

sounds

88

30‑May‑01

15:22:54

68

5.024

‑68.084

69

16.792

‑69.280

x

whales

89

30‑May‑01

16:32

68

16.755

‑68.279

69

8.846

‑69.147

x

location

90

31‑May‑01

4:36:00

68

18.845

‑68.314

69

30.599

‑69.510

location

91

31‑May‑01

15:54:55

67

9.824

‑67.164

69

14.899

‑69.248

whales

92

01‑Jun‑01

13:22:19

66

17.996

‑66.300

70

10.041

‑70.167

x

x?

location

93

01‑Jun‑01

16:17:51

66

9.42

‑66.157

70

38.936

‑70.649

x

x?

location

94

01‑Jun‑01

18:12

66

4.163

‑66.069

70

58.569

‑70.976

x

location

95

01‑Jun‑01

22:00

66

0.615

‑66.010

71

9.158

‑71.153

x

sounds

  96

    02-Jun-01

 16:48:45

63

25.391

-63.423

69

6.044

-69.101

-

-

-

-

-

-

location

  97

02‑Jun‑01

2:24:40

61

50.995

‑61.850

68

6.902

‑68.115

location

98

02‑Jun‑01

3:25

61

40.813

‑61.680

68

3.633

‑68.061

location

99

06‑Jun‑01

4:35

61

29.79

‑61.496

67

57.86

‑67.964

location

100

06‑Jun‑01

12:44:56

60

13.766

‑60.229

67

16.954

‑67.283

location

101

06‑Jun‑01

13:34:56

60

6.043

‑60.101

67

12.599

‑67.210

location

102

06‑Jun‑01

15:19:15

59

49.493

‑59.825

67

4.4

‑67.073

failed

103

06‑Jun‑01

16:01:48

59

42.227

‑59.704

67

0.754

‑67.013

location

104

06‑Jun‑01

17:46:00

59

24.395

‑59.407

66

51.687

‑66.861

location